The majorization minimization algorithm for solving nonconvex generalized Nash equilibrium problems

This paper proposes a majorization minimization (MM) algorithm for nonconvex generalized Nash equilibrium problems. The algorithm initially utilizes an augmented Lagrangian function to convert the original problem into an unconstrained optimization problem. Subsequently, by integrating MM techniques...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:International journal of computer mathematics Ročník 102; číslo 8; s. 1112 - 1129
Hlavní autoři: Shi, Yingao, Yu, Zhensheng
Médium: Journal Article
Jazyk:angličtina
Vydáno: Taylor & Francis 03.08.2025
Témata:
ISSN:0020-7160, 1029-0265
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:This paper proposes a majorization minimization (MM) algorithm for nonconvex generalized Nash equilibrium problems. The algorithm initially utilizes an augmented Lagrangian function to convert the original problem into an unconstrained optimization problem. Subsequently, by integrating MM techniques, a suitable convex surrogate function is devised to develop a new algorithm. Under relatively broad assumptions, the global convergence of the algorithm has been proven, and its effectiveness and superiority have been verified through numerical experiments.
ISSN:0020-7160
1029-0265
DOI:10.1080/00207160.2025.2475054