Digital thermal infrared detector attack via free velocity and rollback mutation
Existing black-box attack methods for infrared detectors often rely on heuristic techniques due to the unavailability of useful gradient information from the target detection model. However, existing heuristic-based attack methods suffer from the following two drawbacks. First, they are often prone...
Uloženo v:
| Vydáno v: | Infrared physics & technology Ročník 139; s. 105285 |
|---|---|
| Hlavní autoři: | , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier B.V
01.06.2024
|
| Témata: | |
| ISSN: | 1350-4495, 1879-0275 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Existing black-box attack methods for infrared detectors often rely on heuristic techniques due to the unavailability of useful gradient information from the target detection model. However, existing heuristic-based attack methods suffer from the following two drawbacks. First, they are often prone to falling into local optima. Second, their convergence speed is particularly slow in the later stages of the optimization algorithm. To address these challenges, we propose a thermal infrared detector Attack (TID-Attack) based on free velocity and rollback mutation. This algorithm enables effective black-box digital adversarial attacks on infrared object detection models. Specifically, we first introduce a free velocity attack method in the particle swarm optimization algorithm. This method effectively balances the local and global search capabilities of particles during the optimization process, mitigating the risk of particles getting trapped in local optima. Additionally, we design a rollback mutation search strategy that allows particles trapped in local optima to bounce to new areas, farther away from their current positions, and then perform the optimization process again. These two modules make heuristic-based attack methods more robust and better stable. To evaluate the effectiveness of TID-Attack, we perform black-box attack tests on the YOLOv5 and YOLOv3 using three infrared detection datasets: FLIR-ADAS V2, CVC-09,(Daytime and Nighttime), and KAIST. Extensive experimental results demonstrate that our method achieves superior performance in terms of attack success rate and query times.
•We propose the first particle swarm optimization-based black-box attack for infrared object detectors.•We design a free velocity attack method and a rollback mutation search strategy.•We validate the effectiveness of the proposed method on four infrared detection benchmarks. |
|---|---|
| AbstractList | Existing black-box attack methods for infrared detectors often rely on heuristic techniques due to the unavailability of useful gradient information from the target detection model. However, existing heuristic-based attack methods suffer from the following two drawbacks. First, they are often prone to falling into local optima. Second, their convergence speed is particularly slow in the later stages of the optimization algorithm. To address these challenges, we propose a thermal infrared detector Attack (TID-Attack) based on free velocity and rollback mutation. This algorithm enables effective black-box digital adversarial attacks on infrared object detection models. Specifically, we first introduce a free velocity attack method in the particle swarm optimization algorithm. This method effectively balances the local and global search capabilities of particles during the optimization process, mitigating the risk of particles getting trapped in local optima. Additionally, we design a rollback mutation search strategy that allows particles trapped in local optima to bounce to new areas, farther away from their current positions, and then perform the optimization process again. These two modules make heuristic-based attack methods more robust and better stable. To evaluate the effectiveness of TID-Attack, we perform black-box attack tests on the YOLOv5 and YOLOv3 using three infrared detection datasets: FLIR-ADAS V2, CVC-09,(Daytime and Nighttime), and KAIST. Extensive experimental results demonstrate that our method achieves superior performance in terms of attack success rate and query times.
