Multiple and weak Markov properties in Hilbert spaces with applications to fractional stochastic evolution equations

We define a number of higher-order Markov properties for stochastic processes (X(t))t∈T, indexed by an interval T⊆R and taking values in a real and separable Hilbert space U. We furthermore investigate the relations between them. In particular, for solutions to the stochastic evolution equation LX=W...

Full description

Saved in:
Bibliographic Details
Published in:Stochastic processes and their applications Vol. 186; p. 104639
Main Authors: Kirchner, Kristin, Willems, Joshua
Format: Journal Article
Language:English
Published: Elsevier B.V 01.08.2025
Subjects:
ISSN:0304-4149, 1879-209X
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract We define a number of higher-order Markov properties for stochastic processes (X(t))t∈T, indexed by an interval T⊆R and taking values in a real and separable Hilbert space U. We furthermore investigate the relations between them. In particular, for solutions to the stochastic evolution equation LX=Ẇ, where L is a linear operator acting on functions mapping from T to U and (Ẇ(t))t∈T is the formal derivative of a U-valued cylindrical Wiener process, we prove necessary and sufficient conditions for the weakest Markov property via locality of the precision operator L∗L. As an application, we consider the space–time fractional parabolic operator L=(∂t+A)γ of order γ∈(1/2,∞), where −A is a linear operator generating a C0-semigroup on U. We prove that the resulting solution process satisfies an Nth order Markov property if γ=N∈N and show that a necessary condition for the weakest Markov property is generally not satisfied if γ∉N. The relevance of this class of processes is twofold: Firstly, it can be seen as a spatiotemporal generalization of Whittle–Matérn Gaussian random fields if U=L2(D) for a spatial domain D⊆Rd. Secondly, we show that a U-valued analog to the fractional Brownian motion with Hurst parameter H∈(0,1) can be obtained as the limiting case of L=(∂t+ɛIdU)H+12 for ɛ↓0.
AbstractList We define a number of higher-order Markov properties for stochastic processes (X(t))t∈T, indexed by an interval T⊆R and taking values in a real and separable Hilbert space U. We furthermore investigate the relations between them. In particular, for solutions to the stochastic evolution equation LX=Ẇ, where L is a linear operator acting on functions mapping from T to U and (Ẇ(t))t∈T is the formal derivative of a U-valued cylindrical Wiener process, we prove necessary and sufficient conditions for the weakest Markov property via locality of the precision operator L∗L. As an application, we consider the space–time fractional parabolic operator L=(∂t+A)γ of order γ∈(1/2,∞), where −A is a linear operator generating a C0-semigroup on U. We prove that the resulting solution process satisfies an Nth order Markov property if γ=N∈N and show that a necessary condition for the weakest Markov property is generally not satisfied if γ∉N. The relevance of this class of processes is twofold: Firstly, it can be seen as a spatiotemporal generalization of Whittle–Matérn Gaussian random fields if U=L2(D) for a spatial domain D⊆Rd. Secondly, we show that a U-valued analog to the fractional Brownian motion with Hurst parameter H∈(0,1) can be obtained as the limiting case of [Formula presented] for ɛ↓0.
We define a number of higher-order Markov properties for stochastic processes (X(t))t∈T, indexed by an interval T⊆R and taking values in a real and separable Hilbert space U. We furthermore investigate the relations between them. In particular, for solutions to the stochastic evolution equation LX=Ẇ, where L is a linear operator acting on functions mapping from T to U and (Ẇ(t))t∈T is the formal derivative of a U-valued cylindrical Wiener process, we prove necessary and sufficient conditions for the weakest Markov property via locality of the precision operator L∗L. As an application, we consider the space–time fractional parabolic operator L=(∂t+A)γ of order γ∈(1/2,∞), where −A is a linear operator generating a C0-semigroup on U. We prove that the resulting solution process satisfies an Nth order Markov property if γ=N∈N and show that a necessary condition for the weakest Markov property is generally not satisfied if γ∉N. The relevance of this class of processes is twofold: Firstly, it can be seen as a spatiotemporal generalization of Whittle–Matérn Gaussian random fields if U=L2(D) for a spatial domain D⊆Rd. Secondly, we show that a U-valued analog to the fractional Brownian motion with Hurst parameter H∈(0,1) can be obtained as the limiting case of L=(∂t+ɛIdU)H+12 for ɛ↓0.
