Digital thermal infrared detector attack via free velocity and rollback mutation

Existing black-box attack methods for infrared detectors often rely on heuristic techniques due to the unavailability of useful gradient information from the target detection model. However, existing heuristic-based attack methods suffer from the following two drawbacks. First, they are often prone...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Infrared physics & technology Ročník 139; s. 105285
Hlavní autori: Pi, Jiatian, Wen, Fusen, Lu, Quan, Jiang, Ning, Wu, Haiying, Liu, Qiao
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier B.V 01.06.2024
Predmet:
ISSN:1350-4495, 1879-0275
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Existing black-box attack methods for infrared detectors often rely on heuristic techniques due to the unavailability of useful gradient information from the target detection model. However, existing heuristic-based attack methods suffer from the following two drawbacks. First, they are often prone to falling into local optima. Second, their convergence speed is particularly slow in the later stages of the optimization algorithm. To address these challenges, we propose a thermal infrared detector Attack (TID-Attack) based on free velocity and rollback mutation. This algorithm enables effective black-box digital adversarial attacks on infrared object detection models. Specifically, we first introduce a free velocity attack method in the particle swarm optimization algorithm. This method effectively balances the local and global search capabilities of particles during the optimization process, mitigating the risk of particles getting trapped in local optima. Additionally, we design a rollback mutation search strategy that allows particles trapped in local optima to bounce to new areas, farther away from their current positions, and then perform the optimization process again. These two modules make heuristic-based attack methods more robust and better stable. To evaluate the effectiveness of TID-Attack, we perform black-box attack tests on the YOLOv5 and YOLOv3 using three infrared detection datasets: FLIR-ADAS V2, CVC-09,(Daytime and Nighttime), and KAIST. Extensive experimental results demonstrate that our method achieves superior performance in terms of attack success rate and query times. •We propose the first particle swarm optimization-based black-box attack for infrared object detectors.•We design a free velocity attack method and a rollback mutation search strategy.•We validate the effectiveness of the proposed method on four infrared detection benchmarks.
AbstractList Existing black-box attack methods for infrared detectors often rely on heuristic techniques due to the unavailability of useful gradient information from the target detection model. However, existing heuristic-based attack methods suffer from the following two drawbacks. First, they are often prone to falling into local optima. Second, their convergence speed is particularly slow in the later stages of the optimization algorithm. To address these challenges, we propose a thermal infrared detector Attack (TID-Attack) based on free velocity and rollback mutation. This algorithm enables effective black-box digital adversarial attacks on infrared object detection models. Specifically, we first introduce a free velocity attack method in the particle swarm optimization algorithm. This method effectively balances the local and global search capabilities of particles during the optimization process, mitigating the risk of particles getting trapped in local optima. Additionally, we design a rollback mutation search strategy that allows particles trapped in local optima to bounce to new areas, farther away from their current positions, and then perform the optimization process again. These two modules make heuristic-based attack methods more robust and better stable. To evaluate the effectiveness of TID-Attack, we perform black-box attack tests on the YOLOv5 and YOLOv3 using three infrared detection datasets: FLIR-ADAS V2, CVC-09,(Daytime and Nighttime), and KAIST. Extensive experimental results demonstrate that our method achieves superior performance in terms of attack success rate and query times. •We propose the first particle swarm optimization-based black-box attack for infrared object detectors.•We design a free velocity attack method and a rollback mutation search strategy.•We validate the effectiveness of the proposed method on four infrared detection benchmarks.
