Optimization and artificial intelligence: An in-depth analysis of multi-objective optimization, sampling methods, and regression algorithms applied to structural design

This study addresses the challenge of structural optimization in Formula SAE chassis, focusing on balancing lightweight design with structural integrity. By integrating parametric optimization with AIdriven metamodeling, the research compares four multi-objective optimization algorithms-Non-Sorted G...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Mechanics based design of structures and machines Ročník 53; číslo 8; s. 5822 - 5849
Hlavní autori: Gomes, Guilherme Ferreira, Bendine, Kouider, Pereira, Joao Luiz Junho
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Taylor & Francis 03.08.2025
Predmet:
ISSN:1539-7734, 1539-7742
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract This study addresses the challenge of structural optimization in Formula SAE chassis, focusing on balancing lightweight design with structural integrity. By integrating parametric optimization with AIdriven metamodeling, the research compares four multi-objective optimization algorithms-Non-Sorted Genetic Algorithm II, Multi-objective Lichtenberg Algorithm, Multi-objective Sunflower Optimization, and Multi-objective Particle Swarm Optimization-aiming to minimize chassis mass and maximize stiffness. The results show that AI-driven metamodeling significantly reduces computational cost, cutting optimization time by over 99%, while maintaining accuracy comparable to direct Finite Element simulations. This work provides a framework for enhanced automotive and structural optimization.
AbstractList This study addresses the challenge of structural optimization in Formula SAE chassis, focusing on balancing lightweight design with structural integrity. By integrating parametric optimization with AIdriven metamodeling, the research compares four multi-objective optimization algorithms-Non-Sorted Genetic Algorithm II, Multi-objective Lichtenberg Algorithm, Multi-objective Sunflower Optimization, and Multi-objective Particle Swarm Optimization-aiming to minimize chassis mass and maximize stiffness. The results show that AI-driven metamodeling significantly reduces computational cost, cutting optimization time by over 99%, while maintaining accuracy comparable to direct Finite Element simulations. This work provides a framework for enhanced automotive and structural optimization.
Author Bendine, Kouider
Gomes, Guilherme Ferreira
Pereira, Joao Luiz Junho
Author_xml – sequence: 1
  givenname: Guilherme Ferreira
  surname: Gomes
  fullname: Gomes, Guilherme Ferreira
  organization: Mechanical Engineering Institute, Federal University of Itajubá (UNIFEI)
– sequence: 2
  givenname: Kouider
  surname: Bendine
  fullname: Bendine, Kouider
  organization: Materials Research and Technology (MRT) Department Luxembourg Institute of Science and Technology (LIST)
– sequence: 3
  givenname: Joao Luiz Junho
  surname: Pereira
  fullname: Pereira, Joao Luiz Junho
  organization: Production and Management Engineering Institute, Federal University of Itajubá (UNIFEI)