ArticleNumber 104639
Author Kirchner, Kristin
Willems, Joshua
Author_xml – sequence: 1
  givenname: Kristin
  orcidid: 0000-0002-3609-9431
  surname: Kirchner
  fullname: Kirchner, Kristin
  email: k.kirchner@tudelft.nl
  organization: Delft Institute of Applied Mathematics, Delft University of Technology, P.O. Box 5031, 2600 GA, Delft, The Netherlands
– sequence: 2
  givenname: Joshua
  orcidid: 0009-0000-2085-1935
  surname: Willems
  fullname: Willems, Joshua
  email: j.willems@tudelft.nl
  organization: Delft Institute of Applied Mathematics, Delft University of Technology, P.O. Box 5031, 2600 GA, Delft, The Netherlands
BackLink https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-362261$$DView record from Swedish Publication Index (Kungliga Tekniska Högskolan)
BookMark eNp9kM1OwzAQhH0oEm3hAbj5BVJsJ3UTcarKT5FacQGuluusqdsQG9tpxdvjKIgjp9WM5htpZ4JGrW0BoRtKZpRQfnuYBSdnjLB50gXPqxEak5wUWUGL6hJNQjgQQihjdIzitmuicQ1g2db4DPKIt9If7Qk7bx34aCBg0-K1aXZJ4dSsknM2cY-lc41RMhrbBhwt1l6qXsgGh2jVXoZoFIaTbbrexvDVDeErdKFlE-D6907R2-PD62qdbV6enlfLTaYYJzFTugRV1kAKwgAop7XOKzbfcVgsCkZLzRkryWIOmldEspppLWVeKi5ZWZWM5VOUDb3hDK7bCefNp_Tfwkoj7s37Ulj_IY5xL_LUxGnK0yGvvA3Bg_4jKBH9tOIg0gCin1YM0ybmbmAgPXIy4EVQBloFtfGgoqit-Yf-AXoniG0
Cites_doi 10.1142/S0219493702000340
10.1090/tran/6329
10.1080/01621459.2019.1611582
10.1007/s00211-020-01151-x
10.1016/j.spasta.2022.100599
10.1080/10618600.2019.1665537
10.1007/s10584-016-1809-8
10.1111/j.1467-9868.2011.00777.x
10.1214/21-AOS2138
10.1002/wics.1315
10.1137/S0040585X97986540
10.1093/imanum/dry091
10.1214/aoms/1177731234
10.1137/21M144788X
10.1137/1010093
10.1142/S0218202520500050
10.1007/s10543-018-0719-8
ContentType Journal Article
Copyright 2025 The Authors
Copyright_xml – notice: 2025 The Authors
DBID 6I.
AAFTH
AAYXX
CITATION
ADTPV
AFDQA
AOWAS
D8T
D8V
ZZAVC
DOI 10.1016/j.spa.2025.104639
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
SwePub
SWEPUB Kungliga Tekniska Högskolan full text
SwePub Articles
SWEPUB Freely available online
SWEPUB Kungliga Tekniska Högskolan
SwePub Articles full text
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
ExternalDocumentID oai_DiVA_org_kth_362261
10_1016_j_spa_2025_104639
S0304414925000808
GroupedDBID --K
--M
-~X
.~1
0R~
123
1B1
1OL
1RT
1~.
1~5
29Q
3R3
4.4
457
4G.
5VS
6I.
7-5
71M
8P~
9JN
9JO
AAAKF
AABNK
AAEDT
AAEDW
AAFTH
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARIN
AATTM
AAXKI
AAXUO
AAYWO
ABAOU
ABEFU
ABFNM
ABFRF
ABJNI
ABMAC
ABUCO
ABWVN
ABXDB
ACDAQ
ACGFO
ACGFS
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADIYS
ADMUD
ADNMO
ADVLN
AEBSH
AEFWE
AEIPS
AEKER
AENEX
AEUPX
AEXQZ
AFJKZ
AFPUW
AFTJW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGRNS
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGII
AIGVJ
AIIUN
AIKHN
AITUG
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APLSM
APXCP
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CS3
DU5
E3Z
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HAMUX
HVGLF
HX~
HZ~
IHE
IXB
J1W
KOM
LY1
M26
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OHT
OK1
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SSB
SSD
SSH
SSW
SSZ
T5K
TN5
UNMZH
WH7
WUQ
XPP
ZMT
~G-
9DU
AAYXX
ACLOT
CITATION
EFKBS
EFLBG
~HD
ADTPV
AFDQA
AOWAS
D8T
D8V
ZZAVC
ID FETCH-LOGICAL-c260t-cf8ec8de0402ee161df3925b6e774218f6228075ef690a2d2ffaa38c6a2898223
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001463040200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0304-4149
