Feature Optimization and Stacked Ensemble Learning for Parkinson's Disease Classification Using Speech Analysis

Parkinson's Disease (PD) is the second most common neurodegenerative disorder, whose symptoms worsen over time, making early diagnosis a challenging task. Changes in speech have been identified as an early symptom of PD identification. However, medical datasets often have a small sample size, w...

Full description

Saved in:
Bibliographic Details
Published in:Technical review - IETE Vol. 42; no. 5; pp. 632 - 650
Main Authors: Agrawal, Sneha, Sahu, Satya Prakash
Format: Journal Article
Language:English
Published: Taylor & Francis 03.09.2025
Subjects:
ISSN:0256-4602, 0974-5971
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Parkinson's Disease (PD) is the second most common neurodegenerative disorder, whose symptoms worsen over time, making early diagnosis a challenging task. Changes in speech have been identified as an early symptom of PD identification. However, medical datasets often have a small sample size, while speech signal analysis generates high-dimensional data. Therefore, rigorous feature selection is essential for obtaining the best set of PD characteristics. This paper proposes a hybrid filter-wrapper feature selection approach for PD classification using a publicly available speech dataset (188 PD, 64 healthy subjects). Maximum Relevancy Minimum Redundancy (mRMR) and Relief algorithms are used to select top-ranked features, followed by the Modified Whale Optimization Algorithm (mWOA) to refine the selection for obtaining an optimized feature subset. The class imbalance issue is addressed using SMOTE. A stacked ensemble model is developed, integrating base learners, Decision Tree, Support Vector Machine, Naïve Bayes, k-Nearest Neighbour, and deep networks like shallow and deep with hyperparameters tuned via a grid search mechanism. The proposed approach is evaluated against state-of-the-art methods based on accuracy, precision, recall, and F1-score. Results demonstrate that hybrid feature selection and hyperparameter tuning reduce computational burden while improving classification accuracy, making it a promising framework for PD detection from speech data.
AbstractList Parkinson's Disease (PD) is the second most common neurodegenerative disorder, whose symptoms worsen over time, making early diagnosis a challenging task. Changes in speech have been identified as an early symptom of PD identification. However, medical datasets often have a small sample size, while speech signal analysis generates high-dimensional data. Therefore, rigorous feature selection is essential for obtaining the best set of PD characteristics. This paper proposes a hybrid filter-wrapper feature selection approach for PD classification using a publicly available speech dataset (188 PD, 64 healthy subjects). Maximum Relevancy Minimum Redundancy (mRMR) and Relief algorithms are used to select top-ranked features, followed by the Modified Whale Optimization Algorithm (mWOA) to refine the selection for obtaining an optimized feature subset. The class imbalance issue is addressed using SMOTE. A stacked ensemble model is developed, integrating base learners, Decision Tree, Support Vector Machine, Naïve Bayes, k-Nearest Neighbour, and deep networks like shallow and deep with hyperparameters tuned via a grid search mechanism. The proposed approach is evaluated against state-of-the-art methods based on accuracy, precision, recall, and F1-score. Results demonstrate that hybrid feature selection and hyperparameter tuning reduce computational burden while improving classification accuracy, making it a promising framework for PD detection from speech data.