ArticleNumber 105285
Author Pi, Jiatian
Jiang, Ning
Wen, Fusen
Liu, Qiao
Wu, Haiying
Lu, Quan
Author_xml – sequence: 1
  givenname: Jiatian
  surname: Pi
  fullname: Pi, Jiatian
  organization: National Center for Applied Mathematics, Chongqing Normal University, Chongqing, China
– sequence: 2
  givenname: Fusen
  surname: Wen
  fullname: Wen, Fusen
  organization: School of Computer and Information Science, Chongqing Normal University, Chongqing, China
– sequence: 3
  givenname: Quan
  surname: Lu
  fullname: Lu, Quan
  organization: Mashang Consumer Finance Co., Ltd., Chongqing, China
– sequence: 4
  givenname: Ning
  surname: Jiang
  fullname: Jiang, Ning
  organization: Mashang Consumer Finance Co., Ltd., Chongqing, China
– sequence: 5
  givenname: Haiying
  surname: Wu
  fullname: Wu, Haiying
  organization: Mashang Consumer Finance Co., Ltd., Chongqing, China
– sequence: 6
  givenname: Qiao
  orcidid: 0000-0003-0885-7976
  surname: Liu
  fullname: Liu, Qiao
  email: liuqiao@cqnu.edu.cn
  organization: National Center for Applied Mathematics, Chongqing Normal University, Chongqing, China
BookMark eNqFkMFOwzAQRC1UJNrCLyD_QIrtOHZyAxUoSJXgAGdrba_BJU2QYyr170lVeuY0q13NaOfNyKTrOyTkmrMFZ1zdbBaxCwkS-oVgQo7LStTVGZnyWjcFE7qajHNZsULKprogs2HYsNEomZqS1_v4ETO0NH9i2o56yqIeM7rcJwo5g_uiuwg0JES6w7Z3Me8pdJ6mvm3t4bz9yZBj312S8wDtgFd_Oifvjw9vy6di_bJ6Xt6tCyeqJhfB18JbDS5wVVZagZdNybW1VgsJ3AfeWIfCKu4V1OAaIZGD1dxK1KWy5ZyoY65L_TAkDOY7xS2kveHMHLiYjTl1MQcu5shlNN4ejTh-t4uYzOAidg59TGNh4_v4X8QvlXlzEQ
Cites_doi 10.1145/3460120.3484757
10.1109/ICCV.2019.00051
10.1049/cje.2021.03.003
10.1609/aaai.v33i01.3301742
10.1609/aaai.v37i12.26777
10.1109/ICCV.2017.153
10.1016/j.patcog.2022.109037
10.1016/j.isprsjprs.2009.03.007
10.1007/978-3-030-01258-8_10
10.3390/electronics9081284
10.1016/j.infrared.2020.103626
10.1016/j.infrared.2022.104416
10.1609/aaai.v35i4.16477
10.1109/CVPR52729.2023.01187
10.1109/CVPR52688.2022.01296
10.1016/j.infrared.2022.104182
10.1007/s11263-019-01247-4
10.1109/TCYB.2020.3041481
10.1016/j.engappai.2023.106594
10.1109/CVPR.2016.91
10.1145/3128572.3140448
10.1109/CVPRW50498.2020.00400
ContentType Journal Article
Copyright 2024 Elsevier B.V.
Copyright_xml – notice: 2024 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.infrared.2024.105285
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1879-0275
ExternalDocumentID 10_1016_j_infrared_2024_105285
S1350449524001695
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
29I
4.4
457
4G.
5GY
5VS
6TJ
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABEFU
ABFNM
ABJNI
ABMAC
ABNEU
ABTAH
ABXDB
ACDAQ
ACFVG
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
AEBSH
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AI.
AIEXJ
AIKHN
AITUG
AIVDX
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BBWZM
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HMV
HVGLF
HZ~
IHE
J1W
KOM
M38
M41
MO0
N9A
NDZJH
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SPD
SPG
SSQ
SSZ
T5K
VH1
VOH
WUQ
ZMT
ZY4
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
CITATION
EFKBS
EFLBG
~HD
ID FETCH-LOGICAL-c259t-fd82db7acf163576ad49317bbb724a1df19bce2b61d6a8ac924e1ab71b4e736b3
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001230766200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1350-4495
IngestDate Sat Nov 29 02:09:54 EST 2025
Sat Jun 01 15:41:39 EDT 2024
IsPeerReviewed true
IsScholarly true
Keywords Particle swarm optimization
Thermal infrared detectors
Digital black-box attack
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c259t-fd82db7acf163576ad49317bbb724a1df19bce2b61d6a8ac924e1ab71b4e736b3
ORCID 0000-0003-0885-7976
ParticipantIDs crossref_primary_10_1016_j_infrared_2024_105285
elsevier_sciencedirect_doi_10_1016_j_infrared_2024_105285
PublicationCentury 2000
PublicationDate June 2024
2024-06-00
PublicationDateYYYYMMDD 2024-06-01
PublicationDate_xml – month: 06
  year: 2024
  text: June 2024
PublicationDecade 2020
PublicationTitle Infrared physics & technology
PublicationYear 2024
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Weng (b8) 2009; 64
H. Wei, Z. Wang, X. Jia, Y. Zheng, H. Tang, S. Satoh, Z. Wang, HOTCOLD Block: Fooling Thermal Infrared Detectors with a Novel Wearable Design, in: Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 37, 2023, pp. 15233–15241.
