Early weak anomaly detection and uncertainty quantification of equipment based on multi-task and multi-domain temporal memory autoencoder

To avoid severe malfunctions of industrial equipment, it is necessary to perform accurate detection in the early stages of abnormal occurrences. However, early anomalies are usually weak, difficult to model anomalous features, and affected by data uncertainty and training uncertainty. To address the...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Engineering applications of artificial intelligence Ročník 162; s. 112735
Hlavní autoři: Li, Chuanrui, Ma, Liyong
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Ltd 26.12.2025
Témata:
ISSN:0952-1976
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract To avoid severe malfunctions of industrial equipment, it is necessary to perform accurate detection in the early stages of abnormal occurrences. However, early anomalies are usually weak, difficult to model anomalous features, and affected by data uncertainty and training uncertainty. To address these limitations, we propose a multi-task and multi-domain temporal memory autoencoder (MTMAE). In the encoding stage, we design a temporal feature learning convolutional encoder and a frequency-aware temporal block to fuse time-domain and frequency-domain anomalous features, thereby creating a cloud-enhancement feature modeling (CEFM) approach based on cloud model theory to mitigate uncertainty in the data. After obtaining the latent features of the encoder, the reconstruction task uses the deconvolution network to recover the data, forming an encoder–decoder adaptive matching. The encoding memory task uses an external attention memory unit scorer to memorize potential patterns in the data. In addition, we design an optimized regularization uncertainty weighting (UW) method to balance the two tasks and penalize training uncertainty. The experimental results of five public datasets demonstrate the superiority of MTMAE in anomaly detection, with an average F1 score of 0.871 and an area under the precision–recall curve of 0.887. In the actual anomaly detection of private marine diesel engine data, MTMAE can detect early weak anomalies fastest and has the lowest false alarm rate. In addition, we also demonstrated the contribution of CEFM and UW methods to the model’s resistance to uncertainty through noise set detection and model-independent detection experiments. •We propose a multi-domain autoencoder to enhance time series modeling.•We design a memory scorer based on external attention to score anomalies.•Multi-task learning with uncertainty minimizes reconstruction error and score.•We use cloud model theory to quantify data uncertainty and assist the encoder.•We design noise set and model independent tests to evaluate model robustness.
AbstractList To avoid severe malfunctions of industrial equipment, it is necessary to perform accurate detection in the early stages of abnormal occurrences. However, early anomalies are usually weak, difficult to model anomalous features, and affected by data uncertainty and training uncertainty. To address these limitations, we propose a multi-task and multi-domain temporal memory autoencoder (MTMAE). In the encoding stage, we design a temporal feature learning convolutional encoder and a frequency-aware temporal block to fuse time-domain and frequency-domain anomalous features, thereby creating a cloud-enhancement feature modeling (CEFM) approach based on cloud model theory to mitigate uncertainty in the data. After obtaining the latent features of the encoder, the reconstruction task uses the deconvolution network to recover the data, forming an encoder–decoder adaptive matching. The encoding memory task uses an external attention memory unit scorer to memorize potential patterns in the data. In addition, we design an optimized regularization uncertainty weighting (UW) method to balance the two tasks and penalize training uncertainty. The experimental results of five public datasets demonstrate the superiority of MTMAE in anomaly detection, with an average F1 score of 0.871 and an area under the precision–recall curve of 0.887. In the actual anomaly detection of private marine diesel engine data, MTMAE can detect early weak anomalies fastest and has the lowest false alarm rate. In addition, we also demonstrated the contribution of CEFM and UW methods to the model’s resistance to uncertainty through noise set detection and model-independent detection experiments. •We propose a multi-domain autoencoder to enhance time series modeling.•We design a memory scorer based on external attention to score anomalies.•Multi-task learning with uncertainty minimizes reconstruction error and score.•We use cloud model theory to quantify data uncertainty and assist the encoder.•We design noise set and model independent tests to evaluate model robustness.