•We propose the first particle swarm optimization-based black-box attack for infrared object detectors.•We design a free velocity attack method and a rollback mutation search strategy.•We validate the effectiveness of the proposed method on four infrared detection benchmarks. |
| ArticleNumber | 105285 |
| Author | Pi, Jiatian Jiang, Ning Wen, Fusen Liu, Qiao Wu, Haiying Lu, Quan |
| Author_xml | – sequence: 1 givenname: Jiatian surname: Pi fullname: Pi, Jiatian organization: National Center for Applied Mathematics, Chongqing Normal University, Chongqing, China – sequence: 2 givenname: Fusen surname: Wen fullname: Wen, Fusen organization: School of Computer and Information Science, Chongqing Normal University, Chongqing, China – sequence: 3 givenname: Quan surname: Lu fullname: Lu, Quan organization: Mashang Consumer Finance Co., Ltd., Chongqing, China – sequence: 4 givenname: Ning surname: Jiang fullname: Jiang, Ning organization: Mashang Consumer Finance Co., Ltd., Chongqing, China – sequence: 5 givenname: Haiying surname: Wu fullname: Wu, Haiying organization: Mashang Consumer Finance Co., Ltd., Chongqing, China – sequence: 6 givenname: Qiao orcidid: 0000-0003-0885-7976 surname: Liu fullname: Liu, Qiao email: liuqiao@cqnu.edu.cn organization: National Center for Applied Mathematics, Chongqing Normal University, Chongqing, China |
| BookMark | eNqFkMFOwzAQRC1UJNrCLyD_QIrtOHZyAxUoSJXgAGdrba_BJU2QYyr170lVeuY0q13NaOfNyKTrOyTkmrMFZ1zdbBaxCwkS-oVgQo7LStTVGZnyWjcFE7qajHNZsULKprogs2HYsNEomZqS1_v4ETO0NH9i2o56yqIeM7rcJwo5g_uiuwg0JES6w7Z3Me8pdJ6mvm3t4bz9yZBj312S8wDtgFd_Oifvjw9vy6di_bJ6Xt6tCyeqJhfB18JbDS5wVVZagZdNybW1VgsJ3AfeWIfCKu4V1OAaIZGD1dxK1KWy5ZyoY65L_TAkDOY7xS2kveHMHLiYjTl1MQcu5shlNN4ejTh-t4uYzOAidg59TGNh4_v4X8QvlXlzEQ |
| Cites_doi | 10.1145/3460120.3484757 10.1109/ICCV.2019.00051 10.1049/cje.2021.03.003 10.1609/aaai.v33i01.3301742 10.1609/aaai.v37i12.26777 10.1109/ICCV.2017.153 10.1016/j.patcog.2022.109037 10.1016/j.isprsjprs.2009.03.007 10.1007/978-3-030-01258-8_10 10.3390/electronics9081284 10.1016/j.infrared.2020.103626 10.1016/j.infrared.2022.104416 10.1609/aaai.v35i4.16477 10.1109/CVPR52729.2023.01187 10.1109/CVPR52688.2022.01296 10.1016/j.infrared.2022.104182 10.1007/s11263-019-01247-4 10.1109/TCYB.2020.3041481 10.1016/j.engappai.2023.106594 10.1109/CVPR.2016.91 10.1145/3128572.3140448 10.1109/CVPRW50498.2020.00400 |
| ContentType | Journal Article |
| Copyright | 2024 Elsevier B.V. |
| Copyright_xml | – notice: 2024 Elsevier B.V. |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.infrared.2024.105285 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Physics |
| EISSN | 1879-0275 |
| ExternalDocumentID | 10_1016_j_infrared_2024_105285 S1350449524001695 |
| GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 29I 4.4 457 4G. 5GY 5VS 6TJ 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABEFU ABFNM ABJNI ABMAC ABNEU ABTAH ABXDB ACDAQ ACFVG ACGFS ACNNM ACRLP ADBBV ADEZE ADMUD AEBSH AEKER AENEX AFFNX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AI. AIEXJ AIKHN AITUG AIVDX AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BBWZM BKOJK BLXMC CS3 DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA HMV HVGLF HZ~ IHE J1W KOM M38 M41 MO0 N9A NDZJH O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SES SEW SPC SPCBC SPD SPG SSQ SSZ T5K VH1 VOH WUQ ZMT ZY4 ~G- 9DU AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKYEP ANKPU APXCP CITATION EFKBS EFLBG ~HD |
| ID | FETCH-LOGICAL-c259t-fd82db7acf163576ad49317bbb724a1df19bce2b61d6a8ac924e1ab71b4e736b3 |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001230766200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1350-4495 |