Li, Bian, Lyu (b29) 2018
Lou, Cao, Lin (b14) 2023; 124
Haoran, Yu’an, Yuan, Yajie, Jingfeng (b40) 2021; 30
Goodfellow, Shlens, Szegedy (b13) 2014
Chen, Cornelius, Martin, Chau (b28) 2019
C. Xiang, P. Mittal, Detectorguard: Provably securing object detectors against localized patch hiding attacks, in: Proceedings of the 2021 ACM SIGSAC Conference on Computer and Communications Security, 2021, pp. 3177–3196.
C.-C. Tu, P. Ting, P.-Y. Chen, S. Liu, H. Zhang, J. Yi, C.-J. Hsieh, S.-M. Cheng, Autozoom: Autoencoder-based zeroth order optimization method for attacking black-box neural networks, in: Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 33, 2019, pp. 742–749.
X. Wei, J. Yu, Y. Huang, Physically Adversarial Infrared Patches With Learnable Shapes and Locations, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023, pp. 12334–12342.
Zhang, Zhou, Li (b31) 2020
Ilyas, Engstrom, Athalye, Lin (b19) 2018
Wang, Li, Wen, Han, Nepal, Zhang, Xiang (b30) 2021; 52
Ilyas, Engstrom, Madry (b20) 2018
Ren, He, Girshick, Sun (b25) 2015; 28
A. Saha, A. Subramanya, K. Patil, H. Pirsiavash, Role of spatial context in adversarial robustness for object detection, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, 2020, pp. 784–785.
Lu, Sibai, Fabry (b27) 2017
Edwards, Rawat (b38) 2020; 9
Liu, Yang, Liu, Song, Li, Chen (b33) 2018
X. Zhu, X. Li, J. Li, Z. Wang, X. Hu, Fooling thermal infrared pedestrian detectors in real world using small bulbs, in: Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 35, 2021, pp. 3616–3624.
X. Zhu, Z. Hu, S. Huang, J. Li, X. Hu, Infrared invisible clothing: Hiding from infrared detectors at multiple angles in real world, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022, pp. 13317–13326.
Li, Mo, Zhou (b9) 2022; 123
C. Xie, J. Wang, Z. Zhang, Y. Zhou, L. Xie, A. Yuille, Adversarial examples for semantic segmentation and object detection, in: Proceedings of the IEEE International Conference on Computer Vision, 2017, pp. 1369–1378.
Osahor, Nasrabadi (b37) 2019; Vol. 11006
Guo, Gardner, You, Wilson, Weinberger (b22) 2019
P.-Y. Chen, H. Zhang, Y. Sharma, J. Yi, C.-J. Hsieh, Zoo: Zeroth order optimization based black-box attacks to deep neural networks without training substitute models, in: Proceedings of the 10th ACM Workshop on Artificial Intelligence and Security, 2017, pp. 15–26.
Bai, Wang, Zeng, Jiang, Xia (b21) 2023; 133
Kennedy, Eberhart (b39) 1995; Vol. 4
Zhou, Wang, Krähenbühl (b2) 2019
Chow, Liu, Gursoy, Truex, Wei, Wu (b3) 2020
Li, Li, Wang, Zhang, Gong (b18) 2019
A.N. Bhagoji, W. He, B. Li, D. Song, Practical black-box attacks on deep neural networks using efficient query mechanisms, in: Proceedings of the European Conference on Computer Vision, ECCV, 2018, pp. 154–169.