ArticleNumber 112735
Author Ma, Liyong
Li, Chuanrui
Author_xml – sequence: 1
  givenname: Chuanrui
  orcidid: 0009-0001-2097-1299
  surname: Li
  fullname: Li, Chuanrui
  organization: School of Information Science and Engineering, Harbin Institute of Technology, WeiHai, 264209, China
– sequence: 2
  givenname: Liyong
  surname: Ma
  fullname: Ma, Liyong
  email: maliyong@hit.edu.cn
  organization: School of Information Science and Engineering, Harbin Institute of Technology, WeiHai, 264209, China
BookMark eNqFkM1OwzAQhH0oEm3hFZBfIMV2Gie5garyI1XiAmdra6-R28ZOHQeUR-CtSSmcOa1mVjMafTMy8cEjITecLTjj8na3QP8ObQtuIZgoFpyLMi8mZMrqQmS8LuUlmXXdjjGWV0s5JV9riIeBfiLsKfjQwCgMJtTJBT86hvZeY0zgfBrosQefnHUaft7BUjz2rm3QJ7qFDg0d3aY_JJcl6PY_-bM0Y7XzNGHThggH2mAT4kChTwG9DgbjFbmwcOjw-vfOydvD-nX1lG1eHp9X95tMC8lTxoGVJS4lEwZyaXO0mldbVm_50pa11qK2qA1shcwLjqIwVS0lx7qyUljLqnxO5LlXx9B1Ea1qo2sgDoozdYKoduoPojpBVGeIY_DuHMRx3YfDqDrtxvFoXBx5KRPcfxXfqWCGvA
Cites_doi 10.1109/LRA.2018.2801475
10.1145/3292500.3330672
10.1016/j.ins.2024.120605
10.1109/TIP.2022.3219228
10.1016/j.ress.2021.107791
10.1109/TBME.2024.3447058
10.1109/TNNLS.2021.3086137
10.1109/TSG.2020.2995313
10.1109/TIP.2023.3293772
10.1016/j.engappai.2023.106173
10.1016/j.patrec.2021.04.020
10.1016/j.inffus.2021.05.008
10.1038/s41746-024-01418-9
10.1007/s00158-022-03348-0
10.1109/JBHI.2021.3123936
10.1016/j.ins.2023.119610
10.1109/TASLP.2017.2759338
10.1016/j.ins.2022.11.011
10.1109/ACCESS.2020.2977671
10.1109/JSEN.2024.3370965
10.3390/math11122746
10.1007/s10489-024-05575-y
10.1016/j.ress.2022.108949
10.1016/j.future.2017.07.036
10.1016/j.ins.2023.118989
10.1016/j.aei.2020.101105
10.1007/s10845-022-02034-8
10.1109/TII.2020.2967556
10.1109/CVPR.2018.00781
10.1109/MCOM.001.2200294
10.1109/TCSVT.2022.3211839
10.1016/j.engappai.2022.104729
10.1016/j.eswa.2023.120284
10.1016/j.rcim.2022.102441
10.1016/j.engfailanal.2025.109315
10.1109/TII.2024.3378834
10.1016/j.ipm.2021.102844
10.1016/j.inffus.2022.12.027
ContentType Journal Article
Copyright 2025 Elsevier Ltd
Copyright_xml – notice: 2025 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.engappai.2025.112735
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Computer Science
ExternalDocumentID 10_1016_j_engappai_2025_112735
S0952197625027666
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXUO
AAYFN
AAYWO
ABBOA
ABJNI
ABMAC
ACDAQ
ACGFS
ACLOT
ACRLP
ACVFH
ACZNC
ADBBV
ADCNI
ADEZE
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFPUW
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
AOUOD
APXCP
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFKBS
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
IHE
J1W
JJJVA
KOM
LG9
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
TN5
~G-
~HD
29G
9DU
AAQXK
AAYXX
ABWVN
ABXDB
ACNNM
ACRPL
ADJOM
ADMUD
ADNMO
AGQPQ
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
R2-
SBC
SET
UHS
WUQ
ZMT
ID FETCH-LOGICAL-c261t-1a077e4602da36f3efc18b09b14f79cc29fecdab26351e25d89661e98f62ff083
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001601106800002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0952-1976
IngestDate Sat Nov 29 06:49:51 EST 2025
Sat Nov 29 17:09:10 EST 2025
IsPeerReviewed true
IsScholarly true
Keywords Early weak anomaly detection
Uncertainty
Autoencoder
Multi-task learning
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c261t-1a077e4602da36f3efc18b09b14f79cc29fecdab26351e25d89661e98f62ff083
ORCID 0009-0001-2097-1299
ParticipantIDs crossref_primary_10_1016_j_engappai_2025_112735
elsevier_sciencedirect_doi_10_1016_j_engappai_2025_112735
PublicationCentury 2000
PublicationDate 2025-12-26
PublicationDateYYYYMMDD 2025-12-26
PublicationDate_xml – month: 12
  year: 2025
  text: 2025-12-26
  day: 26
PublicationDecade 2020
PublicationTitle Engineering applications of artificial intelligence
PublicationYear 2025
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Zhang, Li, Wang, Wang, Lai, Zhang (b42) 2023; 93
Essien, Giannetti (b8) 2020; 16
Cordoni, Bacchiega, Bondani, Radu, Muradore (b5) 2022; 110
Ullah, Hussain, Ullah, Lee, Baik (b31) 2023; 123
Li, Zheng, Tang, Zhu, Huang (b19) 2023; 649
Xu, Wu, Wang, Long (b37) 2021
Deng, Xu, Zhang, Fruehholz, Schuller (b7) 2018; 26
Yan, Shao, Xiao, Liu, Wan (b38) 2023; 79
Huang, Liu, Jin, Xu, Yao (b15) 2024; 24
Deng, Hooi (b6) 2021; vol. 35
Chen, Su, Deng, Huang, Wu, Peng (b3) 2021; vol. 11605
Han, Jhaveri, Wang, Qiao, Du (b12) 2023; 27
Friedman, Khurshid, Venn, Wang, Diamant, Di Achille, Weng, Choi, Reeder, Pirruccello, Singh, Lau, Philippakis, Anderson, Maddah, Batra, Ellinor, Ho, Lubitz (b9) 2025; 8
Souto (b27) 2024; 255
Gelli, Govindarasu (b10) 2024; 15
Su, Y., Zhao, Y., Niu, C., Liu, R., Sun, W., Pei, D., 2019. Robust Anomaly Detection for Multivariate Time Series through Stochastic Recurrent Neural Network. In: KDD’19: Proceedings of the 25TH ACM SIGKDD International Conferencce on Knowledge Discovery and Data Mining. pp. 2828–2837.
