MamGA: a deep neural network architecture for dual-channel parallel monthly runoff prediction based on mamba and depth-gated attention layer
•The first application of the Mamba architecture is to predict monthly runoff.•Development of a depth-gated attention layer to enhance bidirectional information capture.•Implement coding and decoding systems to capture temporal dynamics and enrich features.•Construction of a dual-channel parallel ar...
Gespeichert in:
| Veröffentlicht in: | Journal of hydrology (Amsterdam) Jg. 663; S. 134304 |
|---|---|
| Hauptverfasser: | , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Elsevier B.V
01.12.2025
|
| Schlagworte: | |
| ISSN: | 0022-1694 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | •The first application of the Mamba architecture is to predict monthly runoff.•Development of a depth-gated attention layer to enhance bidirectional information capture.•Implement coding and decoding systems to capture temporal dynamics and enrich features.•Construction of a dual-channel parallel architecture (MamGA) for accurate runoff prediction.•MamGA achieves a balance between accuracy and efficiency, outperforming other comparison models.
Monthly runoff prediction is crucial in water resource management, involving both short-term hydrological dynamics and long-term planning. It has a decisive impact on flood prevention, resource allocation, and ecological protection. In the context of increasing uncertainties in runoff due to climate change and human activities, accurate monthly runoff forecasting becomes even more essential. Therefore, this paper proposes a novel dual-channel parallel monthly runoff prediction deep neural network architecture—MamGA—built on the significant application value of deep neural networks in runoff prediction. The architecture first introduces the Mamba model, which employs a selection mechanism to achieve selective information propagation and suppression, effectively enhancing the processing capability of global feature information while reducing the computational complexity of modelling long sequences. Furthermore, this paper incorporates a Depth-gated Attention Layer that combines bidirectional depth-gated modules and linear attention mechanisms to address the shortcomings of the Mamba network in unidirectional information processing. Integrating an Embedded Coding layer and a Sequential Decoding layer constructs an efficient coding and decoding system, further strengthening the model’s ability to capture global features and temporal information. To validate the effectiveness and advancement of the MamGA model, this study selected the Manwan Station (MW), Xiaowan Station (XW) in China, and the Thunder Creek Station (TC) in the United States as experimental subjects. Five evaluation metrics were employed for comparative analysis against nine benchmark models. The experimental results indicate that the MamGA model exhibits significant superiority across all cases. For instance, at the MW station, compared to the Long Short-Term Memory (LSTM) model, the MamGA model reduced the Mean Absolute Error (MAE) and Normalized Root Mean Square Error (NRMSE) by 33.08% and 23.93%, respectively. Meanwhile, the Nash Efficiency Coefficient (NSE), correlation coefficient (R), and Kling-Gupta Efficiency (KGE) improved by 8.41%, 3.93%, and 8.36%, respectively, with both R and NSE exceeding 0.9. The MamGA model also demonstrated significant performance improvements at other stations compared to the competing models. The study suggests that the MamGA model, as an advanced tool for monthly runoff prediction, can significantly enhance the accuracy of runoff forecasting, providing robust support for the optimal allocation and management of water resources. |
|---|---|
| AbstractList | •The first application of the Mamba architecture is to predict monthly runoff.•Development of a depth-gated attention layer to enhance bidirectional information capture.•Implement coding and decoding systems to capture temporal dynamics and enrich features.•Construction of a dual-channel parallel architecture (MamGA) for accurate runoff prediction.•MamGA achieves a balance between accuracy and efficiency, outperforming other comparison models.