BookMark eNp9kMlOwzAQhi1UJMryCEh-gKZ4SeqEExVik5C4wDlyvaSDHDuyXVB5Ih6TlE2cOM1o9C-j7xBNfPAGoVNK5pTU5IxWvBGCl3NGWDVnpViQku6h6e5eCFGyye_OywN0mNIzIYxRwqfo_WHI0MObzBA8ll5jGTNYUCAdBp-Nc9AZr8w5XvrxUGgz5PUolG6bIOFgcb9xGYqwejYqw4vB4U_iDCfZDw58h3uT10Gn2WdJNF00KX12ui5EyOs-YTmMUqNxDjjluFF5E8cvtEnQ-WO0b6VL5uR7HqGn66vHy9vi_uHm7nJ5Xyi2ILlo6rIWmptVpU1TacYsoYrZmtJqwWxJFkJTq1ec67qWjZaWVqQW3OpSCckayo9Q9ZWrYkgpGtsOEXoZty0l7Q53-4O73eFuv3GPvosvH3gbYi9fQ3S6zXLrQrRRegWp5f9HfABZIY35
Cites_doi 10.1016/j.asoc.2018.06.050
10.1080/0305215X.2020.1839442
10.1016/j.istruc.2023.105271
10.1016/j.engstruct.2018.11.081
10.1037/h0042519
10.1007/3-540-45356-3_83
10.1007/s00158-010-0578-7
10.1145/3615354
10.1109/21.52545
10.1016/j.engappai.2023.107536
10.1016/j.eswa.2021.115939
10.1016/S0166-3615(99)00046-9
10.1016/j.eswa.2020.114522
10.1007/s00366-021-01299-6
10.1007/s10462-017-9605-z
10.1016/j.compstruct.2023.117043
10.1007/978-3-540-28650-9_4
10.1109/MCAS.2006.1688199
10.1016/j.jjimei.2023.100209
10.2307/1266224
10.1016/j.crme.2018.09.003
10.1007/s10618-023-00957-1
10.1016/j.eswa.2023.121549
10.1109/ICNN.1995.488968
10.48550/ARXIV.1706.03762
10.1145/3436893
10.1016/j.engappai.2020.104055
10.1023/A:1022697719738
10.1016/S0169-7161(04)24011-1
10.1515/math-2017-0029
10.1007/s10994-023-06490-y
10.1016/j.compstruc.2021.106508
10.1016/j.neucom.2008.01.031
10.1137/16M1080173
10.1080/0305215X.2024.2349104
10.1080/24705314.2024.2390258
ContentType Journal Article
Copyright 2025 Taylor & Francis Group, LLC 2025
Copyright_xml – notice: 2025 Taylor & Francis Group, LLC 2025
DBID AAYXX
CITATION
DOI 10.1080/15397734.2025.2476041
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1539-7742
EndPage 5849
ExternalDocumentID 10_1080_15397734_2025_2476041
2476041
Genre Research Article
GrantInformation_xml – fundername: CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico)
– fundername: FAPESP (São Paulo Research Foundation
  grantid: 2023/10419-0; 2022/10683-7
– fundername: FAPEMIG (Fundacão de Amparo à Pesquisa do Estado de Minas Gerais
  grantid: APQ-00062-24
GroupedDBID .7F
.QJ
0BK
29M
30N
4.4
5GY
5VS
AAENE
AAGDL
AAHIA
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABDBF
ABFIM
ABHAV
ABJNI
ABLIJ
ABPAQ
ABPEM
ABTAI
ABXUL
ABXYU
ACGEJ
ACGFS
ACTIO
ADCVX
ADGTB
ADXPE
AEISY
AENEX
AEOZL
AEPSL
AEYOC
AFKVX
AFRVT
AGDLA
AGMYJ
AHDZW
AIJEM
AIYEW
AJWEG
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
AVBZW
AWYRJ
BLEHA
CCCUG
CE4
CS3
DGEBU
DKSSO
DU5
EAP
EBS
EST
ESX
E~A
E~B
GEVLZ
GTTXZ
H13
HF~
HZ~
H~P
IPNFZ
J.P
KYCEM
LJTGL
M4Z
NA5
NX~
O9-
RIG
RNANH
ROSJB
RTWRZ
S-T
SNACF
TASJS
TBQAZ
TEN
TFL
TFT
TFW
TNC
TTHFI
TUROJ
TUS
TWF
UT5
UU3
ZGOLN
~S~
AAYXX
CITATION
ID FETCH-LOGICAL-c260t-98487d3eb5de95d22f01c2f811562f4067d1fdb33d88a9daf150873fd4c7a2913
IEDL.DBID TFW
ISICitedReferencesCount 3
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001455470900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1539-7734
IngestDate Sat Nov 29 07:44:56 EST 2025
Mon Oct 20 23:46:45 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c260t-98487d3eb5de95d22f01c2f811562f4067d1fdb33d88a9daf150873fd4c7a2913