1879-209X
IngestDate Tue Nov 04 16:22:16 EST 2025
Sat Nov 29 07:55:36 EST 2025
Sat Jun 14 16:53:59 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Higher-order Markov property
60G22
35R60
Infinite-dimensional fractional Wiener process
Matérn covariance
60J25
Spatiotemporal Gaussian process
60G15
Language English
License This is an open access article under the CC BY license.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c260t-cf8ec8de0402ee161df3925b6e774218f6228075ef690a2d2ffaa38c6a2898223
ORCID 0000-0002-3609-9431
0009-0000-2085-1935
OpenAccessLink https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-362261
ParticipantIDs swepub_primary_oai_DiVA_org_kth_362261
crossref_primary_10_1016_j_spa_2025_104639
elsevier_sciencedirect_doi_10_1016_j_spa_2025_104639
PublicationCentury 2000
PublicationDate 2025-08-01
PublicationDateYYYYMMDD 2025-08-01
PublicationDate_xml – month: 08
  year: 2025
  text: 2025-08-01
  day: 01
PublicationDecade 2020
PublicationTitle Stochastic processes and their applications
PublicationYear 2025
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Kirchner, Bolin (b22) 2022; 50
Duncan, Pasik-Duncan, Maslowski (b13) 2002; 2
Doob (b11) 1944; 15
Alexeeff, Nychka, Sain, Tebaldi (b1) 2018; 146
Cox, Hutzenthaler, Jentzen (b8) 2024; 296
Matérn (b30) 1960
Pazy (b34) 1983; vol. 44
Bolin, Kirchner, Kovács (b6) 2018; 58
Lindgren, Rue, Lindström (b27) 2011; 73
Stein (b41) 1970
Herrmann, Kirchner, Schwab (b17) 2020; 30
Lindgren, Bolin, Rue (b26) 2022; 50
Sanz-Alonso, Yang (b40) 2022; 10
Peszat, Zabczyk (b35) 2007; vol. 113
Bolin, Kirchner, Kovács (b7) 2020; 40
Revuz, Yor (b37) 1999; vol. 293
Rozanov (b38) 1982
Bolin, Kirchner (b5) 2020; 29
Cox, Kirchner (b9) 2020; 146
Kilbas, Srivastava, Trujillo (b21) 2006; vol. 204
Basse-O’Connor, Graversen, Pedersen (b3) 2014; 58
Goldys, Peszat, Zabczyk (b15) 2016; 368
Mejia, Yue, Bolin, Lindgren, Lindquist (b31) 2020; 115
Lawson (b24) 2014; 6
Huy (b19) 2003; 31
Picard (b36) 2011; vol. 2006
van Neerven (b42) 2022; vol. 201
Oberhettinger, Badii (b32) 1973
Liu, Röckner (b28) 2015
Basse-O’Connor, Graversen, Pedersen (b2) 2010; 7
Engel, Nagel (b14) 2000; vol. 194
Grimmett, Stirzaker (b16) 2001
Kirchner, Willems (b23) 2024; 12
Mandelbrot, Van Ness (b29) 1968; 10
Rue, Held (b39) 2005; vol. 104
Da Prato, Zabczyk (b10) 2014; vol. 152
Bogachev (b4) 1998; vol. 62
(b33) 2010
Doob (b12) 1990
Lindgren, Bakka, Bolin, Krainski, Rue (b25) 2024; 48
Hida, Hitsuda (b18) 1993; vol. 120
Kallenberg (b20) 2021
Whittle (b43) 1963; 40
Bolin (10.1016/j.spa.2025.104639_b7) 2020; 40
Rozanov (10.1016/j.spa.2025.104639_b38) 1982
Alexeeff (10.1016/j.spa.2025.104639_b1) 2018; 146
Da Prato (10.1016/j.spa.2025.104639_b10) 2014; vol. 152
Doob (10.1016/j.spa.2025.104639_b12) 1990
Basse-O’Connor (10.1016/j.spa.2025.104639_b2) 2010; 7
Kirchner (10.1016/j.spa.2025.104639_b23) 2024; 12
Peszat (10.1016/j.spa.2025.104639_b35) 2007; vol. 113
Rue (10.1016/j.spa.2025.104639_b39) 2005; vol. 104
Bolin (10.1016/j.spa.2025.104639_b5) 2020; 29
van Neerven (10.1016/j.spa.2025.104639_b42) 2022; vol. 201
Cox (10.1016/j.spa.2025.104639_b8) 2024; 296
Kilbas (10.1016/j.spa.2025.104639_b21) 2006; vol. 204
Kallenberg (10.1016/j.spa.2025.104639_b20) 2021
Picard (10.1016/j.spa.2025.104639_b36) 2011; vol. 2006
Sanz-Alonso (10.1016/j.spa.2025.104639_b40) 2022; 10
Doob (10.1016/j.spa.2025.104639_b11) 1944; 15
Lawson (10.1016/j.spa.2025.104639_b24) 2014; 6
Mandelbrot (10.1016/j.spa.2025.104639_b29) 1968; 10