| IngestDate | Sat Nov 29 02:09:54 EST 2025 Sat Jun 01 15:41:39 EDT 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Particle swarm optimization Thermal infrared detectors Digital black-box attack |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c259t-fd82db7acf163576ad49317bbb724a1df19bce2b61d6a8ac924e1ab71b4e736b3 |
| ORCID | 0000-0003-0885-7976 |
| ParticipantIDs | crossref_primary_10_1016_j_infrared_2024_105285 elsevier_sciencedirect_doi_10_1016_j_infrared_2024_105285 |
| PublicationCentury | 2000 |
| PublicationDate | June 2024 2024-06-00 |
| PublicationDateYYYYMMDD | 2024-06-01 |
| PublicationDate_xml | – month: 06 year: 2024 text: June 2024 |
| PublicationDecade | 2020 |
| PublicationTitle | Infrared physics & technology |
| PublicationYear | 2024 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Weng (b8) 2009; 64 H. Wei, Z. Wang, X. Jia, Y. Zheng, H. Tang, S. Satoh, Z. Wang, HOTCOLD Block: Fooling Thermal Infrared Detectors with a Novel Wearable Design, in: Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 37, 2023, pp. 15233–15241. Li, Bian, Lyu (b29) 2018 Lou, Cao, Lin (b14) 2023; 124 Haoran, Yu’an, Yuan, Yajie, Jingfeng (b40) 2021; 30 Goodfellow, Shlens, Szegedy (b13) 2014 Chen, Cornelius, Martin, Chau (b28) 2019 C. Xiang, P. Mittal, Detectorguard: Provably securing object detectors against localized patch hiding attacks, in: Proceedings of the 2021 ACM SIGSAC Conference on Computer and Communications Security, 2021, pp. 3177–3196. C.-C. Tu, P. Ting, P.-Y. Chen, S. Liu, H. Zhang, J. Yi, C.-J. Hsieh, S.-M. Cheng, Autozoom: Autoencoder-based zeroth order optimization method for attacking black-box neural networks, in: Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 33, 2019, pp. 742–749. X. Wei, J. Yu, Y. Huang, Physically Adversarial Infrared Patches With Learnable Shapes and Locations, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023, pp. 12334–12342. Zhang, Zhou, Li (b31) 2020 Ilyas, Engstrom, Athalye, Lin (b19) 2018 Wang, Li, Wen, Han, Nepal, Zhang, Xiang (b30) 2021; 52 Ilyas, Engstrom, Madry (b20) 2018 Ren, He, Girshick, Sun (b25) 2015; 28 A. Saha, A. Subramanya, K. Patil, H. Pirsiavash, Role of spatial context in adversarial robustness for object detection, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, 2020, pp. 784–785. Lu, Sibai, Fabry (b27) 2017 Edwards, Rawat (b38) 2020; 9 Liu, Yang, Liu, Song, Li, Chen (b33) 2018 X. Zhu, X. Li, J. Li, Z. Wang, X. Hu, Fooling thermal infrared pedestrian detectors in real world using small bulbs, in: Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 35, 2021, pp. 3616–3624. X. Zhu, Z. Hu, S. Huang, J. Li, X. Hu, Infrared invisible clothing: Hiding from infrared detectors at multiple angles in real world, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022, pp. 13317–13326. Li, Mo, Zhou (b9) 2022; 123 C. Xie, J. Wang, Z. Zhang, Y. Zhou, L. Xie, A. Yuille, Adversarial examples for semantic segmentation and object detection, in: Proceedings of the IEEE International Conference on Computer Vision, 2017, pp. 1369–1378. Osahor, Nasrabadi (b37) 2019; Vol. 11006 Guo, Gardner, You, Wilson, Weinberger (b22) 2019 P.-Y. Chen, H. Zhang, Y. Sharma, J. Yi, C.