Zhou, Song, Zhang, Liu, Zhu, Liu (b45) 2022; 33
Chow, Su, Wu, Tan, Mao, Wang (b4) 2020; 45
An, Wang, Zhang (b2) 2022; 59
Kumar, Kumar, Aloqaily, Aljuhani (b18) 2023; 61
Abdar, Pourpanah, Hussain, Rezazadegan, Liu, Ghavamzadeh, Fieguth, Cao, Khosravi, Acharya, Makarenkov, Nahavandi (b1) 2021; 76
Liu, Gong, Chen, Zhou (b22) 2023; 11
Yang, Zhang, Chen, Hu, Gao, Liu, Ping, Song (b39) 2024; 35
Wu, Zhu, Shi, Wang, Wu (b32) 2023; 33
Xiao, Li, Zhu (b34) 2024; 20
Xu, Ding, Li, Dai, Zheng, Yu, Sui (b36) 2022; 618
Trirat, Lee (b30) 2024
Kendall, A., Gal, Y., Cipolla, R., 2018. Multi-Task Learning Using Uncertainty to Weigh Losses for Scene Geometry and Semantics. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. CVPR, pp. 7482–7491.
Zang, Ren, Zhang, Liu (b40) 2018; 81
Li, Zhu, Van Leeuwen (b20) 2023; 18
Liu, Wang, Wang, Xue, Wang, Gao (b24) 2025; 170
Park, Hoshi, Kemp (b25) 2018; 3
Zou, Yang, Kui, Liu, Liao, Zhao (b47) 2023; 638
Huang, Chen, Deng, Huang (b13) 2024; 54
Xie, Dong, Chen, Peng, Li (b35) 2021; 215
Zhu, Yang, Jiang (b46) 2023; 230
Szegedy, Ioffe, Vanhoucke, Alemi (b29) 2017
Guo, Zhou, Chen, Ying, Zhang, Zhou (b11) 2020; 8
Liang, Zhang, Zhao, Wu, Liu, Pan (b21) 2023; 32
Sanguineti, Morerio, Del Bue, Murino (b26) 2022; 31
Kim, Choi, Kim (b17) 2022; 65
Xiang, Ali, Zhang, Jung, Zhou (b33) 2024; 129
Huang, Liu, Cui, Zhang, Li, Zhang, Zhang, Zhang (b14) 2024; 669
Zhang, Shi, Lin, Cao, Guo, Zhang, Li, Yang, Xu (b43) 2025; 72
Zhang, Zhang, Cao, Bian, Yi, Zheng, Li (b44) 2022
Liu, Liu, Zheng, Wang, Mao, Qiu, Ling (b23) 2023; 228
Zhang, Deng (b41) 2021; 148
Li (10.1016/j.engappai.2025.112735_b19) 2023; 649
Zhang (10.1016/j.engappai.2025.112735_b41) 2021; 148
Huang (10.1016/j.engappai.2025.112735_b15) 2024; 24
Liang (10.1016/j.engappai.2025.112735_b21) 2023; 32
Liu (10.1016/j.engappai.2025.112735_b23) 2023; 228
Deng (10.1016/j.engappai.2025.112735_b6) 2021; vol. 35
Yan (10.1016/j.engappai.2025.112735_b38) 2023; 79
Wu (10.1016/j.engappai.2025.112735_b32) 2023; 33
Guo (10.1016/j.engappai.2025.112735_b11) 2020; 8
Xu (10.1016/j.engappai.2025.112735_b36) 2022; 618
Cordoni (10.1016/j.engappai.2025.112735_b5) 2022; 110
Essien (10.1016/j.engappai.2025.112735_b8) 2020; 16
Kim (10.1016/j.engappai.2025.112735_b17) 2022; 65
Zhu (10.1016/j.engappai.2025.112735_b46) 2023; 230
Han (10.1016/j.engappai.2025.112735_b12) 2023; 27
Liu (10.1016/j.engappai.2025.112735_b24) 2025; 170
Yang (10.1016/j.engappai.2025.112735_b39) 2024; 35
Friedman (10.1016/j.engappai.2025.112735_b9) 2025; 8
Zhou (10.1016/j.engappai.2025.112735_b45) 2022; 33
Zhang (10.1016/j.engappai.2025.112735_b44) 2022
Zang (10.1016/j.engappai.2025.112735_b40) 2018; 81
10.1016/j.engappai.2025.112735_b16
Huang (10.1016/j.engappai.2025.112735_b13) 2024; 54
Xiang (10.1016/j.engappai.2025.112735_b33) 2024; 129
Trirat (10.1016/j.engappai.2025.112735_b30) 2024
Chen (10.1016/j.engappai.2025.112735_b3) 2021; vol. 11605
Xu (10.1016/j.engappai.2025.112735_b37) 2021
Huang (10.1016/j.engappai.2025.112735_b14) 2024; 669
Ullah (10.1016/j.engappai.2025.112735_b31) 2023; 123
Chow (10.1016/j.engappai.2025.112735_b4) 2020; 45
Deng (10.1016/j.engappai.2025.112735_b7) 2018; 26
Souto (10.1016/j.engappai.2025.112735_b27) 2024; 255
Li (10.1016/j.engappai.2025.112735_b20) 2023; 18
Liu (10.1016/j.engappai.2025.112735_b22) 2023; 11
Zhang (10.1016/j.engappai.2025.112735_b42) 2023; 93
Gelli (10.1016/j.engappai.2025.112735_b10) 2024; 15
Szegedy (10.1016/j.engappai.2025.112735_b29) 2017
Zhang (10.1016/j.engappai.2025.112735_b43) 2025; 72
Xiao (10.1016/j.engappai.2025.112735_b34) 2024; 20
Abdar (10.1016/j.engappai.2025.112735_b1) 2021; 76
Park (10.1016/j.engappai.2025.112735_b25) 2018; 3
Zou (10.1016/j.engappai.2025.112735_b47) 2023; 638
Xie (10.1016/j.engappai.2025.112735_b35) 2021; 215
Sanguineti (10.1016/j.engappai.2025.112735_b26) 2022; 31
10.1016/j.engappai.2025.112735_b28
An (10.1016/j.engappai.2025.112735_b2) 2022; 59
Kumar (10.1016/j.engappai.2025.112735_b18) 2023; 61
References_xml – volume: 65
  year: 2022
  ident: b17
  article-title: Data-driven prognostics with low-fidelity physical information for digital twin: physics-informed neural network
  publication-title: Struct. Multidiscip. Optim.