Engel (10.1016/j.spa.2025.104639_b14) 2000; vol. 194
Lindgren (10.1016/j.spa.2025.104639_b26) 2022; 50
Duncan (10.1016/j.spa.2025.104639_b13) 2002; 2
Herrmann (10.1016/j.spa.2025.104639_b17) 2020; 30
Hida (10.1016/j.spa.2025.104639_b18) 1993; vol. 120
Lindgren (10.1016/j.spa.2025.104639_b25) 2024; 48
Lindgren (10.1016/j.spa.2025.104639_b27) 2011; 73
Whittle (10.1016/j.spa.2025.104639_b43) 1963; 40
(10.1016/j.spa.2025.104639_b33) 2010
Revuz (10.1016/j.spa.2025.104639_b37) 1999; vol. 293
Stein (10.1016/j.spa.2025.104639_b41) 1970
Matérn (10.1016/j.spa.2025.104639_b30) 1960
Kirchner (10.1016/j.spa.2025.104639_b22) 2022; 50
Mejia (10.1016/j.spa.2025.104639_b31) 2020; 115
Basse-O’Connor (10.1016/j.spa.2025.104639_b3) 2014; 58
Bogachev (10.1016/j.spa.2025.104639_b4) 1998; vol. 62
Liu (10.1016/j.spa.2025.104639_b28) 2015
Grimmett (10.1016/j.spa.2025.104639_b16) 2001
Oberhettinger (10.1016/j.spa.2025.104639_b32) 1973
Bolin (10.1016/j.spa.2025.104639_b6) 2018; 58
Huy (10.1016/j.spa.2025.104639_b19) 2003; 31
Goldys (10.1016/j.spa.2025.104639_b15) 2016; 368
Cox (10.1016/j.spa.2025.104639_b9) 2020; 146
Pazy (10.1016/j.spa.2025.104639_b34) 1983; vol. 44
References_xml – start-page: xiv+290
  year: 1970
  ident: b41
  article-title: Singular Integrals and Differentiability Properties of Functions
  publication-title: Princeton Mathematical Series
– volume: 73
  start-page: 423
  year: 2011
  end-page: 498
  ident: b27
  article-title: An explicit link between Gaussian fields and Gaussian Markov random fields: the stochastic partial differential equation approach
  publication-title: J. R. Stat. Soc. Ser. B Stat. Methodol.
– volume: 146
  start-page: 319
  year: 2018
  end-page: 333
  ident: b1
  article-title: Emulating mean patterns and variability of temperature across and within scenarios in anthropogenic climate change experiments
  publication-title: Clim. Change
– volume: vol. 194
  start-page: xxii+586
  year: 2000
  ident: b14
  publication-title: One-Parameter Semigroups for Linear Evolution Equations
– volume: 6
  start-page: 405
  year: 2014
  end-page: 417
  ident: b24
  article-title: Hierarchical modeling in spatial epidemiology
  publication-title: Wiley Interdiscip. Rev. Comput. Stat.
– volume: 50
  year: 2022
  ident: b26
  article-title: The SPDE approach for Gaussian and non-Gaussian fields: 10 years and still running
  publication-title: Spat. Stat.
– volume: vol. 44
  start-page: viii+279
  year: 1983
  ident: b34
  publication-title: Semigroups of Linear Operators and Applications to Partial Differential Equations
– volume: vol. 152
  start-page: xviii+493
  year: 2014
  ident: b10
  publication-title: Stochastic Equations in Infinite Dimensions
– volume: 15
  start-page: 229
  year: 1944
  end-page: 282
  ident: b11
  article-title: The elementary Gaussian processes
  publication-title: Ann. Math. Stat.
– volume: 31
  start-page: 237
  year: 2003
  end-page: 240
  ident: b19
  article-title: A remark on non-Markov property of a fractional Brownian motion
  publication-title: Vietnam J. Math.
– volume: vol. 113
  start-page: xii+419
  year: 2007
  ident: b35
  publication-title: Stochastic Partial Differential Equations with Lévy Noise
– volume: 29
  start-page: 274
  year: 2020
  end-page: 285
  ident: b5
  article-title: The rational SPDE approach for Gaussian random fields with general smoothness
  publication-title: J. Comput. Graph. Statist.