Liu, Ouyang, Wang, Fieguth, Chen, Liu, Pietikäinen (b23) 2020; 128
Mo, Pei (b10) 2022; 127
X. Wu, L. Huang, C. Gao, G-UAP: Generic Universal Adversarial Perturbation that Fools RPN-based Detectors, in: ACML, 2019, pp. 1204–1217.
Zhang, Li, Zhang, Zhang (b11) 2021; 114
Ding, Zhao (b24) 2018; vol. 322
H. Zhang, J. Wang, Towards adversarially robust object detection, in: Proceedings of the IEEE/CVF International Conference on Computer Vision, 2019, pp. 421–430.
J. Redmon, S. Divvala, R. Girshick, A. Farhadi, You only look once: Unified, real-time object detection, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016, pp. 779–788.
Suard, Rakotomamonjy, Bensrhair, Broggi (b7) 2006
Ilyas (10.1016/j.infrared.2024.105285_b19) 2018
Li (10.1016/j.infrared.2024.105285_b29) 2018
Goodfellow (10.1016/j.infrared.2024.105285_b13) 2014
Chen (10.1016/j.infrared.2024.105285_b28) 2019
Lu (10.1016/j.infrared.2024.105285_b27) 2017
Kennedy (10.1016/j.infrared.2024.105285_b39) 1995; Vol. 4
Osahor (10.1016/j.infrared.2024.105285_b37) 2019; Vol. 11006
10.1016/j.infrared.2024.105285_b26
10.1016/j.infrared.2024.105285_b35
10.1016/j.infrared.2024.105285_b12
Liu (10.1016/j.infrared.2024.105285_b23) 2020; 128
Ding (10.1016/j.infrared.2024.105285_b24) 2018; vol. 322
Wang (10.1016/j.infrared.2024.105285_b30) 2021; 52
10.1016/j.infrared.2024.105285_b34
Weng (10.1016/j.infrared.2024.105285_b8) 2009; 64
10.1016/j.infrared.2024.105285_b32
Bai (10.1016/j.infrared.2024.105285_b21) 2023; 133
Li (10.1016/j.infrared.2024.105285_b18) 2019
Zhou (10.1016/j.infrared.2024.105285_b2) 2019
Chow (10.1016/j.infrared.2024.105285_b3) 2020
10.1016/j.infrared.2024.105285_b5
10.1016/j.infrared.2024.105285_b6
Zhang (10.1016/j.infrared.2024.105285_b31) 2020
Zhang (10.1016/j.infrared.2024.105285_b11) 2021; 114
Lou (10.1016/j.infrared.2024.105285_b14) 2023; 124
Liu (10.1016/j.infrared.2024.105285_b33) 2018
Suard (10.1016/j.infrared.2024.105285_b7) 2006
10.1016/j.infrared.2024.105285_b1
10.1016/j.infrared.2024.105285_b17
10.1016/j.infrared.2024.105285_b16
Mo (10.1016/j.infrared.2024.105285_b10) 2022; 127
10.1016/j.infrared.2024.105285_b15
10.1016/j.infrared.2024.105285_b4
10.1016/j.infrared.2024.105285_b36
Guo (10.1016/j.infrared.2024.105285_b22) 2019
Ren (10.1016/j.infrared.2024.105285_b25) 2015; 28
Haoran (10.1016/j.infrared.2024.105285_b40) 2021; 30
Li (10.1016/j.infrared.2024.105285_b9) 2022; 123
Ilyas (10.1016/j.infrared.2024.105285_b20) 2018
Edwards (10.1016/j.infrared.2024.105285_b38) 2020; 9
References_xml – reference: H. Zhang, J. Wang, Towards adversarially robust object detection, in: Proceedings of the IEEE/CVF International Conference on Computer Vision, 2019, pp. 421–430.
– volume: 9
  start-page: 1284
  year: 2020
  ident: b38
  article-title: Study of adversarial machine learning with infrared examples for surveillance applications
  publication-title: Electronics
– volume: 28
  year: 2015
  ident: b25
  article-title: Faster r-cnn: Towards real-time object detection with region proposal networks
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 133
  year: 2023
  ident: b21
  article-title: Query efficient black-box adversarial attack on deep neural networks
  publication-title: Pattern Recognit.
