Multiple and weak Markov properties in Hilbert spaces with applications to fractional stochastic evolution equations
We define a number of higher-order Markov properties for stochastic processes (X(t))t∈T, indexed by an interval T⊆R and taking values in a real and separable Hilbert space U. We furthermore investigate the relations between them. In particular, for solutions to the stochastic evolution equation LX=W...
Uloženo v:
| Vydáno v: | Stochastic processes and their applications Ročník 186; s. 104639 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier B.V
01.08.2025
|
| Témata: | |
| ISSN: | 0304-4149, 1879-209X |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | We define a number of higher-order Markov properties for stochastic processes (X(t))t∈T, indexed by an interval T⊆R and taking values in a real and separable Hilbert space U. We furthermore investigate the relations between them. In particular, for solutions to the stochastic evolution equation LX=Ẇ, where L is a linear operator acting on functions mapping from T to U and (Ẇ(t))t∈T is the formal derivative of a U-valued cylindrical Wiener process, we prove necessary and sufficient conditions for the weakest Markov property via locality of the precision operator L∗L.
As an application, we consider the space–time fractional parabolic operator L=(∂t+A)γ of order γ∈(1/2,∞), where −A is a linear operator generating a C0-semigroup on U. We prove that the resulting solution process satisfies an Nth order Markov property if γ=N∈N and show that a necessary condition for the weakest Markov property is generally not satisfied if γ∉N. The relevance of this class of processes is twofold: Firstly, it can be seen as a spatiotemporal generalization of Whittle–Matérn Gaussian random fields if U=L2(D) for a spatial domain D⊆Rd. Secondly, we show that a U-valued analog to the fractional Brownian motion with Hurst parameter H∈(0,1) can be obtained as the limiting case of L=(∂t+ɛIdU)H+12 for ɛ↓0. |
|---|---|
| ISSN: | 0304-4149 1879-209X |
| DOI: | 10.1016/j.spa.2025.104639 |