Monthly runoff prediction is crucial in water resource management, involving both short-term hydrological dynamics and long-term planning. It has a decisive impact on flood prevention, resource allocation, and ecological protection. In the context of increasing uncertainties in runoff due to climate change and human activities, accurate monthly runoff forecasting becomes even more essential. Therefore, this paper proposes a novel dual-channel parallel monthly runoff prediction deep neural network architecture—MamGA—built on the significant application value of deep neural networks in runoff prediction. The architecture first introduces the Mamba model, which employs a selection mechanism to achieve selective information propagation and suppression, effectively enhancing the processing capability of global feature information while reducing the computational complexity of modelling long sequences. Furthermore, this paper incorporates a Depth-gated Attention Layer that combines bidirectional depth-gated modules and linear attention mechanisms to address the shortcomings of the Mamba network in unidirectional information processing. Integrating an Embedded Coding layer and a Sequential Decoding layer constructs an efficient coding and decoding system, further strengthening the model’s ability to capture global features and temporal information. To validate the effectiveness and advancement of the MamGA model, this study selected the Manwan Station (MW), Xiaowan Station (XW) in China, and the Thunder Creek Station (TC) in the United States as experimental subjects. Five evaluation metrics were employed for comparative analysis against nine benchmark models. The experimental results indicate that the MamGA model exhibits significant superiority across all cases. For instance, at the MW station, compared to the Long Short-Term Memory (LSTM) model, the MamGA model reduced the Mean Absolute Error (MAE) and Normalized Root Mean Square Error (NRMSE) by 33.08% and 23.93%, respectively. Meanwhile, the Nash Efficiency Coefficient (NSE), correlation coefficient (R), and Kling-Gupta Efficiency (KGE) improved by 8.41%, 3.93%, and 8.36%, respectively, with both R and NSE exceeding 0.9. The MamGA model also demonstrated significant performance improvements at other stations compared to the competing models. The study suggests that the MamGA model, as an advanced tool for monthly runoff prediction, can significantly enhance the accuracy of runoff forecasting, providing robust support for the optimal allocation and management of water resources. |
| ArticleNumber | 134304 |
| Author | Wang, Wen-chuan Ren, Ming-lei Tian, Wei-can Xu, Dong-mei |
| Author_xml | – sequence: 1 givenname: Wen-chuan orcidid: 0000-0003-1367-5886 surname: Wang fullname: Wang, Wen-chuan email: wangwenchuan@ncwu.edu.cn organization: College of Water Resources, North China University of Water Resources and Electric Power, Zhengzhou 450046, China – sequence: 2 givenname: Wei-can orcidid: 0009-0006-5573-2200 surname: Tian fullname: Tian, Wei-can email: tianwei200002@163.com organization: College of Water Resources, North China University of Water Resources and Electric Power, Zhengzhou 450046, China – sequence: 3 givenname: Ming-lei surname: Ren fullname: Ren, Ming-lei email: renml@iwhr.com organization: China Institute of Water Resources and Hydropower Research, Beijing 100038, China – sequence: 4 givenname: Dong-mei surname: Xu fullname: Xu, Dong-mei email: xudongmei@ncwu.edu.cn organization: College of Water Resources, North China University of Water Resources and Electric Power, Zhengzhou 450046, China |