– volume: 124
  year: 2023
  ident: b14
  article-title: Black-box attack against GAN-generated image detector with contrastive perturbation
  publication-title: Eng. Appl. Artif. Intell.
– reference: P.-Y. Chen, H. Zhang, Y. Sharma, J. Yi, C.-J. Hsieh, Zoo: Zeroth order optimization based black-box attacks to deep neural networks without training substitute models, in: Proceedings of the 10th ACM Workshop on Artificial Intelligence and Security, 2017, pp. 15–26.
– volume: Vol. 4
  start-page: 1942
  year: 1995
  end-page: 1948
  ident: b39
  article-title: Particle swarm optimization
  publication-title: Proceedings of ICNN’95-International Conference on Neural Networks
– reference: X. Zhu, Z. Hu, S. Huang, J. Li, X. Hu, Infrared invisible clothing: Hiding from infrared detectors at multiple angles in real world, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022, pp. 13317–13326.
– start-page: 2137
  year: 2018
  end-page: 2146
  ident: b19
  article-title: Black-box adversarial attacks with limited queries and information
  publication-title: International Conference on Machine Learning
– reference: C.-C. Tu, P. Ting, P.-Y. Chen, S. Liu, H. Zhang, J. Yi, C.-J. Hsieh, S.-M. Cheng, Autozoom: Autoencoder-based zeroth order optimization method for attacking black-box neural networks, in: Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 33, 2019, pp. 742–749.
– volume: 52
  start-page: 7427
  year: 2021
  end-page: 7440
  ident: b30
  article-title: Daedalus: Breaking nonmaximum suppression in object detection via adversarial examples
  publication-title: IEEE Trans. Cybern.
– volume: 30
  start-page: 406
  year: 2021
  end-page: 412
  ident: b40
  article-title: A CMA-ES-based adversarial attack against black-box object detectors
  publication-title: Chin. J. Electron.
– reference: C. Xiang, P. Mittal, Detectorguard: Provably securing object detectors against localized patch hiding attacks, in: Proceedings of the 2021 ACM SIGSAC Conference on Computer and Communications Security, 2021, pp. 3177–3196.
– reference: A.N. Bhagoji, W. He, B. Li, D. Song, Practical black-box attacks on deep neural networks using efficient query mechanisms, in: Proceedings of the European Conference on Computer Vision, ECCV, 2018, pp. 154–169.
– volume: vol. 322
  year: 2018
  ident: b24
  article-title: Research on daily objects detection based on deep neural network
  publication-title: IOP Conference Series: Materials Science and Engineering
– reference: A. Saha, A. Subramanya, K. Patil, H. Pirsiavash, Role of spatial context in adversarial robustness for object detection, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, 2020, pp. 784–785.
– volume: 64
  start-page: 335
  year: 2009
  end-page: 344
  ident: b8
  article-title: Thermal infrared remote sensing for urban climate and environmental studies: Methods, applications, and trends
  publication-title: ISPRS J. Photogramm. Remote Sens.
– volume: 114
  year: 2021
  ident: b11
  article-title: Infrared and visible image fusion based on saliency detection and two-scale transform decomposition
  publication-title: Infrared Phys. Technol.
– year: 2018
  ident: b33
  article-title: Dpatch: An adversarial patch attack on object detectors
– volume: Vol. 11006
  start-page: 620
  year: 2019
  end-page: 628
  ident: b37
  article-title: Deep adversarial attack on target detection systems
  publication-title: Artificial Intelligence and Machine Learning for Multi-Domain Operations Applications
– reference: H. Wei, Z. Wang, X. Jia, Y. Zheng, H. Tang, S. Satoh, Z. Wang, HOTCOLD Block: Fooling Thermal Infrared Detectors with a Novel Wearable Design, in: Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 37, 2023, pp. 15233–15241.