PageCount 28
ParticipantIDs crossref_primary_10_1080_15397734_2025_2476041
informaworld_taylorfrancis_310_1080_15397734_2025_2476041
PublicationCentury 2000
PublicationDate 2025-08-03
PublicationDateYYYYMMDD 2025-08-03
PublicationDate_xml – month: 08
  year: 2025
  text: 2025-08-03
  day: 03
PublicationDecade 2020
PublicationTitle Mechanics based design of structures and machines
PublicationYear 2025
Publisher Taylor & Francis
Publisher_xml – name: Taylor & Francis
References Mihailidis A. (e_1_3_7_30_1) 2009; 223
e_1_3_7_41_1
e_1_3_7_20_1
e_1_3_7_22_1
e_1_3_7_43_1
e_1_3_7_24_1
e_1_3_7_49_1
Gorishniy Y. (e_1_3_7_19_1) 2021; 34
e_1_3_7_28_1
Faceli K. (e_1_3_7_13_1) 2021
Li H. (e_1_3_7_25_1) 2013; 1
e_1_3_7_51_1
Agarwal P. (e_1_3_7_2_1) 2021; 5
e_1_3_7_32_1
e_1_3_7_11_1
e_1_3_7_34_1
Vapnik V. (e_1_3_7_45_1) 1996; 9
e_1_3_7_36_1
e_1_3_7_15_1
e_1_3_7_38_1
e_1_3_7_17_1
e_1_3_7_4_1
e_1_3_7_6_1
e_1_3_7_8_1
e_1_3_7_40_1
e_1_3_7_21_1
e_1_3_7_44_1
e_1_3_7_23_1
e_1_3_7_42_1
e_1_3_7_48_1
e_1_3_7_27_1
e_1_3_7_46_1
e_1_3_7_29_1
Liu J. (e_1_3_7_26_1) 2018; 2
Doyle E. (e_1_3_7_12_1) 2021; 46
Wang L. (e_1_3_7_47_1) 2018; 2018
e_1_3_7_10_1
e_1_3_7_31_1
e_1_3_7_33_1
e_1_3_7_14_1
e_1_3_7_35_1
e_1_3_7_16_1
e_1_3_7_37_1
e_1_3_7_18_1
e_1_3_7_39_1
Yani I. M. (e_1_3_7_50_1) 2021; 18
e_1_3_7_3_1
e_1_3_7_5_1
e_1_3_7_7_1
e_1_3_7_9_1
References_xml – ident: e_1_3_7_27_1
  doi: 10.1016/j.asoc.2018.06.050
– ident: e_1_3_7_14_1
  doi: 10.1080/0305215X.2020.1839442
– ident: e_1_3_7_16_1
– ident: e_1_3_7_4_1
  doi: 10.1016/j.istruc.2023.105271
– volume: 2
  start-page: 251
  issue: 3
  year: 2018
  ident: e_1_3_7_26_1
  article-title: Torsional Stiffness and Vibrational Analysis of Formula Sae Chassis
  publication-title: Journal of Vibration Testing and System Dynamics
– ident: e_1_3_7_17_1
  doi: 10.1016/j.engstruct.2018.11.081
– ident: e_1_3_7_41_1
– ident: e_1_3_7_39_1
  doi: 10.1037/h0042519
– ident: e_1_3_7_10_1
  doi: 10.1007/3-540-45356-3_83
– ident: e_1_3_7_7_1
  doi: 10.1007/s00158-010-0578-7
– ident: e_1_3_7_29_1
  doi: 10.1145/3615354
– ident: e_1_3_7_37_1
  doi: 10.1109/21.52545
– ident: e_1_3_7_11_1
  doi: 10.1016/j.engappai.2023.107536
– ident: e_1_3_7_34_1
  doi: 10.1016/j.eswa.2021.115939
– ident: e_1_3_7_8_1
  doi: 10.1016/S0166-3615(99)00046-9
– ident: e_1_3_7_33_1
  doi: 10.1016/j.eswa.2020.114522
– volume: 9
  year: 1996
  ident: e_1_3_7_45_1
  article-title: Support Vector Method for Function Approximation, Regression Estimation and Signal Processing
  publication-title: Advances in Neural Information Processing Systems
– ident: e_1_3_7_9_1
  doi: 10.1007/s00366-021-01299-6
– ident: e_1_3_7_21_1
  doi: 10.1007/s10462-017-9605-z
– ident: e_1_3_7_18_1
  doi: 10.1016/j.compstruct.2023.117043
– volume-title: Inteligência artificial: Uma abordagem de aprendizado de máquina
  year: 2021
  ident: e_1_3_7_13_1
– ident: e_1_3_7_38_1
  doi: 10.1007/978-3-540-28650-9_4
– ident: e_1_3_7_36_1
  doi: 10.1109/MCAS.2006.1688199
– ident: e_1_3_7_48_1
  doi: 10.1016/j.jjimei.2023.100209
– ident: e_1_3_7_22_1
  doi: 10.2307/1266224