| BookMark | eNqFkEtOwzAQhr0oEm3hCEi-QIofSR9sUFVBQSpiA2trYo9JSmJHjgvKHTg0Lu2e2fwjzT-vb0JGzjsk5IazGWd8fruf7avBBN_MBBPFjMtcsnxExowJkfH5Kr8kk77fsxRS5mPy8wLtdn1HgRrEjjo8BGiSxG8fPikEXdURdTwEpNYHag7QZLoC57ChHSRvk5LWu1g1Aw0H562lXUBT61h7R0vo0dCUtNCWQMGZtKeLVfYBMRUgRnR_xgYGDFfkwkLT4_VZp-T98eFt85TtXrfPm_Uu06JYxcwuUOTzUpRgtZZCs0VRMCiEkOWikOlHk6_EHBlfCc6MTXYpDNPlki-twYWVU1Kc5urg-z6gVV2oWwiD4kwdMaq9OmNUR4zqhDH13Z_6MB33VWNQva7R6fRuSJCU8fU_E34B2suFNA |
| Cites_doi | 10.1016/j.jhydrol.2024.132569 10.1029/2023WR036853 10.1016/j.jhydrol.2023.130558 10.1016/j.jhydrol.2022.127781 10.1038/s41598-024-74329-0 10.1029/2023WR036380 10.1016/j.jhydrol.2024.132276 10.1016/j.jhydrol.2023.130141 10.1016/j.envsoft.2024.106091 10.1016/j.jhydrol.2024.131230 10.1016/j.aej.2021.04.100 10.1109/ICNN.1995.488968 10.2166/ws.2023.332 10.1016/j.jhydrol.2025.133589 10.28991/CEJ-2024-010-07-02 10.1016/j.engappai.2025.110964 10.1016/j.jhydrol.2023.129956 10.1007/s11069-024-06939-w 10.1016/j.knosys.2024.112828 10.1029/2023WR035618 10.28991/ESJ-2024-08-02-020 10.1016/j.engappai.2024.109999 10.1016/j.jhydrol.2024.130650 10.1016/j.jhydrol.2024.132540 10.1038/s41598-024-77655-5 10.1029/2023WR036333 10.2166/hydro.2023.172 10.1016/j.jhydrol.2023.129684 10.2166/nh.2024.063 10.28991/CEJ-2024-010-12-08 10.1016/j.eswa.2024.125144 10.1016/j.jhydrol.2024.132137 10.1016/j.jhydrol.2020.125188 10.1016/j.jhydrol.2024.132453 10.1007/s11269-025-04285-5 10.1016/j.jhydrol.2024.132175 10.1016/j.jhydrol.2022.127553 10.1016/j.aei.2024.102964 10.1029/2024WR039054 10.1007/s12145-024-01544-8 10.1038/s41598-021-03725-7 10.1016/j.jhydrol.2025.133949 10.1016/j.patcog.2025.111991 10.1016/j.jhydrol.2025.133424 10.1016/j.jhydrol.2024.131996 10.1016/j.energy.2025.137225 10.1016/j.envsoft.2020.104669 10.1016/j.advengsoft.2024.103694 10.1016/j.asoc.2024.112294 10.1016/j.aej.2024.10.117 10.1016/j.jhydrol.2025.132700 10.1016/j.asoc.2024.112596 10.1007/s11600-022-00928-y 10.1016/j.asoc.2022.109520 10.1007/s11269-025-04106-9 10.28991/ESJ-2024-08-05-012 10.1016/j.jhydrol.2024.132227 10.1007/s00477-024-02882-1 10.1016/j.jhydrol.2024.131992 10.1016/j.watres.2022.118078 10.1016/j.eswa.2023.120616 10.2166/hydro.2023.216 10.1016/j.envsoft.2025.106570 10.1016/j.neucom.2024.129178 10.1016/j.jenvman.2025.124121 10.1016/j.jhydrol.2024.131275 10.1016/j.aei.2025.103124 10.1007/s12145-025-01966-y 10.1016/j.jhydrol.2025.132719 10.1016/j.inffus.2025.103250 10.1007/s11269-022-03414-8 |
| ContentType | Journal Article |
| Copyright | 2025 Elsevier B.V. |
| Copyright_xml | – notice: 2025 Elsevier B.V. |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.jhydrol.2025.134304 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geography |
| ExternalDocumentID | 10_1016_j_jhydrol_2025_134304 S0022169425016440 |
| GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 29K 4.4 457 4G. 5GY 5VS 6TJ 7-5 71M 8P~ 9DU 9JM 9JN AABNK AAEDT AAEDW AAHBH AAIKJ AAKOC AALCJ AALRI AAOAW AAQFI AAQXK AATLK AATTM AAXKI AAXUO AAYWO ABEFU ABFNM ABGRD ABJNI ABMAC ABQEM ABQYD ABUFD ABWVN ABXDB ACDAQ ACGFS ACIUM ACLOT ACLVX ACNCT ACRLP ACRPL ACSBN ACVFH ADBBV ADCNI ADEZE ADMUD ADNMO ADQTV ADVLN AEBSH AEIPS AEKER AENEX AEQOU AEUPX AFFNX AFJKZ AFPUW AFTJW AFXIZ AGHFR AGQPQ AGUBO AGYEJ AHHHB AIEXJ AIGII AIIUN AIKHN AITUG AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP ASPBG ATOGT AVWKF AXJTR AZFZN BKOJK BLXMC CS3 D-I DU5 EBS EFJIC EFKBS EFLBG EJD EO8 EO9 EP2 EP3 FA8 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLV HMA HVGLF HZ~ H~9 IHE IMUCA J1W K-O KOM LW9 LY3 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- ROL RPZ SAB SCC SDF SDG SDP SEP SES SEW SPC SPCBC SPD SSA SSE SSZ T5K TN5 UQL VOH WUQ Y6R ZCA ZMT ZY4 ~02 ~G- ~HD ~KM AAYXX CITATION |