– volume: 76
  start-page: 243
  year: 2021
  end-page: 297
  ident: b1
  article-title: A review of uncertainty quantification in deep learning: Techniques, applications and challenges
  publication-title: Inf. Fusion
– volume: 123
  year: 2023
  ident: b31
  article-title: Transcnn: Hybrid CNN and transformer mechanism for surveillance anomaly detection
  publication-title: Eng. Appl. Artif. Intell.
– volume: 45
  year: 2020
  ident: b4
  article-title: Anomaly detection of defects on concrete structures with the convolutional autoencoder
  publication-title: Adv. Eng. Inform.
– volume: 8
  start-page: 1
  year: 2025
  end-page: 13
  ident: b9
  article-title: Unsupervised deep learning of electrocardiograms enables scalable human disease profiling
  publication-title: Npj Digital Med.
– volume: 32
  start-page: 4327
  year: 2023
  end-page: 4340
  ident: b21
  article-title: Omni-frequency channel-selection representations for unsupervised anomaly detection
  publication-title: IEEE Trans. Image Process.
– volume: 11
  year: 2023
  ident: b22
  article-title: Multi-step-ahead wind speed forecast method based on outlier correction, optimized decomposition, and dlinear model
  publication-title: Mathematics
– year: 2024
  ident: b30
  article-title: PASTA: Neural architecture search for anomaly detection in multivariate time series
  publication-title: IEEE Trans. Emerg. Topics Comput. Intell.
– volume: 93
  start-page: 192
  year: 2023
  end-page: 208
  ident: b42
  article-title: A multi-source information fusion model for outlier detection
  publication-title: Inf. Fusion
– volume: 8
  start-page: 43992
  year: 2020
  end-page: 44005
  ident: b11
  article-title: Variational autoencoder with optimizing Gaussian mixture model priors
  publication-title: IEEE Access
– volume: 54
  start-page: 7636
  year: 2024
  end-page: 7658
  ident: b13
  article-title: Multivariate time series anomaly detection via dynamic graph attention network and informer
  publication-title: Appl. Intell.
– volume: 35
  start-page: 95
  year: 2024
  end-page: 113
  ident: b39
  article-title: Surface defect detection method for air rudder based on positive samples
  publication-title: J. Intell. Manuf.
– volume: 170
  year: 2025
  ident: b24
  article-title: Method for predicting remaining useful life of rolling bearings based on dynamic complexity characteristic entropy and quantum neural networks
  publication-title: Eng. Fail. Anal.
– volume: 228
  year: 2023
  ident: b23
  article-title: Anomaly-GAN: A data augmentation method for train surface anomaly detection
  publication-title: Expert Syst. Appl.
– volume: 129
  year: 2024
  ident: b33
  article-title: Pixel-associated autoencoder for hyperspectral anomaly detection
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– year: 2022
  ident: b44
  article-title: Less is more: Fast multivariate time series forecasting with light sampling-oriented MLP structures
– volume: 18
  start-page: 1
  year: 2023
  end-page: 54
  ident: b20
  article-title: A survey on explainable anomaly detection
  publication-title: ACM Trans. Knowl. Discov. Data
– volume: 31
  start-page: 7102
  year: 2022
  end-page: 7115
  ident: b26
  article-title: Unsupervised synthetic acoustic image generation for audio-visual scene understanding
  publication-title: IEEE Trans. Image Process.
– volume: 26
  start-page: 31
  year: 2018
  end-page: 43
  ident: b7
  article-title: Semisupervised autoencoders for speech emotion recognition
  publication-title: IEEE-ACM Trans. Audio Speech Lang. Process.
– volume: 20
  start-page: 9320
  year: 2024
  end-page: 9329
  ident: b34
  article-title: Seq
  publication-title: IEEE Trans. Ind. Inform.