-J. Hsieh, Zoo: Zeroth order optimization based black-box attacks to deep neural networks without training substitute models, in: Proceedings of the 10th ACM Workshop on Artificial Intelligence and Security, 2017, pp. 15–26. Bai, Wang, Zeng, Jiang, Xia (b21) 2023; 133 Kennedy, Eberhart (b39) 1995; Vol. 4 Zhou, Wang, Krähenbühl (b2) 2019 Chow, Liu, Gursoy, Truex, Wei, Wu (b3) 2020 Li, Li, Wang, Zhang, Gong (b18) 2019 A.N. Bhagoji, W. He, B. Li, D. Song, Practical black-box attacks on deep neural networks using efficient query mechanisms, in: Proceedings of the European Conference on Computer Vision, ECCV, 2018, pp. 154–169. Liu, Ouyang, Wang, Fieguth, Chen, Liu, Pietikäinen (b23) 2020; 128 Mo, Pei (b10) 2022; 127 X. Wu, L. Huang, C. Gao, G-UAP: Generic Universal Adversarial Perturbation that Fools RPN-based Detectors, in: ACML, 2019, pp. 1204–1217. Zhang, Li, Zhang, Zhang (b11) 2021; 114 Ding, Zhao (b24) 2018; vol. 322 H. Zhang, J. Wang, Towards adversarially robust object detection, in: Proceedings of the IEEE/CVF International Conference on Computer Vision, 2019, pp. 421–430. J. Redmon, S. Divvala, R. Girshick, A. Farhadi, You only look once: Unified, real-time object detection, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016, pp. 779–788. Suard, Rakotomamonjy, Bensrhair, Broggi (b7) 2006 Ilyas (10.1016/j.infrared.2024.105285_b19) 2018 Li (10.1016/j.infrared.2024.105285_b29) 2018 Goodfellow (10.1016/j.infrared.2024.105285_b13) 2014 Chen (10.1016/j.infrared.2024.105285_b28) 2019 Lu (10.1016/j.infrared.2024.105285_b27) 2017 Kennedy (10.1016/j.infrared.2024.105285_b39) 1995; Vol. 4 Osahor (10.1016/j.infrared.2024.105285_b37) 2019; Vol. 11006 10.1016/j.infrared.2024.105285_b26 10.1016/j.infrared.2024.105285_b35 10.1016/j.infrared.2024.105285_b12 Liu (10.1016/j.infrared.2024.105285_b23) 2020; 128 Ding (10.1016/j.infrared.2024.105285_b24) 2018; vol. 322 Wang (10.1016/j.infrared.2024.105285_b30) 2021; 52 10.1016/j.infrared.2024.105285_b34 Weng (10.1016/j.infrared.2024.105285_b8) 2009; 64 10.1016/j.infrared.2024.105285_b32 Bai (10.1016/j.infrared.2024.105285_b21) 2023; 133 Li (10.1016/j.infrared.2024.105285_b18) 2019 Zhou (10.1016/j.infrared.2024.105285_b2) 2019 Chow (10.1016/j.infrared.2024.105285_b3) 2020 10.1016/j.infrared.2024.105285_b5 10.1016/j.infrared.2024.105285_b6 Zhang (10.1016/j.infrared.2024.105285_b31) 2020 Zhang (10.1016/j.infrared.2024.105285_b11) 2021; 114 Lou (10.1016/j.infrared.2024.105285_b14) 2023; 124 Liu (10.1016/j.infrared.2024.105285_b33) 2018 Suard (10.1016/j.infrared.2024.105285_b7) 2006 10.1016/j.infrared.2024.105285_b1 10.1016/j.infrared.2024.105285_b17 10.1016/j.infrared.2024.105285_b16 Mo (10.1016/j.infrared.2024.105285_b10) 2022; 127 10.1016/j.infrared.2024.105285_b15 10.1016/j.infrared.2024.105285_b4 10.1016/j.infrared.2024.105285_b36 Guo (10.1016/j.infrared.2024.105285_b22) 2019 Ren (10.1016/j.infrared.2024.105285_b25) 2015; 28 Haoran (10.1016/j.infrared.2024.105285_b40) 2021; 30 Li (10.1016/j.infrared.2024.105285_b9) 2022; 123 Ilyas (10.1016/j.infrared.2024.105285_b20) 2018 Edwards (10.1016/j.infrared.2024.105285_b38) 2020; 9 |
| References_xml | – reference: H. Zhang, J. Wang, Towards adversarially robust object detection, in: Proceedings of the IEEE/CVF International Conference on Computer Vision, 2019, pp. 421–430. – volume: 9 start-page: 1284 year: 2020 ident: b38 article-title: Study of adversarial machine learning with infrared examples for surveillance applications publication-title: Electronics – volume: 28 year: 2015 ident: b25 article-title: Faster r-cnn: Towards real-time object detection with region proposal networks publication-title: Adv. Neural Inf. Process. Syst. – volume: 133 year: 2023 ident: b21 article-title: Query efficient black-box adversarial attack on deep neural networks publication-title: Pattern Recognit. – volume: 124 year: 2023 ident: b14 article-title: Black-box attack against GAN-generated image detector with contrastive perturbation publication-title: Eng. Appl. Artif. Intell. – reference: P.