Author Agrawal, Sneha
Sahu, Satya Prakash
Author_xml – sequence: 1
  givenname: Sneha
  surname: Agrawal
  fullname: Agrawal, Sneha
  organization: National Institute of Technology Raipur
– sequence: 2
  givenname: Satya Prakash
  surname: Sahu
  fullname: Sahu, Satya Prakash
  organization: National Institute of Technology Raipur
BookMark eNp9kE9LAzEQxYNUsK1-BCE3T1uTbLJ_bpbaqlCoUHsOs7sTjd3NlmRF6qd3l9arp3kzvPdgfhMycq1DQm45m3GWsXsmVCITJmaiV7N-YRmPL8iY5amMVJ7yUa_7czSYrsgkhE_GEikUH5N2hdB9eaSbQ2cb-wOdbR0FV9FtB-UeK7p0AZuiRrpG8M66d2paT1_B760LrbsL9NEGhIB0UUMI1tjyVLILg3l7QCw_6NxBfQw2XJNLA3XAm_Ockt1q-bZ4jtabp5fFfB2VImFdVKSQoSilYQUIzLlRWGZFxtKcJ2kmijSXlcxVyk0BHEAmCvO4yJVi0oBMq3hK1Km39G0IHo0-eNuAP2rO9EBN_1HTAzV9ptbnHk456_o3G_hufV3pDo51640HV9qg4_8rfgHMFXcq
Cites_doi 10.1016/j.neucom.2015.07.138
10.1155/2017/6209703
10.32604/csse.2022.022739
10.1007/3-540-57868-4_57
10.1016/j.bbe.2022.07.002
10.3390/math12101575
10.1038/npre.2008.2298.1
10.1016/j.engappai.2022.105151
10.1016/j.compbiomed.2018.09.008
10.1109/SIBGRAPI.2016.054
10.1016/j.jocn.2019.12.029
10.1016/j.neucom.2016.03.101
10.1109/SPMB.2018.8615607
10.1109/ACCESS.2025.3542160
10.1016/j.bspc.2022.104553
10.1007/s00521-018-3689-5
10.1007/s11761-023-00372-w
10.1109/LSP.2005.860538
10.1613/jair.953
10.1109/ACCESS.2019.2936564
10.1016/j.ins.2017.05.013
10.1016/j.bbe.2020.01.003
10.1016/j.advengsoft.2016.01.008
10.1016/B978-1-55860-247-2.50037-1
10.18517/ijaseit.11.1.12202
10.1214/07-AOS537
10.1007/s13369-021-06544-0
10.1007/978-1-4757-2440-0
10.1136/jnnp.2007.131045
10.1109/LifeTech52111.2021.9391925
10.1109/TBME.2006.871883
10.1080/02564602.2022.2121772
10.1109/LSENS.2020.2994938
10.1109/TSP.2011.2143711
10.1109/EMBC.2016.7590787
10.1016/j.cose.2024.104288
10.1002/mds.26693
10.1080/00220670209598786
10.1016/j.asoc.2018.10.022
10.1109/IJCNN.2019.8851995
10.1109/JBHI.2013.2245674
10.1109/ICASSP49660.2025.10888319
10.1080/03772063.2018.1531730
ContentType Journal Article
Copyright 2025 IETE 2025
Copyright_xml – notice: 2025 IETE 2025
DBID AAYXX
CITATION
DOI 10.1080/02564602.2025.2560813
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 0974-5971
EndPage 650
ExternalDocumentID 10_1080_02564602_2025_2560813
2560813
Genre Research Article
GroupedDBID .DC
0BK
0R~
29Q
2WC
30N
4.4
5GY
AAGDL
AAHIA
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABFIM
ABJNI
ABLIJ
ABPAQ
ABPEM
ABTAI
ABXUL
ABXYU
ACGFS
ACTIO
ADCVX
ADGTB
AEISY
AENEX
AEYOC
AFRVT
AGDLA
AHDZW
AIDUJ
AIJEM
AIYEW
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
AQTUD
AVBZW
AWYRJ
BLEHA
CCCUG
DKSSO
DU5
E3Z
EBS
GTTXZ
H13
HZ~
IPNFZ
KYCEM
LJTGL
M4Z
O9-
P2P
RIG
RNANH
RNS
ROSJB
RTWRZ
SC5
SNACF
TAJZE
TASJS
TBQAZ
TDBHL
TEN
TFL
TFT
TFW
TR2
TTHFI
TUROJ
ZGOLN
AAYXX
CITATION
DGEBU
ID FETCH-LOGICAL-c260t-b7a8e2c4f0ba2e91f5ec8b807916782b794d49571fba1aa465e93b95504fa47d3
IEDL.DBID TFW
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001586563200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0256-4602
IngestDate Sat Nov 29 06:57:04 EST 2025