– volume: 24
  start-page: 12770
  year: 2024
  end-page: 12781
  ident: b15
  article-title: Improved autoencoder model with memory module for anomaly detection
  publication-title: IEEE Sens. J.
– volume: vol. 35
  start-page: 4027
  year: 2021
  end-page: 4035
  ident: b6
  article-title: Graph neural network-based anomaly detection in multivariate time series
  publication-title: Proceedings of the AAAI Conference on Artificial Intelligence
– volume: 15
  start-page: 5939
  year: 2024
  end-page: 5951
  ident: b10
  article-title: Anomaly detection and mitigation for wide-area damping control using machine learning
  publication-title: IEEE Trans. Smart Grid
– volume: 255
  year: 2024
  ident: b27
  article-title: Charting new avenues in financial forecasting with TimesNet: The impact of intraperiod and interperiod variations on realized volatility prediction
  publication-title: Expert Syst. Appl.
– volume: 27
  start-page: 804
  year: 2023
  end-page: 813
  ident: b12
  article-title: Application of robust zero-watermarking scheme based on federated learning for securing the healthcare data
  publication-title: IEEE J. Biomed. Health Inform.
– reference: Kendall, A., Gal, Y., Cipolla, R., 2018. Multi-Task Learning Using Uncertainty to Weigh Losses for Scene Geometry and Semantics. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. CVPR, pp. 7482–7491.
– volume: 3
  start-page: 1544
  year: 2018
  end-page: 1551
  ident: b25
  article-title: A multimodal anomaly detector for robot-assisted feeding using an LSTM-based variational autoencoder
  publication-title: IEEE Robot. Autom. Lett.
– volume: 16
  start-page: 6069
  year: 2020
  end-page: 6078
  ident: b8
  article-title: A deep learning model for smart manufacturing using convolutional LSTM neural network autoencoders
  publication-title: IEEE Trans. Ind. Inform.
– volume: 649
  year: 2023
  ident: b19
  article-title: Few-shot time-series anomaly detection with unsupervised domain adaptation
  publication-title: Inf. Sci.
– year: 2021
  ident: b37
  article-title: Anomaly transformer: Time series anomaly detection with association discrepancy
– volume: 618
  start-page: 336
  year: 2022
  end-page: 355
  ident: b36
  article-title: A new Bayesian network model for risk assessment based on cloud model, interval type-2 fuzzy sets and improved D-S evidence theory
  publication-title: Inf. Sci.
– volume: 669
  year: 2024
  ident: b14
  article-title: MEAformer: An all-MLP transformer with temporal external attention for long-term time series forecasting
  publication-title: Inform. Sci.
– reference: Su, Y., Zhao, Y., Niu, C., Liu, R., Sun, W., Pei, D., 2019. Robust Anomaly Detection for Multivariate Time Series through Stochastic Recurrent Neural Network. In: KDD’19: Proceedings of the 25TH ACM SIGKDD International Conferencce on Knowledge Discovery and Data Mining. pp. 2828–2837.
– volume: 230
  year: 2023
  ident: b46
  article-title: Identifying crucial deficiency categories influencing ship detention: A method of combining cloud model and prospect theory
  publication-title: Reliab. Eng. Syst. Saf.
– start-page: 4278
  year: 2017
  end-page: 4284
  ident: b29
  article-title: Inception-v4, inception-ResNet and the impact of residual connections on learning
  publication-title: Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence (AAAI-17)
– volume: 148
  start-page: 1
  year: 2021
  end-page: 6
  ident: b41
  article-title: Anomaly detection using improved deep SVDD model with data structure preservation
  publication-title: Pattern Recognit. Lett.
– volume: 215
  year: 2021
  ident: b35
  article-title: A novel risk evaluation method for fire and explosion accidents in oil depots using bow-tie analysis and risk matrix analysis method based on cloud model theory
  publication-title: Reliab. Eng. Syst. Saf.
– volume: vol. 11605
  start-page: 42
  year: 2021
  end-page: 48
  ident: b3
  article-title: Weak anomaly-reinforced autoencoder for unsupervised anomaly detection
  publication-title: Thirteenth International Conference on Machine Vision
– volume: 79
  year: 2023
  ident: b38
  article-title: Hybrid robust convolutional autoencoder for unsupervised anomaly detection of machine tools under noises
  publication-title: Robotics Computer-Integrated Manuf.
– volume: 33
  start-page: 2454
  year: 2022
  end-page: 2465
  ident: b45
  article-title: Feature encoding with autoencoders for weakly supervised anomaly detection
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– volume: 61
  start-page: 96
  year: 2023
  end-page: 102
  ident: b18
  article-title: Deep-learning-based blockchain for secure zero touch networks
  publication-title: IEEE Commun. Mag.
– volume: 59
  year: 2022
  ident: b2
  article-title: Ensemble unsupervised autoencoders and Gaussian mixture model for cyberattack detection
  publication-title: Inf. Process. Manag.
– volume: 33
  start-page: 1374
  year: 2023
  end-page: 1385
  ident: b32
  article-title: Self-attention memory-augmented wavelet-CNN for anomaly detection
  publication-title: IEEE Trans. Circuits Syst. Video Technol.