| ID | FETCH-LOGICAL-c259t-f7e246b2bafcc32c07550a5223b753694d4926e019210dff7e32d0cb818fde7f3 |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001584773700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0022-1694 |
| IngestDate | Thu Nov 27 01:04:38 EST 2025 Wed Dec 10 14:23:01 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Attention mechanism Mamba Deep neural network Runoff prediction Coding and decoding system |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c259t-f7e246b2bafcc32c07550a5223b753694d4926e019210dff7e32d0cb818fde7f3 |
| ORCID | 0000-0003-1367-5886 0009-0006-5573-2200 |
| ParticipantIDs | crossref_primary_10_1016_j_jhydrol_2025_134304 elsevier_sciencedirect_doi_10_1016_j_jhydrol_2025_134304 |
| PublicationCentury | 2000 |
| PublicationDate | December 2025 2025-12-00 |
| PublicationDateYYYYMMDD | 2025-12-01 |
| PublicationDate_xml | – month: 12 year: 2025 text: December 2025 |
| PublicationDecade | 2020 |
| PublicationTitle | Journal of hydrology (Amsterdam) |
| PublicationYear | 2025 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Wang, Jin, Jing, Bi, Yang (b0215) 2025; 169 Xu, Liao, Wang, Tian, Zang (b0310) 2023; 26 Wagena, Goering, Collick, Bock, Fuka, Buda, Easton (b0205) 2020; 126 Wang, Ngoduy, Zou, Dantsuji, Liu, Li (b0225) 2024; 258 Kennedy, J., Eberhart, R., 1995. Particle swarm optimization, Proceedings of ICNN'95 - International Conference on Neural Networks, pp. 1942-1948 vol.4. DOI:https://doi.org/10.1109/ICNN.1995.488968. Wenchuan, Yanwei, Dongmei, Yanghao (b0275) 2024; 643 Gao, Huang, Zhang, Han, Wang, Zhang, Lin (b0040) 2020; 589 Shi, Huang, Hao, Yang, Li (b0170) 2022; 129 Xu, Wang, Wang, Chau, Zang (b0315) 2023; 25 Xu, Hong, Wang, Li, Wang (b0295) 2024; 645 Xu, Zeng, Wang, Gu, Wang, Li (b0320) 2025; 18 Granata, Zhu, Di Nunno (b0045) 2024; 645 Xu, Yang, Zhao (bib376) 2021; 31 Yin, Zhu, Zhang, Xing, Xia, Liu, Zhang (b0355) 2023; 622 Zhu, Liu, Chen, Liu, Tao (b0375) 2025; 309 Fang, Yang, Wen, Yu, Li, Adamowski, Barzegar (b0035) 2024; 636 Ng, Huang, Koo, Chong, El-Shafie, Najah Ahmed (b0130) 2023; 625 Cui, Li, Shen, Wang (b0025) 2026; 169 Xu, Shi, Wu, Qu, Li, Sun, Yang, Jiang, Qiu (b0325) 2024; 636 Qiao, Peng, Sun, Zhang, Liu, Zhang, Wang, Shahzad Nazir (b0140) 2023; 229 Wang, Gu, Hong, Hu, Zang, Chen, Jin (b0230) 2024; 14 Khoshkalam, Rousseau, Rahmani, Shen, Abbasnezhadi (b0090) 2025; 650 Clark, Jaffrés (b0020) 2025; 651 Mihel, Krvavica, Lerga (b0120) 2025; 646 Xu, Hu, Wu, Jian, Li, Chen, Zhang, Zhang, Wang (b0335) 2022; 608 Sanikhani, Nikpour, Jamshidi (b0155) 2025 Wang, Xu, Bao, Wu, Cui (b0265) 2024; 178 Wang, Tian, Hu, Hong, Chai, Xu (b0240) 2024; 643 Xu, Lin, Hu, Wang, Wu, Zhang, Ran (b0340) 2023; 625 Wang, Kong, Feng, Wang, Yang, Zhao, Wang, Zhang (b0260) 2025; 619 Komiya, Kiyotake, Nakada, Fujishima, Mori (b0095) 2025; 61 Thébault, Perrin, Legrand, Andréassian, Thirel, Delaigue (b0190) 2025; 661 Huang, Zhang, Liu (b0070) 2025; 154 Tang, Qin, Wu, Zhao, Li (b0185) 2025; 653 Daramola, Muñoz, Muñoz, Saksena, Irish (b0030) 2025; 61 Wang, Gu, Li, Hong, Zang, Xu (b0235) 2024; 18 Wei, Yang, Fu, Xue (b0270) 2025; 374 Liu, Liang, Zhao (b0115) 2024; 167 Yanfatriani, Marzuki, Vonnisa, Razi, Hapsoro, Ramadhan, Yusnaini (b0345) 2024; 8 Kumar, Choudhary, Thomas (b0100) 2024; 14 Wu, Wang, Hu, Tao, Dong (b0285) 2023; 37 Zhong, Lei, Yang (b0370) 2024; 60 Sun, Zhang, Wang, Shi, Hua, Li (b0175) 2022; 12 Tursun, Xie, Wang, Peng, Liu, Zheng, Wu, Nie (b0200) 2024; 60 Wang, Tian, Xu, Zang (b0245) 2024; 195 Xu, Li, Wang (b0300) 2024; 629 Hong, Han, Yan, Liu (b0055) 2025; 332 