– volume: vol. 62
  start-page: xii+433
  year: 1998
  ident: b4
  publication-title: Gaussian Measures
– volume: vol. 204
  start-page: xvi+523
  year: 2006
  ident: b21
  publication-title: Theory and Applications of Fractional Differential Equations
– volume: vol. 104
  start-page: xii+263
  year: 2005
  ident: b39
  publication-title: Gaussian Markov Random Fields
– volume: 58
  start-page: 193
  year: 2014
  end-page: 215
  ident: b3
  article-title: Stochastic integration on the real line
  publication-title: Theory Probab. Appl.
– volume: 40
  start-page: 974
  year: 1963
  end-page: 994
  ident: b43
  article-title: Stochastic processes in several dimensions
  publication-title: Bull. Inst. Intern. Stat.
– volume: 10
  start-page: 422
  year: 1968
  end-page: 437
  ident: b29
  article-title: Fractional Brownian motions, fractional noises and applications
  publication-title: SIAM Rev.
– volume: vol. 120
  start-page: xvi+183
  year: 1993
  ident: b18
  publication-title: Gaussian Processes
– volume: 50
  start-page: 1038
  year: 2022
  end-page: 1065
  ident: b22
  article-title: Necessary and sufficient conditions for asymptotically optimal linear prediction of random fields on compact metric spaces
  publication-title: Ann. Statist.
– volume: 115
  start-page: 501
  year: 2020
  end-page: 520
  ident: b31
  article-title: A Bayesian general linear modeling approach to cortical surface fMRI data analysis
  publication-title: J. Amer. Statist. Assoc.
– start-page: vi+266
  year: 2015
  ident: b28
  publication-title: Stochastic Partial Differential Equations: an Introduction
– start-page: vii+428
  year: 1973
  ident: b32
  article-title: Tables of Laplace Transforms
– start-page: viii+654
  year: 1990
  ident: b12
  publication-title: Stochastic Processes
– volume: 12
  start-page: 1805
  year: 2024
  end-page: 1854
  ident: b23
  article-title: Regularity theory for a new class of fractional parabolic stochastic evolution equations
  publication-title: Stoch. Partial. Differ. Equ. Anal. Comput.
– start-page: xii+946
  year: 2021
  ident: b20
  article-title: Foundations of Modern Probability
  publication-title: Probability Theory and Stochastic Modelling
– start-page: xvi+951
  year: 2010
  ident: b33
  publication-title: NIST Handbook of Mathematical Functions
– volume: 296
  start-page: v+90
  year: 2024
  ident: b8
  article-title: Local Lipschitz continuity in the initial value and strong completeness for nonlinear stochastic differential equations
  publication-title: Mem. Amer. Math. Soc.
– volume: 2
  start-page: 225
  year: 2002
  end-page: 250
  ident: b13
  article-title: Fractional Brownian motion and stochastic equations in Hilbert spaces
  publication-title: Stoch. Dyn.
– volume: 40
  start-page: 1051
  year: 2020
  end-page: 1073
  ident: b7
  article-title: Numerical solution of fractional elliptic stochastic PDEs with spatial white noise
  publication-title: IMA J. Numer. Anal.
– start-page: 144
  year: 1960
  ident: b30
  article-title: Spatial Variation: Stochastic Models and Their Application to Some Problems in Forest Surveys and Other Sampling Investigations
– volume: vol. 293
  start-page: xiv+602
  year: 1999
  ident: b37
  publication-title: Continuous Martingales and Brownian Motion
– start-page: xii+596
  year: 2001
  ident: b16
  article-title: Probability and random processes
– volume: vol. 201
  start-page: xi+712
  year: 2022
  ident: b42
  publication-title: Functional Analysis
– volume: 10
  start-page: 1323
  year: 2022
  end-page: 1349
  ident: b40
  article-title: Finite element representations of Gaussian processes: balancing numerical and statistical accuracy
  publication-title: SIAM/ASA J. Uncertain. Quantif.
– volume: 7
  start-page: 117
  year: 2010
  end-page: 137
  ident: b2
  article-title: Martingale-type processes indexed by the real line
  publication-title: ALEA Lat. Am. J. Probab. Math. Stat.