– start-page: 52
  year: 2019
  end-page: 68
  ident: b28
  article-title: Shapeshifter: Robust physical adversarial attack on faster r-cnn object detector
  publication-title: Machine Learning and Knowledge Discovery in Databases: European Conference, ECML PKDD 2018, Dublin, Ireland, September 10–14, 2018, Proceedings, Part I 18
– year: 2014
  ident: b13
  article-title: Explaining and harnessing adversarial examples
– reference: X. Wei, J. Yu, Y. Huang, Physically Adversarial Infrared Patches With Learnable Shapes and Locations, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023, pp. 12334–12342.
– year: 2018
  ident: b20
  article-title: Prior convictions: Black-box adversarial attacks with bandits and priors
– year: 2018
  ident: b29
  article-title: Attacking object detectors via imperceptible patches on background
– reference: X. Zhu, X. Li, J. Li, Z. Wang, X. Hu, Fooling thermal infrared pedestrian detectors in real world using small bulbs, in: Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 35, 2021, pp. 3616–3624.
– start-page: 2484
  year: 2019
  end-page: 2493
  ident: b22
  article-title: Simple black-box adversarial attacks
  publication-title: International Conference on Machine Learning
– reference: X. Wu, L. Huang, C. Gao, G-UAP: Generic Universal Adversarial Perturbation that Fools RPN-based Detectors, in: ACML, 2019, pp. 1204–1217.
– volume: 127
  year: 2022
  ident: b10
  article-title: Nighttime infrared ship target detection based on Two-channel image separation combined with saliency mapping of local grayscale dynamic range
  publication-title: Infrared Phys. Technol.
– year: 2019
  ident: b2
  article-title: Objects as points
– reference: C. Xie, J. Wang, Z. Zhang, Y. Zhou, L. Xie, A. Yuille, Adversarial examples for semantic segmentation and object detection, in: Proceedings of the IEEE International Conference on Computer Vision, 2017, pp. 1369–1378.
– year: 2017
  ident: b27
  article-title: Adversarial examples that fool detectors
– start-page: 1
  year: 2020
  end-page: 6
  ident: b31
  article-title: Contextual adversarial attacks for object detection
  publication-title: 2020 IEEE International Conference on Multimedia and Expo
– year: 2020
  ident: b3
  article-title: TOG: targeted adversarial objectness gradient attacks on real-time object detection systems
– volume: 123
  year: 2022
  ident: b9
  article-title: Boost infrared moving aircraft detection performance by using fast homography estimation and dual input object detection network
  publication-title: Infrared Phys. Technol.
– start-page: 206
  year: 2006
  end-page: 212
  ident: b7
  article-title: Pedestrian detection using infrared images and histograms of oriented gradients
  publication-title: 2006 IEEE Intelligent Vehicles Symposium
– reference: J. Redmon, S. Divvala, R. Girshick, A. Farhadi, You only look once: Unified, real-time object detection, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016, pp. 779–788.
– volume: 128
  start-page: 261
  year: 2020
  end-page: 318
  ident: b23
  article-title: Deep learning for generic object detection: A survey
  publication-title: Int. J. Comput. Vis.
– start-page: 3866
  year: 2019
  end-page: 3876
  ident: b18
  article-title: Nattack: Learning the distributions of adversarial examples for an improved black-box attack on deep neural networks
  publication-title: International Conference on Machine Learning
– ident: 10.1016/j.infrared.2024.105285_b6
  doi: 10.1145/3460120.3484757
– ident: 10.1016/j.infrared.2024.105285_b5
  doi: 10.1109/ICCV.2019.00051
– volume: 30
  start-page: 406
  issue: 3
  year: 2021
  ident: 10.1016/j.infrared.2024.105285_b40
  article-title: A CMA-ES-based adversarial attack against black-box object detectors
  publication-title: Chin. J. Electron.