– volume: 81
  start-page: 465
  year: 2018
  end-page: 477
  ident: b40
  article-title: A cloud model based DNA genetic algorithm for numerical optimization problems
  publication-title: Future Gener. Comput. Syst.- Int. J. Escience
– volume: 72
  start-page: 238
  year: 2025
  end-page: 248
  ident: b43
  article-title: Attenuation tomography using low-frequency ultrasound with variational autoencoder for thorax imaging: Experimental study
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 110
  year: 2022
  ident: b5
  article-title: A multi-modal unsupervised fault detection system based on power signals and thermal imaging via deep AutoEncoder neural network
  publication-title: Eng. Appl. Artif. Intell.
– volume: 638
  year: 2023
  ident: b47
  article-title: Anomaly detection for streaming data based on grid-clustering and Gaussian distribution
  publication-title: Inf. Sci.
– volume: 3
  start-page: 1544
  year: 2018
  ident: 10.1016/j.engappai.2025.112735_b25
  article-title: A multimodal anomaly detector for robot-assisted feeding using an LSTM-based variational autoencoder
  publication-title: IEEE Robot. Autom. Lett.
  doi: 10.1109/LRA.2018.2801475
– ident: 10.1016/j.engappai.2025.112735_b28
  doi: 10.1145/3292500.3330672
– volume: 669
  year: 2024
  ident: 10.1016/j.engappai.2025.112735_b14
  article-title: MEAformer: An all-MLP transformer with temporal external attention for long-term time series forecasting
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2024.120605
– volume: 31
  start-page: 7102
  year: 2022
  ident: 10.1016/j.engappai.2025.112735_b26
  article-title: Unsupervised synthetic acoustic image generation for audio-visual scene understanding
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2022.3219228
– volume: 215
  year: 2021
  ident: 10.1016/j.engappai.2025.112735_b35
  article-title: A novel risk evaluation method for fire and explosion accidents in oil depots using bow-tie analysis and risk matrix analysis method based on cloud model theory
  publication-title: Reliab. Eng. Syst. Saf.
  doi: 10.1016/j.ress.2021.107791
– volume: 72
  start-page: 238
  year: 2025
  ident: 10.1016/j.engappai.2025.112735_b43
  article-title: Attenuation tomography using low-frequency ultrasound with variational autoencoder for thorax imaging: Experimental study
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2024.3447058
– volume: 33
  start-page: 2454
  year: 2022
  ident: 10.1016/j.engappai.2025.112735_b45
  article-title: Feature encoding with autoencoders for weakly supervised anomaly detection
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2021.3086137
– volume: 15
  start-page: 5939
  year: 2024
  ident: 10.1016/j.engappai.2025.112735_b10
  article-title: Anomaly detection and mitigation for wide-area damping control using machine learning
  publication-title: IEEE Trans. Smart Grid
  doi: 10.1109/TSG.2020.2995313
– volume: 32
  start-page: 4327
  year: 2023
  ident: 10.1016/j.engappai.2025.112735_b21
  article-title: Omni-frequency channel-selection representations for unsupervised anomaly detection
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2023.3293772
– volume: 123
  year: 2023
  ident: 10.1016/j.engappai.2025.112735_b31
  article-title: Transcnn: Hybrid CNN and transformer mechanism for surveillance anomaly detection
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2023.106173
– volume: 148
  start-page: 1
  year: 2021
  ident: 10.1016/j.engappai.2025.112735_b41
  article-title: Anomaly detection using improved deep SVDD model with data structure preservation
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2021.04.020
– volume: 76
  start-page: 243
  year: 2021
  ident: 10.1016/j.engappai.2025.112735_b1
  article-title: A review of uncertainty quantification in deep learning: Techniques, applications and challenges
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2021.05.008
– volume: 8
  start-page: 1
  year: 2025
  ident: 10.1016/j.engappai.2025.112735_b9
  article-title: Unsupervised deep learning of electrocardiograms enables scalable human disease profiling
  publication-title: Npj Digital Med.
  doi: 10.1038/s41746-024-01418-9
– volume: 65
  year: 2022
  ident: 10.1016/j.engappai.2025.112735_b17
  article-title: Data-driven prognostics with low-fidelity physical information for digital twin: physics-informed neural network
  publication-title: Struct. Multidiscip. Optim.
  doi: 10.1007/s00158-022-03348-0
– volume: 27
  start-page: 804
  year: 2023
  ident: 10.1016/j.engappai.2025.112735_b12
  article-title: Application of robust zero-watermarking scheme based on federated learning for securing the healthcare data
  publication-title: IEEE J. Biomed. Health Inform.
  doi: 10.1109/JBHI.2021.3123936
– volume: 129
  year: 2024
  ident: 10.1016/j.engappai.2025.112735_b33
  article-title: Pixel-associated autoencoder for hyperspectral anomaly detection
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 255
  issue: D
  year: 2024
  ident: 10.1016/j.engappai.2025.112735_b27
  article-title: Charting new avenues in financial forecasting with TimesNet: The impact of intraperiod and interperiod variations on realized volatility prediction
  publication-title: Expert Syst. Appl.