– start-page: ix+201
  year: 1982
  ident: b38
  publication-title: Markov Random Fields
– volume: vol. 2006
  start-page: 3
  year: 2011
  end-page: 70
  ident: b36
  article-title: Representation formulae for the fractional Brownian motion
  publication-title: Séminaire de Probabilités XLIII
– volume: 58
  start-page: 881
  year: 2018
  end-page: 906
  ident: b6
  article-title: Weak convergence of Galerkin approximations for fractional elliptic stochastic PDEs with spatial white noise
  publication-title: BIT
– volume: 30
  start-page: 181
  year: 2020
  end-page: 223
  ident: b17
  article-title: Multilevel approximation of Gaussian random fields: fast simulation
  publication-title: Math. Models Methods Appl. Sci.
– volume: 48
  start-page: 3
  year: 2024
  end-page: 66
  ident: b25
  article-title: A diffusion-based spatio-temporal extension of Gaussian Matérn fields
  publication-title: SORT
– volume: 146
  start-page: 819
  year: 2020
  end-page: 873
  ident: b9
  article-title: Regularity and convergence analysis in Sobolev and Hölder spaces for generalized Whittle–Matérn fields
  publication-title: Numer. Math.
– volume: 368
  start-page: 89
  year: 2016
  end-page: 108
  ident: b15
  article-title: Gauss–Markov processes on Hilbert spaces
  publication-title: Trans. Amer. Math. Soc.
– volume: vol. 2006
  start-page: 3
  year: 2011
  ident: 10.1016/j.spa.2025.104639_b36
  article-title: Representation formulae for the fractional Brownian motion
– volume: 2
  start-page: 225
  issue: 2
  year: 2002
  ident: 10.1016/j.spa.2025.104639_b13
  article-title: Fractional Brownian motion and stochastic equations in Hilbert spaces
  publication-title: Stoch. Dyn.
  doi: 10.1142/S0219493702000340
– volume: 12
  start-page: 1805
  issue: 3
  year: 2024
  ident: 10.1016/j.spa.2025.104639_b23
  article-title: Regularity theory for a new class of fractional parabolic stochastic evolution equations
  publication-title: Stoch. Partial. Differ. Equ. Anal. Comput.
– volume: 7
  start-page: 117
  year: 2010
  ident: 10.1016/j.spa.2025.104639_b2
  article-title: Martingale-type processes indexed by the real line
  publication-title: ALEA Lat. Am. J. Probab. Math. Stat.
– volume: 368
  start-page: 89
  issue: 1
  year: 2016
  ident: 10.1016/j.spa.2025.104639_b15
  article-title: Gauss–Markov processes on Hilbert spaces
  publication-title: Trans. Amer. Math. Soc.
  doi: 10.1090/tran/6329
– volume: vol. 293
  start-page: xiv+602
  year: 1999
  ident: 10.1016/j.spa.2025.104639_b37
– volume: 115
  start-page: 501
  issue: 530
  year: 2020
  ident: 10.1016/j.spa.2025.104639_b31
  article-title: A Bayesian general linear modeling approach to cortical surface fMRI data analysis
  publication-title: J. Amer. Statist. Assoc.
  doi: 10.1080/01621459.2019.1611582
– volume: vol. 201
  start-page: xi+712
  year: 2022
  ident: 10.1016/j.spa.2025.104639_b42
– start-page: xvi+951
  year: 2010
  ident: 10.1016/j.spa.2025.104639_b33
– volume: 146
  start-page: 819
  issue: 4
  year: 2020
  ident: 10.1016/j.spa.2025.104639_b9
  article-title: Regularity and convergence analysis in Sobolev and Hölder spaces for generalized Whittle–Matérn fields
  publication-title: Numer. Math.
  doi: 10.1007/s00211-020-01151-x
– volume: 50
  year: 2022
  ident: 10.1016/j.spa.2025.104639_b26
  article-title: The SPDE approach for Gaussian and non-Gaussian fields: 10 years and still running
  publication-title: Spat. Stat.
  doi: 10.1016/j.spasta.2022.100599
– volume: vol. 152
  start-page: xviii+493
  year: 2014
  ident: 10.1016/j.spa.2025.104639_b10
– volume: 29
  start-page: 274
  issue: 2
  year: 2020
  ident: 10.1016/j.spa.2025.104639_b5
  article-title: The rational SPDE approach for Gaussian random fields with general smoothness
  publication-title: J. Comput. Graph. Statist.