  doi: 10.1049/cje.2021.03.003
– ident: 10.1016/j.infrared.2024.105285_b17
  doi: 10.1609/aaai.v33i01.3301742
– year: 2018
  ident: 10.1016/j.infrared.2024.105285_b33
– ident: 10.1016/j.infrared.2024.105285_b12
  doi: 10.1609/aaai.v37i12.26777
– ident: 10.1016/j.infrared.2024.105285_b1
  doi: 10.1109/ICCV.2017.153
– volume: 133
  year: 2023
  ident: 10.1016/j.infrared.2024.105285_b21
  article-title: Query efficient black-box adversarial attack on deep neural networks
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2022.109037
– year: 2020
  ident: 10.1016/j.infrared.2024.105285_b3
– year: 2014
  ident: 10.1016/j.infrared.2024.105285_b13
– volume: 64
  start-page: 335
  issue: 4
  year: 2009
  ident: 10.1016/j.infrared.2024.105285_b8
  article-title: Thermal infrared remote sensing for urban climate and environmental studies: Methods, applications, and trends
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2009.03.007
– ident: 10.1016/j.infrared.2024.105285_b16
  doi: 10.1007/978-3-030-01258-8_10
– year: 2018
  ident: 10.1016/j.infrared.2024.105285_b20
– start-page: 52
  year: 2019
  ident: 10.1016/j.infrared.2024.105285_b28
  article-title: Shapeshifter: Robust physical adversarial attack on faster r-cnn object detector
– volume: 9
  start-page: 1284
  issue: 8
  year: 2020
  ident: 10.1016/j.infrared.2024.105285_b38
  article-title: Study of adversarial machine learning with infrared examples for surveillance applications
  publication-title: Electronics
  doi: 10.3390/electronics9081284
– year: 2017
  ident: 10.1016/j.infrared.2024.105285_b27
– ident: 10.1016/j.infrared.2024.105285_b32
– start-page: 2137
  year: 2018
  ident: 10.1016/j.infrared.2024.105285_b19
  article-title: Black-box adversarial attacks with limited queries and information
– volume: 114
  year: 2021
  ident: 10.1016/j.infrared.2024.105285_b11
  article-title: Infrared and visible image fusion based on saliency detection and two-scale transform decomposition
  publication-title: Infrared Phys. Technol.
  doi: 10.1016/j.infrared.2020.103626
– volume: 127
  year: 2022
  ident: 10.1016/j.infrared.2024.105285_b10
  article-title: Nighttime infrared ship target detection based on Two-channel image separation combined with saliency mapping of local grayscale dynamic range
  publication-title: Infrared Phys. Technol.
  doi: 10.1016/j.infrared.2022.104416
– ident: 10.1016/j.infrared.2024.105285_b34
  doi: 10.1609/aaai.v35i4.16477
– volume: 28
  year: 2015
  ident: 10.1016/j.infrared.2024.105285_b25
  article-title: Faster r-cnn: Towards real-time object detection with region proposal networks
  publication-title: Adv. Neural Inf. Process. Syst.
– year: 2019
  ident: 10.1016/j.infrared.2024.105285_b2
– ident: 10.1016/j.infrared.2024.105285_b36
  doi: 10.1109/CVPR52729.2023.01187
– ident: 10.1016/j.infrared.2024.105285_b35
  doi: 10.1109/CVPR52688.2022.01296
– volume: Vol. 4
  start-page: 1942
  year: 1995
  ident: 10.1016/j.infrared.2024.105285_b39
  article-title: Particle swarm optimization
– start-page: 206
  year: 2006
  ident: 10.1016/j.infrared.2024.105285_b7
  article-title: Pedestrian detection using infrared images and histograms of oriented gradients
– year: 2018
  ident: 10.1016/j.infrared.2024.105285_b29
– start-page: 1
  year: 2020
  ident: 10.1016/j.infrared.2024.105285_b31
  article-title: Contextual adversarial attacks for object detection
– volume: 123
  year: 2022
  ident: 10.1016/j.infrared.2024.105285_b9
  article-title: Boost infrared moving aircraft detection performance by using fast homography estimation and dual input object detection network
  publication-title: Infrared Phys. Technol.
  doi: 10.1016/j.infrared.2022.104182
– volume: 128
  start-page: 261
  year: 2020
  ident: 10.1016/j.infrared.2024.105285_b23
  article-title: Deep learning for generic object detection: A survey
  publication-title: Int. J. Comput. Vis.