Sat Nov 01 10:41:24 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c260t-b7a8e2c4f0ba2e91f5ec8b807916782b794d49571fba1aa465e93b95504fa47d3
PageCount 19
ParticipantIDs informaworld_taylorfrancis_310_1080_02564602_2025_2560813
crossref_primary_10_1080_02564602_2025_2560813
PublicationCentury 2000
PublicationDate 2025-09-03
PublicationDateYYYYMMDD 2025-09-03
PublicationDate_xml – month: 09
  year: 2025
  text: 2025-09-03
  day: 03
PublicationDecade 2020
PublicationTitle Technical review - IETE
PublicationYear 2025
Publisher Taylor & Francis
Publisher_xml – name: Taylor & Francis
References e_1_3_3_52_1
e_1_3_3_50_1
Sharma A. (e_1_3_3_8_1) 2014; 4
Bchir O. (e_1_3_3_14_1) 2020; 11
Alemami Y. (e_1_3_3_9_1) 2014; 10
e_1_3_3_18_1
Ghanad N. K. (e_1_3_3_37_1) 2015; 4
e_1_3_3_39_1
Rouzbahani H. K. (e_1_3_3_13_1) 2011; 2
e_1_3_3_16_1
e_1_3_3_35_1
e_1_3_3_10_1
e_1_3_3_33_1
e_1_3_3_12_1
e_1_3_3_31_1
e_1_3_3_40_1
e_1_3_3_7_1
e_1_3_3_29_1
e_1_3_3_25_1
e_1_3_3_48_1
e_1_3_3_27_1
e_1_3_3_46_1
Caliskan A. (e_1_3_3_20_1) 2017; 17
e_1_3_3_3_1
e_1_3_3_21_1
e_1_3_3_44_1
e_1_3_3_5_1
e_1_3_3_23_1
e_1_3_3_42_1
e_1_3_3_30_1
e_1_3_3_51_1
De Rijk M. D. (e_1_3_3_2_1) 2000; 54
e_1_3_3_17_1
e_1_3_3_19_1
e_1_3_3_38_1
e_1_3_3_15_1
e_1_3_3_36_1
e_1_3_3_34_1
e_1_3_3_11_1
e_1_3_3_32_1
e_1_3_3_41_1
e_1_3_3_6_1
e_1_3_3_28_1
e_1_3_3_24_1
e_1_3_3_49_1
e_1_3_3_26_1
e_1_3_3_47_1
e_1_3_3_45_1
e_1_3_3_4_1
e_1_3_3_22_1
e_1_3_3_43_1
References_xml – ident: e_1_3_3_5_1
  doi: 10.1016/j.neucom.2015.07.138
– ident: e_1_3_3_21_1
  doi: 10.1155/2017/6209703
– ident: e_1_3_3_47_1
  doi: 10.32604/csse.2022.022739
– ident: e_1_3_3_34_1
  doi: 10.1007/3-540-57868-4_57
– ident: e_1_3_3_35_1
  doi: 10.1016/j.bbe.2022.07.002
– ident: e_1_3_3_17_1
  doi: 10.3390/math12101575
– ident: e_1_3_3_11_1
  doi: 10.1038/npre.2008.2298.1
– volume: 4
  start-page: 2278
  issue: 3
  year: 2014
  ident: e_1_3_3_8_1
  article-title: Automatic recognition of Parkinson’s disease via artificial neural network and support vector machine
  publication-title: Int. J. Innov. Technol. Explor. Eng. (IJITEE)
– ident: e_1_3_3_41_1
  doi: 10.1016/j.engappai.2022.105151
– ident: e_1_3_3_7_1
  doi: 10.1016/j.compbiomed.2018.09.008
– ident: e_1_3_3_25_1
  doi: 10.1109/SIBGRAPI.2016.054
– ident: e_1_3_3_4_1
  doi: 10.1016/j.jocn.2019.12.029
– ident: e_1_3_3_49_1
  doi: 10.1016/j.neucom.2016.03.101
– ident: e_1_3_3_19_1
  doi: 10.1109/SPMB.2018.8615607
– volume: 11
  start-page: 413
  issue: 4
  year: 2020
  ident: e_1_3_3_14_1
  article-title: Parkinson’s disease classification using Gaussian mixture models with relevance feature weights on vocal feature sets
  publication-title: Int. J. Adv. Comput. Sci. Appl.
– ident: e_1_3_3_50_1
  doi: 10.1109/ACCESS.2025.3542160
– volume: 17
  start-page: 3311
  issue: 2
  year: 2017
  ident: e_1_3_3_20_1
  article-title: Diagnosis of the Parkinson disease by using deep neural network classifier
  publication-title: IU-J. Electr. Electron. Eng.