  doi: 10.1080/10618600.2019.1665537
– start-page: viii+654
  year: 1990
  ident: 10.1016/j.spa.2025.104639_b12
– start-page: vi+266
  year: 2015
  ident: 10.1016/j.spa.2025.104639_b28
– volume: 146
  start-page: 319
  issue: 3
  year: 2018
  ident: 10.1016/j.spa.2025.104639_b1
  article-title: Emulating mean patterns and variability of temperature across and within scenarios in anthropogenic climate change experiments
  publication-title: Clim. Change
  doi: 10.1007/s10584-016-1809-8
– start-page: 144
  year: 1960
  ident: 10.1016/j.spa.2025.104639_b30
– volume: 73
  start-page: 423
  issue: 4
  year: 2011
  ident: 10.1016/j.spa.2025.104639_b27
  article-title: An explicit link between Gaussian fields and Gaussian Markov random fields: the stochastic partial differential equation approach
  publication-title: J. R. Stat. Soc. Ser. B Stat. Methodol.
  doi: 10.1111/j.1467-9868.2011.00777.x
– start-page: xii+946
  year: 2021
  ident: 10.1016/j.spa.2025.104639_b20
  article-title: Foundations of Modern Probability
– volume: 50
  start-page: 1038
  issue: 2
  year: 2022
  ident: 10.1016/j.spa.2025.104639_b22
  article-title: Necessary and sufficient conditions for asymptotically optimal linear prediction of random fields on compact metric spaces
  publication-title: Ann. Statist.
  doi: 10.1214/21-AOS2138
– volume: 6
  start-page: 405
  issue: 6
  year: 2014
  ident: 10.1016/j.spa.2025.104639_b24
  article-title: Hierarchical modeling in spatial epidemiology
  publication-title: Wiley Interdiscip. Rev. Comput. Stat.
  doi: 10.1002/wics.1315
– volume: vol. 120
  start-page: xvi+183
  year: 1993
  ident: 10.1016/j.spa.2025.104639_b18
– volume: 48
  start-page: 3
  issue: 1
  year: 2024
  ident: 10.1016/j.spa.2025.104639_b25
  article-title: A diffusion-based spatio-temporal extension of Gaussian Matérn fields
  publication-title: SORT
– volume: vol. 194
  start-page: xxii+586
  year: 2000
  ident: 10.1016/j.spa.2025.104639_b14
– volume: 58
  start-page: 193
  issue: 2
  year: 2014
  ident: 10.1016/j.spa.2025.104639_b3
  article-title: Stochastic integration on the real line
  publication-title: Theory Probab. Appl.
  doi: 10.1137/S0040585X97986540
– volume: 40
  start-page: 1051
  issue: 2
  year: 2020
  ident: 10.1016/j.spa.2025.104639_b7
  article-title: Numerical solution of fractional elliptic stochastic PDEs with spatial white noise
  publication-title: IMA J. Numer. Anal.
  doi: 10.1093/imanum/dry091
– volume: 15
  start-page: 229
  year: 1944
  ident: 10.1016/j.spa.2025.104639_b11
  article-title: The elementary Gaussian processes
  publication-title: Ann. Math. Stat.
  doi: 10.1214/aoms/1177731234
– volume: 10
  start-page: 1323
  issue: 4
  year: 2022
  ident: 10.1016/j.spa.2025.104639_b40
  article-title: Finite element representations of Gaussian processes: balancing numerical and statistical accuracy
  publication-title: SIAM/ASA J. Uncertain. Quantif.
  doi: 10.1137/21M144788X
– volume: 31
  start-page: 237
  issue: 2
  year: 2003
  ident: 10.1016/j.spa.2025.104639_b19
  article-title: A remark on non-Markov property of a fractional Brownian motion
  publication-title: Vietnam J. Math.
– volume: 10
  start-page: 422
  year: 1968
  ident: 10.1016/j.spa.2025.104639_b29
  article-title: Fractional Brownian motions, fractional noises and applications
  publication-title: SIAM Rev.
  doi: 10.1137/1010093
– volume: vol. 204
  start-page: xvi+523
  year: 2006
  ident: 10.1016/j.spa.2025.104639_b21
– volume: 40
  start-page: 974
  year: 1963
  ident: 10.1016/j.spa.2025.104639_b43
  article-title: Stochastic processes in several dimensions
  publication-title: Bull. Inst. Intern. Stat.
– volume: vol. 62
  start-page: xii+433
  year: 1998
  ident: 10.1016/j.spa.2025.104639_b4
– start-page: xii+596
  year: 2001
  ident: 10.1016/j.spa.2025.104639_b16
– volume: vol. 44
  start-page: viii+279
  year: 1983
  ident: 10.1016/j.spa.2025.104639_b34
– volume: 296
  start-page: v+90
  issue: 1481
  year: 2024
  ident: 10.1016/j.spa.2025.104639_b8
  article-title: Local Lipschitz continuity in the initial value and strong completeness for nonlinear stochastic differential equations
  publication-title: Mem. Amer. Math. Soc.