  doi: 10.1007/s11263-019-01247-4
– volume: 52
  start-page: 7427
  issue: 8
  year: 2021
  ident: 10.1016/j.infrared.2024.105285_b30
  article-title: Daedalus: Breaking nonmaximum suppression in object detection via adversarial examples
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2020.3041481
– volume: Vol. 11006
  start-page: 620
  year: 2019
  ident: 10.1016/j.infrared.2024.105285_b37
  article-title: Deep adversarial attack on target detection systems
– volume: 124
  year: 2023
  ident: 10.1016/j.infrared.2024.105285_b14
  article-title: Black-box attack against GAN-generated image detector with contrastive perturbation
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2023.106594
– ident: 10.1016/j.infrared.2024.105285_b26
  doi: 10.1109/CVPR.2016.91
– start-page: 2484
  year: 2019
  ident: 10.1016/j.infrared.2024.105285_b22
  article-title: Simple black-box adversarial attacks
– ident: 10.1016/j.infrared.2024.105285_b15
  doi: 10.1145/3128572.3140448
– start-page: 3866
  year: 2019
  ident: 10.1016/j.infrared.2024.105285_b18
  article-title: Nattack: Learning the distributions of adversarial examples for an improved black-box attack on deep neural networks
– ident: 10.1016/j.infrared.2024.105285_b4
  doi: 10.1109/CVPRW50498.2020.00400
– volume: vol. 322
  year: 2018
  ident: 10.1016/j.infrared.2024.105285_b24
  article-title: Research on daily objects detection based on deep neural network
SSID ssj0016406
Score 2.3726516
Snippet Existing black-box attack methods for infrared detectors often rely on heuristic techniques due to the unavailability of useful gradient information from the...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 105285
SubjectTerms Digital black-box attack
Particle swarm optimization
Thermal infrared detectors
Title Digital thermal infrared detector attack via free velocity and rollback mutation
URI https://dx.doi.org/10.1016/j.infrared.2024.105285
Volume 139
WOSCitedRecordID wos001230766200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-0275
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0016406
  issn: 1350-4495
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFLegG9IuEzDQvkA-cKtS5sRJ7OO0D8EOVZGG1lvkT9QisqlNp_35e47tpLBpsAOXqHJju_H79eXnl1_eQ-gThX8ByXKTKMtEQmWRJkAjRMIZkKMjaXLFbFtsohyP2XTKJ0E6tGzLCZR1ze7u-M1_NTW0gbHdq7PPMHc3KDTAZzA6HMHscPwnw5_OfrhCII5RgtN1KTXsolWZa9O0IfqhaBqhfg5vZ2JoF8YMnWxIOTbeas0BGNJ9_Wu19pR-HgXvYSwfEFm2wGkeROcnrUTgwlm9B9-Vd3DnLubTyYBWrunbqj8LOnnvM4731BCSSGkvnQpeNMuPEkp99czOzfqkRcFRAq1Lfa2eBz7chxPmo7g8IzfFqO_we9LsP25mncQwqtfmVRyncuNUfpyXaCMtc84GaOP469n0onvwVNC2HGt3BWsvlT_-ix7nM2sc5fI12g6bC3zsQfEGvTD1W_Rq4m21gyYBGjhAA8eZcIQG9tDAAA3soIEjNDBAA0do4AiNd-j7-dnlyZckVNRIFGxzm8RqlmpZCmWJy0NYCE05EEgpZZlSQbQlXCqTyoLoQjChYHNuiJAlkdSUWSGz92hQX9dmF2FlilIKqTWsElBqwjQvODNWmEzlxLI99DmuS3XjE6dUT9tkD_G4fFWgf57WVYCMv_Tdf_ZsB2irh-4hGjSLlfmANtVtM1suPgZY3APqGYEi
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Digital+thermal+infrared+detector+attack+via+free+velocity+and+rollback+mutation&rft.jtitle=Infrared+physics+%26+technology&rft.au=Pi%2C+Jiatian&rft.au=Wen%2C+Fusen&rft.au=Lu%2C+Quan&rft.au=Jiang%2C+Ning&rft.date=2024-06-01&rft.issn=1350-4495&rft.volume=139&rft.spage=105285&rft_id=info:doi/10.1016%2Fj.infrared.2024.105285&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_infrared_2024_105285
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1350-4495&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1350-4495&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1350-4495&client=summon