– ident: e_1_3_3_42_1
  doi: 10.1016/j.bspc.2022.104553
– ident: e_1_3_3_23_1
  doi: 10.1007/s00521-018-3689-5
– ident: e_1_3_3_15_1
  doi: 10.1007/s11761-023-00372-w
– ident: e_1_3_3_27_1
  doi: 10.1109/LSP.2005.860538
– ident: e_1_3_3_31_1
  doi: 10.1613/jair.953
– ident: e_1_3_3_18_1
  doi: 10.1109/ACCESS.2019.2936564
– ident: e_1_3_3_32_1
  doi: 10.1016/j.ins.2017.05.013
– ident: e_1_3_3_46_1
  doi: 10.1016/j.bbe.2020.01.003
– ident: e_1_3_3_48_1
  doi: 10.1016/j.advengsoft.2016.01.008
– ident: e_1_3_3_33_1
  doi: 10.1016/B978-1-55860-247-2.50037-1
– ident: e_1_3_3_16_1
  doi: 10.18517/ijaseit.11.1.12202
– ident: e_1_3_3_39_1
  doi: 10.1214/07-AOS537
– ident: e_1_3_3_45_1
  doi: 10.1007/s13369-021-06544-0
– volume: 54
  start-page: S21
  issue: 11
  year: 2000
  ident: e_1_3_3_2_1
  article-title: Prevalence of Parkinson's disease in Europe: A collaborative study of population-based cohorts. Neurologic diseases in the elderly research group
  publication-title: Neurology
– ident: e_1_3_3_38_1
  doi: 10.1007/978-1-4757-2440-0
– volume: 10
  start-page: 44
  issue: 10
  year: 2014
  ident: e_1_3_3_9_1
  article-title: Detection of Parkinson disease through voice signal features
  publication-title: J. Amer. Sci.
– ident: e_1_3_3_3_1
  doi: 10.1136/jnnp.2007.131045
– ident: e_1_3_3_44_1
  doi: 10.1109/LifeTech52111.2021.9391925
– ident: e_1_3_3_28_1
  doi: 10.1109/TBME.2006.871883
– ident: e_1_3_3_43_1
  doi: 10.1080/02564602.2022.2121772
– ident: e_1_3_3_29_1
– volume: 2
  start-page: 12
  issue: 3
  year: 2011
  ident: e_1_3_3_13_1
  article-title: Diagnosis of Parkinson's disease in human using voice signals
  publication-title: Basic. Clin. Neurosci.
– ident: e_1_3_3_24_1
  doi: 10.1109/LSENS.2020.2994938
– ident: e_1_3_3_30_1
  doi: 10.1109/TSP.2011.2143711
– ident: e_1_3_3_26_1
  doi: 10.1109/EMBC.2016.7590787
– ident: e_1_3_3_51_1
  doi: 10.1016/j.cose.2024.104288
– ident: e_1_3_3_10_1
  doi: 10.1002/mds.26693
– volume: 4
  start-page: 119
  issue: 4
  year: 2015
  ident: e_1_3_3_37_1
  article-title: Combination of PSO algorithm and naive Bayesian classification for Parkinson disease diagnosis
  publication-title: Adv. Comput. Sci.: Int. J.
– ident: e_1_3_3_36_1
  doi: 10.1080/00220670209598786
– ident: e_1_3_3_6_1
  doi: 10.1016/j.asoc.2018.10.022
– ident: e_1_3_3_22_1
  doi: 10.1109/IJCNN.2019.8851995
– ident: e_1_3_3_12_1
  doi: 10.1109/JBHI.2013.2245674
– ident: e_1_3_3_52_1
  doi: 10.1109/ICASSP49660.2025.10888319
– ident: e_1_3_3_40_1
  doi: 10.1080/03772063.2018.1531730
SSID ssj0064251
Score 2.3444655
Snippet Parkinson's Disease (PD) is the second most common neurodegenerative disorder, whose symptoms worsen over time, making early diagnosis a challenging task....