– volume: 30
  start-page: 181
  issue: 1
  year: 2020
  ident: 10.1016/j.spa.2025.104639_b17
  article-title: Multilevel approximation of Gaussian random fields: fast simulation
  publication-title: Math. Models Methods Appl. Sci.
  doi: 10.1142/S0218202520500050
– volume: vol. 113
  start-page: xii+419
  year: 2007
  ident: 10.1016/j.spa.2025.104639_b35
– start-page: xiv+290
  year: 1970
  ident: 10.1016/j.spa.2025.104639_b41
  article-title: Singular Integrals and Differentiability Properties of Functions
– start-page: vii+428
  year: 1973
  ident: 10.1016/j.spa.2025.104639_b32
– volume: 58
  start-page: 881
  issue: 4
  year: 2018
  ident: 10.1016/j.spa.2025.104639_b6
  article-title: Weak convergence of Galerkin approximations for fractional elliptic stochastic PDEs with spatial white noise
  publication-title: BIT
  doi: 10.1007/s10543-018-0719-8
– volume: vol. 104
  start-page: xii+263
  year: 2005
  ident: 10.1016/j.spa.2025.104639_b39
– start-page: ix+201
  year: 1982
  ident: 10.1016/j.spa.2025.104639_b38
SSID ssj0001221
Score 2.4116006
Snippet We define a number of higher-order Markov properties for stochastic processes (X(t))t∈T, indexed by an interval T⊆R and taking values in a real and separable...
SourceID swepub
crossref
elsevier
SourceType Open Access Repository
Index Database
Publisher
StartPage 104639
SubjectTerms Higher-order Markov property
Infinite-dimensional fractional Wiener process
Matérn covariance
Spatiotemporal Gaussian process
Title Multiple and weak Markov properties in Hilbert spaces with applications to fractional stochastic evolution equations
URI https://dx.doi.org/10.1016/j.spa.2025.104639
https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-362261
Volume 186
WOSCitedRecordID wos001463040200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 1879-209X
  databaseCode: AIEXJ
  dateStart: 20211209
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0001221
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Lb5RAGJ-Y1oMejPUR66OZg_HgBrNleAzHjda0xjYmVrO3yTB8uLQprCy79s_3mwcDNq2pBy-EEGBgfj8-vvcQ8ppBmjKuIJhCkQaRQixyXshAsTws4iIqcjAt8z-nJyd8Ps--uFVRV2Y5gbSu-eVltvyvUOMxBFuXzv4D3P6meAD3EXTcIuy4vRXwx32KoHaJ_wJ5bupxmo1OxVrqLGqTgjU5rHR3q26CEkUnZdkat1E0WyulZWvLHkxNSaMWUjd1nsDGPf8Efq5HDj-n4n4dzlzaKgRY9XmaVfvHGEMCAELgKm-s1PGU1f4guOiDFYu1HLspwtgnyfWSlacZ4mTWzR2J3uRaMW49CmdaqL7TNzORaNv06Jru2B-q7zPRtD_EebcQ-EMOtTm8HaZxhmJue3Z0MP_kf877oSnF0wHhINo31pF_sj7obdL_rgx9o9oy7i9rdJLTh-SBMybozJJgh9yB-hG5f-w78a4ek66nA0UIqKYDtXSgAx1oVVNHB2rpQDUd6Bgq2jV0oAMd6EA9HainwxPy7ePB6fvDwK20ESi0Z7tAlRwULwAlegiARkBRot4c5wl-yREqgWViuibFUCbZVIZFWJZS4ieeSLTXUcVkT8lW3dTwjNCIT3MWM5XHYRaBYpJLmQFDKxkYSyHeJW_7iRRL21BF9JmGZwJfUuhZF3bWd0nUT7VwGqHV9AQy5W-XvbGw-BFuoMnz2574gtwbSP2SbHXtGl6Ru2rTVat2z5HsN0SAl20
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multiple+and+weak+Markov+properties+in+Hilbert+spaces+with+applications+to+fractional+stochastic+evolution+equations&rft.jtitle=Stochastic+processes+and+their+applications&rft.au=Kirchner%2C+Kristin&rft.au=Willems%2C+Joshua&rft.date=2025-08-01&rft.issn=1879-209X&rft.volume=186&rft_id=info:doi/10.1016%2Fj.spa.2025.104639&rft.externalDocID=oai_DiVA_org_kth_362261
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0304-4149&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0304-4149&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0304-4149&client=summon