-Y. Chen, H. Zhang, Y. Sharma, J. Yi, C.-J. Hsieh, Zoo: Zeroth order optimization based black-box attacks to deep neural networks without training substitute models, in: Proceedings of the 10th ACM Workshop on Artificial Intelligence and Security, 2017, pp. 15–26. – volume: Vol. 4 start-page: 1942 year: 1995 end-page: 1948 ident: b39 article-title: Particle swarm optimization publication-title: Proceedings of ICNN’95-International Conference on Neural Networks – reference: X. Zhu, Z. Hu, S. Huang, J. Li, X. Hu, Infrared invisible clothing: Hiding from infrared detectors at multiple angles in real world, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022, pp. 13317–13326. – start-page: 2137 year: 2018 end-page: 2146 ident: b19 article-title: Black-box adversarial attacks with limited queries and information publication-title: International Conference on Machine Learning – reference: C.-C. Tu, P. Ting, P.-Y. Chen, S. Liu, H. Zhang, J. Yi, C.-J. Hsieh, S.-M. Cheng, Autozoom: Autoencoder-based zeroth order optimization method for attacking black-box neural networks, in: Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 33, 2019, pp. 742–749. – volume: 52 start-page: 7427 year: 2021 end-page: 7440 ident: b30 article-title: Daedalus: Breaking nonmaximum suppression in object detection via adversarial examples publication-title: IEEE Trans. Cybern. – volume: 30 start-page: 406 year: 2021 end-page: 412 ident: b40 article-title: A CMA-ES-based adversarial attack against black-box object detectors publication-title: Chin. J. Electron. – reference: C. Xiang, P. Mittal, Detectorguard: Provably securing object detectors against localized patch hiding attacks, in: Proceedings of the 2021 ACM SIGSAC Conference on Computer and Communications Security, 2021, pp. 3177–3196. – reference: A.N. Bhagoji, W. He, B. Li, D. Song, Practical black-box attacks on deep neural networks using efficient query mechanisms, in: Proceedings of the European Conference on Computer Vision, ECCV, 2018, pp. 154–169. – volume: vol. 322 year: 2018 ident: b24 article-title: Research on daily objects detection based on deep neural network publication-title: IOP Conference Series: Materials Science and Engineering – reference: A. Saha, A. Subramanya, K. Patil, H. Pirsiavash, Role of spatial context in adversarial robustness for object detection, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, 2020, pp. 784–785. – volume: 64 start-page: 335 year: 2009 end-page: 344 ident: b8 article-title: Thermal infrared remote sensing for urban climate and environmental studies: Methods, applications, and trends publication-title: ISPRS J. Photogramm. Remote Sens. – volume: 114 year: 2021 ident: b11 article-title: Infrared and visible image fusion based on saliency detection and two-scale transform decomposition publication-title: Infrared Phys. Technol. – year: 2018 ident: b33 article-title: Dpatch: An adversarial patch attack on object detectors – volume: Vol. 11006 start-page: 620 year: 2019 end-page: 628 ident: b37 article-title: Deep adversarial attack on target detection systems publication-title: Artificial Intelligence and Machine Learning for Multi-Domain Operations Applications – reference: H. Wei, Z. Wang, X. Jia, Y. Zheng, H. Tang, S. Satoh, Z. Wang, HOTCOLD Block: Fooling Thermal Infrared Detectors with a Novel Wearable Design, in: Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 37, 2023, pp. 15233–15241. – start-page: 52 year: 2019 end-page: 68 ident: b28 article-title: Shapeshifter: Robust physical adversarial attack on faster r-cnn object detector