Liu, Ren, Ming, Qu, Guo, Li (b0110) 2023; 71 Wang, Qiu, Li (b0255) 2018 Wang, Dai, Wang, Yinglan, Miao, Xue, Wang, Zhu (b0210) 2025; 652 Yunita, Soekarno, Nugroho, Santosa (b0360) 2024; 10 Li, Qiao, Yu, Wang, Li, Liao, Zhu (b0105) 2022; 211 Hou, Liu, He, Liu, Huang, Xie, Xie, Dai (b0060) 2025; 123 Ibrahim, Huang, Ahmed, Koo, El-Shafie (b0075) 2022; 61 Wang, Peng (b0220) 2024; 630 Wu, Dong, Guzmán, Conde, Wang, Zhu, Shao, Meng (b0290) 2024; 84 Yin, Guo, Zhang, Chen, Zhang (b0350) 2022; 609 Worachairungreung, Kulpanich, Thanakunwutthirot, Hemwan (b0280) 2024; 8 Shi, Wan, Zhao, Deng (b0165) 2025; 192 Chang, Yuan, Li (b0010) 2025; 143 Huang, Zhou, Li, Yu, Li, Fang (b0065) 2024; 645 Tian, Wang, Wang, Shi, Ma (b0195) 2025; 662 Prajapati, Ibrahim, Goyal, Thapa, Maharjan (b0135) 2023; 24 Chang, Lu, Xue, Lu (b0015) 2025; 113 Xu, Li, Wang, Hong, Gu, Hu, Wang (b0305) 2025; 39 Gu, A., Dao, T., 2023. Mamba: Linear-Time Sequence Modeling with Selective State Spaces, pp. arXiv:2312.00752. Doi: 10.48550/arXiv.2312.0075. Xu, Chen, Corzo, Xu, Zhang, Xiong, Liu, Xia (b0330) 2024; 60 Jia, Li, Huang, Chen (b0080) 2024; 55 Zhao, Zhang, Duan, Yu (b0365) 2025; 64 Samantaray, Sahoo, Yaseen, Al-Suwaiyan (b0150) 2025; 649 Bai, Tan, Yue (b0005) 2025 Muñoz, Muñoz, Orellana-Alvear, Célleri (b0125) 2025; 121 Tan, Bai, Yue, Jia (b0180) 2025; 660 Wang, Tian, Chau, Zang, Ma, Feng, Xu (b0250) 2023 Saad, Khayyun (b0145) 2024; 10 Shang, Xu, Li, Xiao, Zhou, He (b0160) 2025; 65 Yunita (10.1016/j.jhydrol.2025.134304_b0360) 2024; 10 Cui (10.1016/j.jhydrol.2025.134304_b0025) 2026; 169 Sun (10.1016/j.jhydrol.2025.134304_b0175) 2022; 12 Xu (10.1016/j.jhydrol.2025.134304_b0315) 2023; 25 Fang (10.1016/j.jhydrol.2025.134304_b0035) 2024; 636 Wang (10.1016/j.jhydrol.2025.134304_b0220) 2024; 630 Jia (10.1016/j.jhydrol.2025.134304_b0080) 2024; 55 Xu (10.1016/j.jhydrol.2025.134304_b0325) 2024; 636 Ng (10.1016/j.jhydrol.2025.134304_b0130) 2023; 625 Yanfatriani (10.1016/j.jhydrol.2025.134304_b0345) 2024; 8 Shi (10.1016/j.jhydrol.2025.134304_b0165) 2025; 192 Wang (10.1016/j.jhydrol.2025.134304_b0215) 2025; 169 Wang (10.1016/j.jhydrol.2025.134304_b0255) 2018 Komiya (10.1016/j.jhydrol.2025.134304_b0095) 2025; 61 Prajapati (10.1016/j.jhydrol.2025.134304_b0135) 2023; 24 Wu (10.1016/j.jhydrol.2025.134304_b0285) 2023; 37 Liu (10.1016/j.jhydrol.2025.134304_b0115) 2024; 167 Shang (10.1016/j.jhydrol.2025.134304_b0160) 2025; 65 10.1016/j.jhydrol.2025.134304_b0085 Xu (10.1016/j.jhydrol.2025.134304_b0300) 2024; 629 Huang (10.1016/j.jhydrol.2025.134304_b0070) 2025; 154 Saad (10.1016/j.jhydrol.2025.134304_b0145) 2024; 10 Chang (10.1016/j.jhydrol.2025.134304_b0010) 2025; 143 Granata (10.1016/j.jhydrol.2025.134304_b0045) 2024; 645 Tan (10.1016/j.jhydrol.2025.134304_b0180) 2025; 660 Tursun (10.1016/j.jhydrol.2025.134304_b0200) 2024; 60 Samantaray (10.1016/j.jhydrol.2025.134304_b0150) 2025; 649 Wang (10.1016/j.jhydrol.2025.134304_b0265) 2024; 178 Gao (10.1016/j.jhydrol.2025.134304_b0040) 2020; 589 Xu (10.1016/j.jhydrol.2025.134304_b0340) 2023; 625 Xu (10.1016/j.jhydrol.2025.134304_b0295) 2024; 645 Xu (10.1016/j.jhydrol.2025.134304_b0320) 2025; 18 Wenchuan (10.1016/j.jhydrol.2025.134304_b0275) 2024; 643 Wagena (10.1016/j.jhydrol.2025.134304_b0205) 2020; 126 Zhu (10.1016/j.jhydrol.2025.134304_b0375) 2025; 309 Wang (10.1016/j.jhydrol.2025.134304_b0240) 2024; 643 Hou (10.1016/j.jhydrol.2025.134304_b0060) 2025; 123 Wang (10.1016/j.jhydrol.2025.134304_b0210) 2025; 652 Muñoz (10.1016/j.jhydrol.2025.134304_b0125) 2025; 121 Sanikhani (10.1016/j.jhydrol.2025.134304_b0155) 2025 Wang (10.1016/j.jhydrol.2025.134304_b0230) 2024; 14 Xu (10.1016/j.jhydrol.2025.134304_b0330) 