– volume: 649
  year: 2023
  ident: 10.1016/j.engappai.2025.112735_b19
  article-title: Few-shot time-series anomaly detection with unsupervised domain adaptation
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2023.119610
– volume: 26
  start-page: 31
  year: 2018
  ident: 10.1016/j.engappai.2025.112735_b7
  article-title: Semisupervised autoencoders for speech emotion recognition
  publication-title: IEEE-ACM Trans. Audio Speech Lang. Process.
  doi: 10.1109/TASLP.2017.2759338
– start-page: 4278
  year: 2017
  ident: 10.1016/j.engappai.2025.112735_b29
  article-title: Inception-v4, inception-ResNet and the impact of residual connections on learning
– volume: 618
  start-page: 336
  year: 2022
  ident: 10.1016/j.engappai.2025.112735_b36
  article-title: A new Bayesian network model for risk assessment based on cloud model, interval type-2 fuzzy sets and improved D-S evidence theory
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2022.11.011
– volume: 8
  start-page: 43992
  year: 2020
  ident: 10.1016/j.engappai.2025.112735_b11
  article-title: Variational autoencoder with optimizing Gaussian mixture model priors
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2977671
– volume: 24
  start-page: 12770
  year: 2024
  ident: 10.1016/j.engappai.2025.112735_b15
  article-title: Improved autoencoder model with memory module for anomaly detection
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2024.3370965
– volume: 11
  issue: 12
  year: 2023
  ident: 10.1016/j.engappai.2025.112735_b22
  article-title: Multi-step-ahead wind speed forecast method based on outlier correction, optimized decomposition, and dlinear model
  publication-title: Mathematics
  doi: 10.3390/math11122746
– volume: 54
  start-page: 7636
  issue: 17
  year: 2024
  ident: 10.1016/j.engappai.2025.112735_b13
  article-title: Multivariate time series anomaly detection via dynamic graph attention network and informer
  publication-title: Appl. Intell.
  doi: 10.1007/s10489-024-05575-y
– volume: 230
  year: 2023
  ident: 10.1016/j.engappai.2025.112735_b46
  article-title: Identifying crucial deficiency categories influencing ship detention: A method of combining cloud model and prospect theory
  publication-title: Reliab. Eng. Syst. Saf.
  doi: 10.1016/j.ress.2022.108949
– volume: 18
  start-page: 1
  issue: 1
  year: 2023
  ident: 10.1016/j.engappai.2025.112735_b20
  article-title: A survey on explainable anomaly detection
  publication-title: ACM Trans. Knowl. Discov. Data
– volume: 81
  start-page: 465
  year: 2018
  ident: 10.1016/j.engappai.2025.112735_b40
  article-title: A cloud model based DNA genetic algorithm for numerical optimization problems
  publication-title: Future Gener. Comput. Syst.- Int. J. Escience
  doi: 10.1016/j.future.2017.07.036
– year: 2021
  ident: 10.1016/j.engappai.2025.112735_b37
– year: 2024
  ident: 10.1016/j.engappai.2025.112735_b30
  article-title: PASTA: Neural architecture search for anomaly detection in multivariate time series
  publication-title: IEEE Trans. Emerg. Topics Comput. Intell.
– volume: 638
  year: 2023
  ident: 10.1016/j.engappai.2025.112735_b47
  article-title: Anomaly detection for streaming data based on grid-clustering and Gaussian distribution
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2023.118989
– volume: 45
  year: 2020
  ident: 10.1016/j.engappai.2025.112735_b4
  article-title: Anomaly detection of defects on concrete structures with the convolutional autoencoder
  publication-title: Adv. Eng. Inform.
  doi: 10.1016/j.aei.2020.101105
– volume: 35
  start-page: 95
  year: 2024
  ident: 10.1016/j.engappai.2025.112735_b39
  article-title: Surface defect detection method for air rudder based on positive samples
  publication-title: J. Intell. Manuf.
  doi: 10.1007/s10845-022-02034-8
– year: 2022
  ident: 10.1016/j.engappai.2025.112735_b44
– volume: 16
  start-page: 6069
  year: 2020
  ident: 10.1016/j.engappai.2025.112735_b8
  article-title: A deep learning model for smart manufacturing using convolutional LSTM neural network autoencoders
  publication-title: IEEE Trans. Ind. Inform.
  doi: 10.1109/TII.2020.2967556
– ident: 10.1016/j.engappai.2025.112735_b16
  doi: 10.1109/CVPR.2018.00781
– volume: 61
  start-page: 96
  year: 2023
  ident: 10.1016/j.engappai.2025.112735_b18
  article-title: Deep-learning-based blockchain for secure zero touch networks
  publication-title: IEEE Commun. Mag.
  doi: 10.1109/MCOM.001.2200294
– volume: vol. 35
  start-page: 4027
  year: 2021
  ident: 10.1016/j.engappai.2025.112735_b6
  article-title: Graph neural network-based anomaly detection in multivariate time series
– volume: 33
  start-page: 1374
  year: 2023
  ident: 10.1016/j.engappai.2025.112735_b32
  article-title: Self-attention memory-augmented wavelet-CNN for anomaly detection
  publication-title: IEEE Trans. Circuits Syst. Video Technol.