publication-title: Machine Learning and Knowledge Discovery in Databases: European Conference, ECML PKDD 2018, Dublin, Ireland, September 10–14, 2018, Proceedings, Part I 18 – year: 2014 ident: b13 article-title: Explaining and harnessing adversarial examples – reference: X. Wei, J. Yu, Y. Huang, Physically Adversarial Infrared Patches With Learnable Shapes and Locations, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023, pp. 12334–12342. – year: 2018 ident: b20 article-title: Prior convictions: Black-box adversarial attacks with bandits and priors – year: 2018 ident: b29 article-title: Attacking object detectors via imperceptible patches on background – reference: X. Zhu, X. Li, J. Li, Z. Wang, X. Hu, Fooling thermal infrared pedestrian detectors in real world using small bulbs, in: Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 35, 2021, pp. 3616–3624. – start-page: 2484 year: 2019 end-page: 2493 ident: b22 article-title: Simple black-box adversarial attacks publication-title: International Conference on Machine Learning – reference: X. Wu, L. Huang, C. Gao, G-UAP: Generic Universal Adversarial Perturbation that Fools RPN-based Detectors, in: ACML, 2019, pp. 1204–1217. – volume: 127 year: 2022 ident: b10 article-title: Nighttime infrared ship target detection based on Two-channel image separation combined with saliency mapping of local grayscale dynamic range publication-title: Infrared Phys. Technol. – year: 2019 ident: b2 article-title: Objects as points – reference: C. Xie, J. Wang, Z. Zhang, Y. Zhou, L. Xie, A. Yuille, Adversarial examples for semantic segmentation and object detection, in: Proceedings of the IEEE International Conference on Computer Vision, 2017, pp. 1369–1378. – year: 2017 ident: b27 article-title: Adversarial examples that fool detectors – start-page: 1 year: 2020 end-page: 6 ident: b31 article-title: Contextual adversarial attacks for object detection publication-title: 2020 IEEE International Conference on Multimedia and Expo – year: 2020 ident: b3 article-title: TOG: targeted adversarial objectness gradient attacks on real-time object detection systems – volume: 123 year: 2022 ident: b9 article-title: Boost infrared moving aircraft detection performance by using fast homography estimation and dual input object detection network publication-title: Infrared Phys. Technol. – start-page: 206 year: 2006 end-page: 212 ident: b7 article-title: Pedestrian detection using infrared images and histograms of oriented gradients publication-title: 2006 IEEE Intelligent Vehicles Symposium – reference: J. Redmon, S. Divvala, R. Girshick, A. Farhadi, You only look once: Unified, real-time object detection, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016, pp. 779–788. – volume: 128 start-page: 261 year: 2020 end-page: 318 ident: b23 article-title: Deep learning for generic object detection: A survey publication-title: Int. J. Comput. Vis. – start-page: 3866 year: 2019 end-page: 3876 ident: b18 article-title: Nattack: Learning the distributions of adversarial examples for an improved black-box attack on deep neural networks publication-title: International Conference on Machine Learning – ident: 10.1016/j.infrared.2024.105285_b6 doi: 10.1145/3460120.3484757 – ident: 10.1016/j.infrared.2024.105285_b5 doi: 10.1109/ICCV.2019.00051 – volume: 30 start-page: 406 issue: 3 year: 2021 ident: 10.1016/j.infrared.2024.105285_b40 article-title: A CMA-ES-based adversarial attack against black-box object detectors publication-title: Chin. J. Electron. doi: 10.1049/cje.2021.03.003 – ident: 10.1016/j.infrared.2024.105285_b17 doi: 