2024; 60 Clark (10.1016/j.jhydrol.2025.134304_b0020) 2025; 651 Daramola (10.1016/j.jhydrol.2025.134304_b0030) 2025; 61 Mihel (10.1016/j.jhydrol.2025.134304_b0120) 2025; 646 Wang (10.1016/j.jhydrol.2025.134304_b0225) 2024; 258 Li (10.1016/j.jhydrol.2025.134304_b0105) 2022; 211 Wang (10.1016/j.jhydrol.2025.134304_b0250) 2023 Ibrahim (10.1016/j.jhydrol.2025.134304_b0075) 2022; 61 Xu (10.1016/j.jhydrol.2025.134304_bib376) 2021; 31 Yin (10.1016/j.jhydrol.2025.134304_b0355) 2023; 622 Yin (10.1016/j.jhydrol.2025.134304_b0350) 2022; 609 Bai (10.1016/j.jhydrol.2025.134304_b0005) 2025 Thébault (10.1016/j.jhydrol.2025.134304_b0190) 2025; 661 Worachairungreung (10.1016/j.jhydrol.2025.134304_b0280) 2024; 8 Wang (10.1016/j.jhydrol.2025.134304_b0260) 2025; 619 Xu (10.1016/j.jhydrol.2025.134304_b0310) 2023; 26 Zhong (10.1016/j.jhydrol.2025.134304_b0370) 2024; 60 Xu (10.1016/j.jhydrol.2025.134304_b0335) 2022; 608 Kumar (10.1016/j.jhydrol.2025.134304_b0100) 2024; 14 Chang (10.1016/j.jhydrol.2025.134304_b0015) 2025; 113 Tian (10.1016/j.jhydrol.2025.134304_b0195) 2025; 662 Wu (10.1016/j.jhydrol.2025.134304_b0290) 2024; 84 Wang (10.1016/j.jhydrol.2025.134304_b0235) 2024; 18 Wang (10.1016/j.jhydrol.2025.134304_b0245) 2024; 195 Hong (10.1016/j.jhydrol.2025.134304_b0055) 2025; 332 Zhao (10.1016/j.jhydrol.2025.134304_b0365) 2025; 64 Shi (10.1016/j.jhydrol.2025.134304_b0170) 2022; 129 Xu (10.1016/j.jhydrol.2025.134304_b0305) 2025; 39 Wei (10.1016/j.jhydrol.2025.134304_b0270) 2025; 374 Liu (10.1016/j.jhydrol.2025.134304_b0110) 2023; 71 Tang (10.1016/j.jhydrol.2025.134304_b0185) 2025; 653 Huang (10.1016/j.jhydrol.2025.134304_b0065) 2024; 645 Khoshkalam (10.1016/j.jhydrol.2025.134304_b0090) 2025; 650 Qiao (10.1016/j.jhydrol.2025.134304_b0140) 2023; 229 10.1016/j.jhydrol.2025.134304_b0050 |
| References_xml | – volume: 636 year: 2024 ident: b0035 article-title: Ensemble learning using multivariate variational mode decomposition based on the Transformer for multi-step-ahead streamflow forecasting publication-title: J. Hydrol. – volume: 589 year: 2020 ident: b0040 article-title: Short-term runoff prediction with GRU and LSTM networks without requiring time step optimization during sample generation publication-title: J. Hydrol. – volume: 192 year: 2025 ident: b0165 article-title: A dual-model framework combining nonlinear autoregressive with exogenous inputs (NARX) and LSTM networks for enhanced daily runoff prediction and error correction publication-title: Environ. Model. Software – year: 2023 ident: b0250 article-title: Multi-Reservoir Flood Control operation using improved Bald Eagle Search Algorithm with ε Constraint Method publication-title: Water – volume: 630 year: 2024 ident: b0220 article-title: Multiple spatio-temporal scale runoff forecasting and driving mechanism exploration by K-means optimized XGBoost and SHAP publication-title: J. Hydrol. – volume: 649 year: 2025 ident: b0150 article-title: River discharge prediction based multivariate climatological variables using hybridized long short-term memory with nature inspired algorithm publication-title: J. Hydrol. – volume: 652 year: 2025 ident: b0210 article-title: Establishment of a slope-scale innovated rainfall-runoff model by combining infiltration equation and motion wave equation for watershed flash flood risk prediction publication-title: J. Hydrol. – volume: 24 start-page: 254 year: 2023 end-page: 271 ident: b0135 article-title: Ground water availability assessment for a data-scarce river basin in Nepal using SWAT hydrological model publication-title: Water Supply – volume: 126 year: 2020 ident: b0205 article-title: Comparison of short-term streamflow forecasting using stochastic time series, neural networks, process-based, and Bayesian models publication-title: Environ. Model. Software – volume: 660 year: 2025 ident: b0180 article-title: A Mamba-based method for multi-feature water quality prediction fusing dual denoising and attention enhancement publication-title: J. Hydrol. – volume: 129 year: 2022 ident: b0170 article-title: Sliding window and dual-channel CNN (SWDC-CNN): a novel method for synchronous prediction of coal and electricity consumption in cement calcination process publication-title: Appl. Soft Comput. – volume: 143 year: 2025 ident: b0010 article-title: Mamba-enhanced spectral-attentive wavelet network for underwater image restoration publication-title: Eng. Appl. Artif. Intel. – volume: 18 start-page: 120 year: 2024 ident: b0235 article-title: A stacking ensemble machine learning model for improving monthly runoff prediction publication-title: Earth Sci. Inf. – volume: 61 start-page: 279 year: 2022 end-page: 303 ident: b0075 article-title: A review of the hybrid artificial intelligence and optimization modelling of hydrological streamflow forecasting publication-title: Alex. Eng. J. – volume: 169 year: 2025 ident: b0215 article-title: Learning with noisy labels via Mamba and entropy KNN framework publication-title: Appl. Soft Comput. – year: 2018 ident: b0255 article-title: Hybrid Models Combining EMD/EEMD and ARIMA for Long-Term Streamflow forecasting publication-title: Water – volume: 10 start-page: 2088 year: 2024 end-page: 2104 ident: b0360 article-title: Empirical Model of Unconsolidated Tephra erosion: Verification and Application on Micro Catchment publication-title: Civil Engineering Journal – volume: 71 start-page: 905 year: 2023 end-page: 925 ident: b0110 article-title: Investigating the effects of local weather, streamflow lag, and global climate information on 1-month-ahead streamflow forecasting by using XGBoost and SHAP: two case studies involving the contiguous USA publication-title: Acta Geophys. – volume: 39 start-page: 883 year: 2025 end-page: 910 ident: b0305 article-title: WaveTransTimesNet: an enhanced deep learning monthly runoff prediction model based on wavelet transform and transformer architecture publication-title: Stoch. Env. Res. Risk A. – volume: 14 start-page: 26263 year: 2024 ident: b0100 article-title: A hybrid technique to enhance the rainfall-runoff prediction of physical and data-driven model: a case study of Upper Narmada River Sub-basin publication-title: India. Scientific Reports – year: 2025 ident: b0005 article-title: A Hybrid Mamba Architecture with Graph Convolution and Convolutional Self-attention for Multivariate Water Quality forecasting publication-title: Water Resour. Manag. – volume: 154 year: 2025 ident: b0070 article-title: A channel-independent network based on wavelet enhancement for long-term time series forecasting publication-title: Eng. Appl. Artif. Intel. – volume: 619 year: 2025 ident: b0260 article-title: Is Mamba effective for time series forecasting? publication-title: Neurocomputing – volume: 309 year: 2025 ident: b0375 article-title: DTSFormer: Decoupled temporal-spatial diffusion transformer for enhanced long-term time series forecasting publication-title: Knowl.