SourceID crossref
informaworld
SourceType Index Database
Publisher
StartPage 632
SubjectTerms Grid search optimization
Hybrid filter-wrapper
Hyperparameter tuning
Maximum relevancy minimum redundancy
Parkinson's disease
ReliefF
Synthetic Minority Oversampling Technique (SMOTE)
Whale optimization algorithm
Title Feature Optimization and Stacked Ensemble Learning for Parkinson's Disease Classification Using Speech Analysis
URI https://www.tandfonline.com/doi/abs/10.1080/02564602.2025.2560813
Volume 42
WOSCitedRecordID wos001586563200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAWR
  databaseName: Taylor & Francis Journals Complete
  customDbUrl:
  eissn: 0974-5971
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0064251
  issn: 0256-4602
  databaseCode: TFW
  dateStart: 19840101
  isFulltext: true
  titleUrlDefault: https://www.tandfonline.com
  providerName: Taylor & Francis
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV05T8MwFLZQxQADN6Jc8oDE5JLDie0RQSsGVJAo0C3yCUg0rZqU34_tOFI7wAJjhmdbvt73nO99D4CLjBOVSyYRZZIhrCKDqBEGmTjSEbfRW-afsl_uyXBIx2P2GNiEVaBVuhjaNEIR_q52h5uLqmXEXTk3jXOfRpVkPeezqa9ba5G9I_WNBq_tXWzBtS_A6CyQM2lzeH5qZcU7rWiXLnmdwfY_jHcHbAXICa-bPbIL1nS5BzaXhAj3wdQhwcVcwwd7g0xCaia0HUILRu05V7BfVnoiPjUMgqxv0A4aupxpnz52WcHb5lcP9GU2HQGpacRzEuDTTGv5DlsJlAPwPOiPbu5QKMWApA14aiQIpzqR2ESCJ5rFJtOSChoRiy4txhD2VCsbapHYCB5zjvNMs1QwG_5gwzFR6SHolNNSHwEolAUNmDKVMolzY3jEU5xrwhOlc5GSLui1S1DMGsWNIm6FTMNMFm4mizCTXcCWF6qo_VOHaeqSFOmvtsd_sD0BG-7TE87SU9Cp5wt9BtblV_1Rzc_9PvwGS5bbRw
linkProvider Taylor & Francis
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQQQIG3ojy9IDE5JI0TmyPCKiKKGWgQLfIT0CiadWm_H5sJ5HSARaYo7Ot8-O-u9x9B8B5zIlKJJOIMskQVoFB1AiDTBjogFvvLfah7Jce6ffpcMjqtTAurdL50KYgivBvtbvcLhhdpcRdOjuNE19H1Y5bzmhT17h22XWncw7YoPNavcYWXvsWjE4EOZmqiuenYRbs0wJ7ac3udDb_Y8VbYKNEnfCqOCbbYElnO2C9xkW4C8YODM6nGj7aR2RUVmdCOyO0eNRedQVvs5keiU8NS07WN2hXDV3ZtK8gu5jBm-JvD_SdNl0OUjGIT0uATxOt5TusWFD2wHPndnDdRWU3BiStz5MjQTjVbYlNIHhbs9DEWlJBA2IBpoUZwl5sZb0tEhrBQ85xEmsWCWY9IGw4JiraB41snOkDAIWyuAFTpiImcWIMD3iEE014W-lERKQJWtUepJOCdCMNKy7TUpOp02RaarIJWH2n0txHO0zRmiSNfpU9_IPsGVjtDh56ae-uf38E1twnn38WHYNGPp3rE7Aiv_KP2fTUH8pvKuHfag
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQQQgG3ojy9IDElJKHE8cjoq1AVKUSBbpFfgISTasm5fdjO47UDrDAHJ1tne2775y77wC4jCkWCSfcSwknHhK-8lLFlKcCX_pUR2-xfcp-6eF-Px2NyMBlExYurdLE0KoiirC22lzuqVB1Rty1cdMosWVUYdwyPjs1fWtXNXSOzcEedl9rY6zRte3AaEQ8I1MX8fw0zJJ7WiIvXXA73e1_WPAO2HKYE95Uh2QXrMh8D2wuMBHug4mBgvOZhI_ahIxdbSbUE0KNRvVFF7CTF3LMPiV0jKxvUC8amqJpWz92VcB29a8H2j6bJgOpGsQmJcCnqZT8HdYcKAfgudsZ3t55rheDx3XEU3oM01SGHCmf0VCSQMWSpyz1sYaXGmQwfa2FjrVwoBgNKEVJLEnEiI5_kKIIi-gQNPJJLo8AZEKjBpQSERGOEqWoTyOUSExDIRMW4SZo1VuQTSvKjSyomUydJjOjycxpsgnI4kZlpX3rUFVjkiz6Vfb4D7IXYH3Q7ma9-_7DCdgwX2zyWXQKGuVsLs_AGv8qP4rZuT2S36Fg3hw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Feature+Optimization+and+Stacked+Ensemble+Learning+for+Parkinson%E2%80%99s+Disease+Classification+Using+Speech+Analysis&rft.jtitle=Technical+review+-+IETE&rft.au=Agrawal%2C+Sneha&rft.au=Sahu%2C+Satya+Prakash&rft.date=2025-09-03&rft.issn=0256-4602&rft.eissn=0974-5971&rft.volume=42&rft.issue=5&rft.spage=632&rft.epage=650&rft_id=info:doi/10.1080%2F02564602.2025.2560813&rft.externalDBID=n%2Fa&rft.externalDocID=10_1080_02564602_2025_2560813
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0256-4602&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0256-4602&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0256-4602&client=summon