10.1609/aaai.v33i01.3301742 – year: 2018 ident: 10.1016/j.infrared.2024.105285_b33 – ident: 10.1016/j.infrared.2024.105285_b12 doi: 10.1609/aaai.v37i12.26777 – ident: 10.1016/j.infrared.2024.105285_b1 doi: 10.1109/ICCV.2017.153 – volume: 133 year: 2023 ident: 10.1016/j.infrared.2024.105285_b21 article-title: Query efficient black-box adversarial attack on deep neural networks publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2022.109037 – year: 2020 ident: 10.1016/j.infrared.2024.105285_b3 – year: 2014 ident: 10.1016/j.infrared.2024.105285_b13 – volume: 64 start-page: 335 issue: 4 year: 2009 ident: 10.1016/j.infrared.2024.105285_b8 article-title: Thermal infrared remote sensing for urban climate and environmental studies: Methods, applications, and trends publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2009.03.007 – ident: 10.1016/j.infrared.2024.105285_b16 doi: 10.1007/978-3-030-01258-8_10 – year: 2018 ident: 10.1016/j.infrared.2024.105285_b20 – start-page: 52 year: 2019 ident: 10.1016/j.infrared.2024.105285_b28 article-title: Shapeshifter: Robust physical adversarial attack on faster r-cnn object detector – volume: 9 start-page: 1284 issue: 8 year: 2020 ident: 10.1016/j.infrared.2024.105285_b38 article-title: Study of adversarial machine learning with infrared examples for surveillance applications publication-title: Electronics doi: 10.3390/electronics9081284 – year: 2017 ident: 10.1016/j.infrared.2024.105285_b27 – ident: 10.1016/j.infrared.2024.105285_b32 – start-page: 2137 year: 2018 ident: 10.1016/j.infrared.2024.105285_b19 article-title: Black-box adversarial attacks with limited queries and information – volume: 114 year: 2021 ident: 10.1016/j.infrared.2024.105285_b11 article-title: Infrared and visible image fusion based on saliency detection and two-scale transform decomposition publication-title: Infrared Phys. Technol. doi: 10.1016/j.infrared.2020.103626 – volume: 127 year: 2022 ident: 10.1016/j.infrared.2024.105285_b10 article-title: Nighttime infrared ship target detection based on Two-channel image separation combined with saliency mapping of local grayscale dynamic range publication-title: Infrared Phys. Technol. doi: 10.1016/j.infrared.2022.104416 – ident: 10.1016/j.infrared.2024.105285_b34 doi: 10.1609/aaai.v35i4.16477 – volume: 28 year: 2015 ident: 10.1016/j.infrared.2024.105285_b25 article-title: Faster r-cnn: Towards real-time object detection with region proposal networks publication-title: Adv. Neural Inf. Process. Syst. – year: 2019 ident: 10.1016/j.infrared.2024.105285_b2 – ident: 10.1016/j.infrared.2024.105285_b36 doi: 10.1109/CVPR52729.2023.01187 – ident: 10.1016/j.infrared.2024.105285_b35 doi: 10.1109/CVPR52688.2022.01296 – volume: Vol. 4 start-page: 1942 year: 1995 ident: 10.1016/j.infrared.2024.105285_b39 article-title: Particle swarm optimization – start-page: 206 year: 2006 ident: 10.1016/j.infrared.2024.105285_b7 article-title: Pedestrian detection using infrared images and histograms of oriented gradients – year: 2018 ident: 10.1016/j.infrared.2024.105285_b29 – start-page: 1 year: 2020 ident: 10.1016/j.infrared.2024.105285_b31 article-title: Contextual adversarial attacks for object detection – volume: 123 year: 2022 ident: 10.1016/j.infrared.2024.105285_b9 article-title: Boost infrared moving aircraft detection performance by using fast homography estimation and dual input object detection network publication-title: Infrared Phys. Technol. doi: 10.1016/j.infrared.2022.104182 – volume: 128 start-page: 261 year: 2020 ident: 10.1016/j.infrared.2024.105285_b23 article-title: Deep learning for generic object detection: A