– ident: e_1_3_7_51_1
  doi: 10.1016/j.crme.2018.09.003
– ident: e_1_3_7_35_1
  doi: 10.1007/s10618-023-00957-1
– volume: 223
  start-page: 995
  issue: 8
  year: 2009
  ident: e_1_3_7_30_1
  article-title: A Design Approach on Formula Sae Vehicle Chassis
  publication-title: Journal of Automobile Engineering
– ident: e_1_3_7_42_1
  doi: 10.1016/j.eswa.2023.121549
– volume: 2018
  start-page: 1
  year: 2018
  ident: e_1_3_7_47_1
  article-title: Genetic Algorithm-Based Optimization for the Chassis Design of Electric Vehicles
  publication-title: Journal of Electrical and Computer Engineering
– volume: 5
  start-page: 45
  year: 2021
  ident: e_1_3_7_2_1
  article-title: Numerical Optimization of Vehicle Chassis
  publication-title: International Journal of Mechanical Engineering
– ident: e_1_3_7_44_1
– ident: e_1_3_7_23_1
  doi: 10.1109/ICNN.1995.488968
– ident: e_1_3_7_46_1
  doi: 10.48550/ARXIV.1706.03762
– ident: e_1_3_7_31_1
  doi: 10.1145/3436893
– ident: e_1_3_7_32_1
  doi: 10.1016/j.engappai.2020.104055
– ident: e_1_3_7_49_1
  doi: 10.1023/A:1022697719738
– volume: 34
  start-page: 18932
  year: 2021
  ident: e_1_3_7_19_1
  article-title: Revisiting Deep Learning Models for Tabular Data
  publication-title: Advances in Neural Information Processing Systems
– ident: e_1_3_7_43_1
  doi: 10.1016/S0169-7161(04)24011-1
– ident: e_1_3_7_6_1
  doi: 10.1515/math-2017-0029
– volume: 46
  start-page: 112
  year: 2021
  ident: e_1_3_7_12_1
  article-title: Fatigue Life Prediction of Formula Sae Chassis
  publication-title: Journal of Fatigue Analysis
– ident: e_1_3_7_20_1
  doi: 10.1007/s10994-023-06490-y
– ident: e_1_3_7_15_1
  doi: 10.1016/j.compstruc.2021.106508
– ident: e_1_3_7_28_1
  doi: 10.1016/j.neucom.2008.01.031
– ident: e_1_3_7_5_1
  doi: 10.1137/16M1080173
– volume: 1
  start-page: 34
  year: 2013
  ident: e_1_3_7_25_1
  article-title: Formula Sae Chassis Design for Enhanced Aerodynamic Performance
  publication-title: Journal of Automotive Performance
– ident: e_1_3_7_3_1
  doi: 10.1080/0305215X.2024.2349104
– ident: e_1_3_7_40_1
– volume: 18
  start-page: 8389
  year: 2021
  ident: e_1_3_7_50_1
  article-title: Chassis Load Analysis for Weight Reduction in Formula Student Vehicles
  publication-title: International Journal of Automotive and Mechanical Engineering
– ident: e_1_3_7_24_1
  doi: 10.1080/24705314.2024.2390258
SSID ssj0022103
Score 2.3749394
Snippet This study addresses the challenge of structural optimization in Formula SAE chassis, focusing on balancing lightweight design with structural integrity. By...
SourceID crossref
informaworld
SourceType Index Database
Publisher
StartPage 5822
SubjectTerms artificial intelligence
formula SAE
metamodel
Multi-objective optimization
regression
Title Optimization and artificial intelligence: An in-depth analysis of multi-objective optimization, sampling methods, and regression algorithms applied to structural design
URI https://www.tandfonline.com/doi/abs/10.1080/15397734.2025.2476041
Volume 53
WOSCitedRecordID wos001455470900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAWR
  databaseName: Taylor & Francis Online Journals
  customDbUrl:
  eissn: 1539-7742
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0022103
  issn: 1539-7734
  databaseCode: TFW
  dateStart: 20030104
  isFulltext: true
  titleUrlDefault: https://www.tandfonline.com
  providerName: Taylor & Francis
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELYQYoCBN6K85IERA7HjJGZDiIqpMBTBFjl-tEU0qZqI38TP5GynKB1ggTFRfI58d7476_N3CJ2nOtKxlYaYgicktrEmoogUMZzqiNtIcyl9s4l0MMheX8VTiyasW1ilq6FtIIrwe7VzblnUC0TcFTgpZC3MnYhQfknjNLn2V9ch9DvXHPZfvksuKGhYYEwVxA1Z3OH5ScpSdFriLu1Enf7WP_zvNtpsU058G2xkB62YchdtdIgI99DnI-wc0_ZKJoaJsLOoQC6BJx3Wzht8W8ILos2sGcOHgdEEVxZ7ZCKpirewg-KqI_EC19Ih18sRDh2r6ws_ydyMAgwX5nwfVfNJM57WWIbEGDcVDuy2jhkEaw812UfP_fvh3QNpezgQBZVSQ0QGFZFmYAnaCK4ptdeRojaDRDShFrIJMBarC8Z0lkmhpXX89CmzOlappCJiB2i1rEpziHAsuVKJ1UxyHWfKCBDEFRWxkBBmVdJDlwvd5bNA1ZFHLQPqQgW5U0HeqqCHRFfDeePPSGxoaJKzX8ce_WHsMVp3jx5GyE7QKiylOUVr6qOZ1PMzb8BffFLyjg
linkProvider Taylor & Francis
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELYQIAEDb0R5emCsC7HjJGZDiKoIKEsR3SLXj7YIEtRG_CZ-Juc4RekAC6xJbEe-s--h775D6CzWgQ6tNMQMeERCG2oiBoEihlMdcBtoLmXZbCLudpN-X9RrYRys0sXQ1hNFlHe1O9wuGT2DxJ3DKQW3hbmUCOUtGsbRhatdX-Jgax1_fq_9_B10QUjDPGeqIG7MrIrnp2nm7NMce2nN7rQ3_uOPN9F65XXiK68mW2jBZNtorcZFuIM-H-HyeKuqMjGshJ1SeX4JPK4Rd17iqwweEG3eixF86ElNcG5xCU4k-eDFX6I4r83YxFPpwOvZEPum1dNmucjEDD0SF9Z8HeaTcTF6m2LpfWNc5NgT3DpyEKxLtMkuemrf9K47pGrjQBQESwURCQRFmoEyaCO4ptReBIraBHzRiFpwKEBfrB4wppNECi2to6iPmdWhiiUVAdtDi1memX2EQ8mViqxmkuswUUbARFxREQoJllZFDdSaCS9992wdaVCRoM5EkDoRpJUIGkjURZwWZZrE-p4mKft17MEfxp6ilU7v4T69v-3eHaJV96pEFbIjtAjbao7RsvooxtPJSanNX83A9rg
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwELZQQWj3wHNX2-XlA8e6NHacxNwqdisQqPRQRG-R67HbrrZJ1UT7m_iZO45TlB7gAtckY0ee8Tysz98Q8j6FCGKnLbNLmbDYxcDUMjLMSg6RdBFIrZtmE-l0mi0WataiCasWVulraBeIIhpf7Tf3DtwBEfcBNylmLcKfiHA55HGajPzV9YeYOifeyOeTn79rLqxoRKBMVczLHC7x_GmYo_B0RF7aCTuTp__hh5-RJ23OScfBSJ6TB7Z4QU47TIQvya_v6Dq27Z1MihNRb1KBXYJuOrSdH-m4wAcM7K5e44eB0oSWjjbQRFYub4ILpWVnxAGttIeuFysaWlZXg2aSvV0FHC7Oebsq95t6va2oDpkxrUsa6G09NQiFBmtyRn5MruefPrO2iQMzWCrVTGVYEoFAUwCrJHDuRpHhLsNMNOEO0wm0FgdLISDLtALtPEF9KhzEJtVcReKc9IqysBeExloakzgQWkKcGatwIGm4ipXGOGuSPhkedJfvAldHHrUUqAcV5F4FeauCPlFdDed1c0jiQkeTXPxV9vIfZN-Rx7OrSf7ty_TrK3Li3zSQQvGa9HBV7RvyyNzVm2r_trHle_ZC9Wo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimization+and+artificial+intelligence%3A+An+in-depth+analysis+of+multi-objective+optimization%2C+sampling+methods%2C+and+regression+algorithms+applied+to+structural+design&rft.jtitle=Mechanics+based+design+of+structures+and+machines&rft.au=Gomes%2C+Guilherme+Ferreira&rft.au=Bendine%2C+Kouider&rft.au=Pereira%2C+Joao+Luiz+Junho&rft.date=2025-08-03&rft.issn=1539-7734&rft.eissn=1539-7742&rft.volume=53&rft.issue=8&rft.spage=5822&rft.epage=5849&rft_id=info:doi/10.1080%2F15397734.2025.2476041&rft.externalDBID=n%2Fa&rft.externalDocID=10_1080_15397734_2025_2476041
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1539-7734&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1539-7734&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1539-7734&client=summon