The majorization minimization algorithm for solving nonconvex generalized Nash equilibrium problems
This paper proposes a majorization minimization (MM) algorithm for nonconvex generalized Nash equilibrium problems. The algorithm initially utilizes an augmented Lagrangian function to convert the original problem into an unconstrained optimization problem. Subsequently, by integrating MM techniques...
Uloženo v:
| Vydáno v: | International journal of computer mathematics Ročník 102; číslo 8; s. 1112 - 1129 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Taylor & Francis
03.08.2025
|
| Témata: | |
| ISSN: | 0020-7160, 1029-0265 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | This paper proposes a majorization minimization (MM) algorithm for nonconvex generalized Nash equilibrium problems. The algorithm initially utilizes an augmented Lagrangian function to convert the original problem into an unconstrained optimization problem. Subsequently, by integrating MM techniques, a suitable convex surrogate function is devised to develop a new algorithm. Under relatively broad assumptions, the global convergence of the algorithm has been proven, and its effectiveness and superiority have been verified through numerical experiments. |
|---|---|
| ISSN: | 0020-7160 1029-0265 |
| DOI: | 10.1080/00207160.2025.2475054 |