survey publication-title: Int. J. Comput. Vis. doi: 10.1007/s11263-019-01247-4 – volume: 52 start-page: 7427 issue: 8 year: 2021 ident: 10.1016/j.infrared.2024.105285_b30 article-title: Daedalus: Breaking nonmaximum suppression in object detection via adversarial examples publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2020.3041481 – volume: Vol. 11006 start-page: 620 year: 2019 ident: 10.1016/j.infrared.2024.105285_b37 article-title: Deep adversarial attack on target detection systems – volume: 124 year: 2023 ident: 10.1016/j.infrared.2024.105285_b14 article-title: Black-box attack against GAN-generated image detector with contrastive perturbation publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2023.106594 – ident: 10.1016/j.infrared.2024.105285_b26 doi: 10.1109/CVPR.2016.91 – start-page: 2484 year: 2019 ident: 10.1016/j.infrared.2024.105285_b22 article-title: Simple black-box adversarial attacks – ident: 10.1016/j.infrared.2024.105285_b15 doi: 10.1145/3128572.3140448 – start-page: 3866 year: 2019 ident: 10.1016/j.infrared.2024.105285_b18 article-title: Nattack: Learning the distributions of adversarial examples for an improved black-box attack on deep neural networks – ident: 10.1016/j.infrared.2024.105285_b4 doi: 10.1109/CVPRW50498.2020.00400 – volume: vol. 322 year: 2018 ident: 10.1016/j.infrared.2024.105285_b24 article-title: Research on daily objects detection based on deep neural network |
| SSID | ssj0016406 |
| Score | 2.3725631 |
| Snippet | Existing black-box attack methods for infrared detectors often rely on heuristic techniques due to the unavailability of useful gradient information from the... |
| SourceID | crossref elsevier |
| SourceType | Index Database Publisher |
| StartPage | 105285 |
| SubjectTerms | Digital black-box attack Particle swarm optimization Thermal infrared detectors |
| Title | Digital thermal infrared detector attack via free velocity and rollback mutation |
| URI | https://dx.doi.org/10.1016/j.infrared.2024.105285 |
| Volume | 139 |
| WOSCitedRecordID | wos001230766200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1879-0275 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0016406 issn: 1350-4495 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3PT9swFLZGAYnLtMEQvzb5wK1K1_yonRzRAG0cqiKB6C3yc2zUIkLVpog_n-fYTrqB2DjsElVubad-n14-P395j5Bjc7iHxJcFwHgcJFrIINM8CqQutI50HIsB1MUm-HCYjsfZyEmHFnU5AV6W6dNTNvuvpsY2NLZ5dfYd5m4GxQb8jEbHK5odr_9k-NPJrSkEYhglOl2TUkPPa5V5oao6RN8VVSXkXfdxIrp6rlTXyIakYeO11hyBAebr--XKKf3UC97dWDYgsqiBU72Izo9qicCFsXoLvhvr4M5NzKeRAS1N0-Wy_RV2st5n6J-pLiQRJa10ynnReNAPksRWz2zcrE1a5Bwl0rrI1up54cNtOGHa88vTM1P02g6_J83-42HWSAy9em2a-3FyM05ux1kj64jRLO2Q9ZNfZ-OL5uCJJXU51uYfrLxU_vodvc5nVjjK1Sfy0W0u6IkFxWfyQZXbZHNkbbVDRg4a1EGD-pmohwa10KAIDWqgQT00KEKDemhQD40v5Pr87OrHz8BV1AgkbnOrQBdpVAAXUocmDyETRZIhgQQAHiUiLHSYgVQRsLBgIhUSN-cqFMBDSBSPGcS7pFM-lGqP0AyZbAEDpHtIYft9gLDPgQFnDHsIIffJd78u-cwmTsnftsk-yfzy5Y7-WVqXIzL-0vfg3bMdkq0WukekU82X6ivZkI_VZDH_5mDxDCUQgNs |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Digital+thermal+infrared+detector+attack+via+free+velocity+and+rollback+mutation&rft.jtitle=Infrared+physics+%26+technology&rft.au=Pi%2C+Jiatian&rft.au=Wen%2C+Fusen&rft.au=Lu%2C+Quan&rft.au=Jiang%2C+Ning&rft.date=2024-06-01&rft.issn=1350-4495&rft.volume=139&rft.spage=105285&rft_id=info:doi/10.1016%2Fj.infrared.2024.105285&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_infrared_2024_105285 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1350-4495&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1350-4495&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1350-4495&client=summon |