  doi: 10.1109/TCSVT.2022.3211839
– volume: 110
  year: 2022
  ident: 10.1016/j.engappai.2025.112735_b5
  article-title: A multi-modal unsupervised fault detection system based on power signals and thermal imaging via deep AutoEncoder neural network
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2022.104729
– volume: 228
  year: 2023
  ident: 10.1016/j.engappai.2025.112735_b23
  article-title: Anomaly-GAN: A data augmentation method for train surface anomaly detection
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2023.120284
– volume: 79
  year: 2023
  ident: 10.1016/j.engappai.2025.112735_b38
  article-title: Hybrid robust convolutional autoencoder for unsupervised anomaly detection of machine tools under noises
  publication-title: Robotics Computer-Integrated Manuf.
  doi: 10.1016/j.rcim.2022.102441
– volume: 170
  year: 2025
  ident: 10.1016/j.engappai.2025.112735_b24
  article-title: Method for predicting remaining useful life of rolling bearings based on dynamic complexity characteristic entropy and quantum neural networks
  publication-title: Eng. Fail. Anal.
  doi: 10.1016/j.engfailanal.2025.109315
– volume: 20
  start-page: 9320
  year: 2024
  ident: 10.1016/j.engappai.2025.112735_b34
  article-title: Seqα GAN: Sign language sequence generation based on variational and adversarial learning
  publication-title: IEEE Trans. Ind. Inform.
  doi: 10.1109/TII.2024.3378834
– volume: vol. 11605
  start-page: 42
  year: 2021
  ident: 10.1016/j.engappai.2025.112735_b3
  article-title: Weak anomaly-reinforced autoencoder for unsupervised anomaly detection
– volume: 59
  year: 2022
  ident: 10.1016/j.engappai.2025.112735_b2
  article-title: Ensemble unsupervised autoencoders and Gaussian mixture model for cyberattack detection
  publication-title: Inf. Process. Manag.
  doi: 10.1016/j.ipm.2021.102844
– volume: 93
  start-page: 192
  year: 2023
  ident: 10.1016/j.engappai.2025.112735_b42
  article-title: A multi-source information fusion model for outlier detection
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2022.12.027
SSID ssj0003846
Score 2.444343
Snippet To avoid severe malfunctions of industrial equipment, it is necessary to perform accurate detection in the early stages of abnormal occurrences. However, early...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 112735
SubjectTerms Autoencoder
Early weak anomaly detection
Multi-task learning
Uncertainty
Title Early weak anomaly detection and uncertainty quantification of equipment based on multi-task and multi-domain temporal memory autoencoder
URI https://dx.doi.org/10.1016/j.engappai.2025.112735
Volume 162
WOSCitedRecordID wos001601106800002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 0952-1976
  databaseCode: AIEXJ
  dateStart: 19950201
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0003846
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELdKxwMvfCM2PuQH3qqMOk1j-3FCQ4DQhMSQ-ha5toO6sWRrk7L9CfzXnH12EmASIMRL1Jxkx-r9ZN-df3dHyAvG4SBYTmXChZVJprlNhE51wmbKlLnRVllfMv89PzoSi4X8MBptYy7M9guvKnF5Kc__q6pBBsp2qbN_oe5uUhDAb1A6PEHt8PwjxWPJ4q9WnU5UVZ8peDG2saEleGUmcJIhDwDs74tWIVuosxztRbvyHKKJO-CMu0zwpMOkUZtTPx5fDUztOJJY2sqloJy563rVNrWrjWkC6zcG_fuyh5PhnbmnIaz9Cnz3kEGB0I4qtEJaAKx03a76CDpGFK7qcPSGyEU6dywQTI_HcFpMqen5SxiXTBMmsSlMt0Xjjv3Ldo-Rh5N9W32GtavVvvuMy4riWAPlp1LaH93kbm6w-1IOjtsNspPyuRRjsnPw9nDxrjvDZwJTvOJiBrnl13_terNmYKoc3yW3g49BDxAb98jIVvfJneBv0LCbb0AUW3pE2QPyzaOHOvTQgB7aoQckhg7QQ39ED61L2qGHevRQkPbo8eOH6KERPRTRQwfoeUg-vT48fvUmCd06Eg1eeJMwNeXcZvk0NWqWlzNbaiZgF1iyrORS61SWVhu1dNWPmE3nRoCnzawUZZ6WJXgCj8i4qiv7mNBcgeXPmBYitxl4vNJdhueZykFzBizKXfIy_tnFORZlKSJb8aSI6imcegpUzy6RUSdFMC3RZCwASr8Zu_cPY5-QWz3yn5Jxs27tM3JTb5vVZv08oO47X8urMw
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Early+weak+anomaly+detection+and+uncertainty+quantification+of+equipment+based+on+multi-task+and+multi-domain+temporal+memory+autoencoder&rft.jtitle=Engineering+applications+of+artificial+intelligence&rft.au=Li%2C+Chuanrui&rft.au=Ma%2C+Liyong&rft.date=2025-12-26&rft.pub=Elsevier+Ltd&rft.issn=0952-1976&rft.volume=162&rft_id=info:doi/10.1016%2Fj.engappai.2025.112735&rft.externalDocID=S0952197625027666
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0952-1976&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0952-1976&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0952-1976&client=summon