-Based Syst. – volume: 650 year: 2025 ident: b0090 article-title: Does grouping watersheds by hydrographic regions offer any advantages in fine-tuning transfer learning model for temporal and spatial streamflow predictions? publication-title: J. Hydrol. – volume: 8 start-page: 687 year: 2024 end-page: 699 ident: b0280 article-title: Monitoring Agricultural Land loss by Analyzing changes in Land Use and Land Cover publication-title: Emerging Science Journal – volume: 229 year: 2023 ident: b0140 article-title: Metaheuristic evolutionary deep learning model based on temporal convolutional network, improved aquila optimizer and random forest for rainfall-runoff simulation and multi-step runoff prediction publication-title: Expert Syst. Appl. – volume: 169 year: 2026 ident: b0025 article-title: MGCM: Multi-modal graph convolutional mamba for cancer survival prediction publication-title: Pattern Recogn. – volume: 374 year: 2025 ident: b0270 article-title: Dynamic classification and attention mechanism-based bidirectional long short-term memory network for daily runoff prediction in Aksu River basin, Northwest China publication-title: J. Environ. Manage. – volume: 653 year: 2025 ident: b0185 article-title: Causality-Guided deep learning for streamflow predicting in a mountainous region publication-title: J. Hydrol. – volume: 167 year: 2024 ident: b0115 article-title: A lightweight visual mamba network for image recognition under resource-limited environments publication-title: Appl. Soft Comput. – volume: 61 year: 2025 ident: b0095 article-title: Informed neural networks for flood forecasting with limited amount of training data publication-title: Water Resour. Res. – volume: 211 year: 2022 ident: b0105 article-title: Interpretable tree-based ensemble model for predicting beach water quality publication-title: Water Res. – volume: 113 start-page: 287 year: 2025 end-page: 293 ident: b0015 article-title: Combining market-guided patterns and mamba for stock price prediction publication-title: Alex. Eng. J. – volume: 625 year: 2023 ident: b0130 article-title: A review of hybrid deep learning applications for streamflow forecasting publication-title: J. Hydrol. – volume: 258 year: 2024 ident: b0225 article-title: PI-STGnet: Physics-integrated spatiotemporal graph neural network with fundamental diagram learner for highway traffic flow prediction publication-title: Expert Syst. Appl. – volume: 65 year: 2025 ident: b0160 article-title: Prediction of seam tracking errors in the intelligent welding system: a rapid prediction method based on real-time monitoring data publication-title: Adv. Eng. Inf. – volume: 14 start-page: 23550 year: 2024 ident: b0230 article-title: SMGformer: integrating STL and multi-head self-attention in deep learning model for multi-step runoff forecasting publication-title: Sci. Rep. – volume: 178 year: 2024 ident: b0265 article-title: Spatio-temporal deep learning model for accurate streamflow prediction with multi-source data fusion publication-title: Environ. Model. Software – volume: 646 year: 2025 ident: b0120 article-title: Regression-based machine learning approaches for estimating discharge from water levels in microtidal rivers publication-title: J. Hydrol. – volume: 55 start-page: 1182 year: 2024 end-page: 1196 ident: b0080 article-title: Daily runoff prediction based on lightweight Mamba with partial normalization publication-title: Hydrol. Res. – volume: 645 year: 2024 ident: b0065 article-title: A coupled model integrating dual attention mechanism into BiGRU-RED for multi-step-ahead streamflow forecasting publication-title: J. Hydrol. – volume: 18 start-page: 467 year: 2025 ident: b0320 article-title: A novel TCN-augmented CNN-LSTM architecture for accurate monthly runoff forecasting publication-title: Earth Sci. Inf. – volume: 645 year: 2024 ident: b0045 article-title: Advanced streamflow forecasting for central European Rivers: the Cutting-Edge Kolmogorov-Arnold networks compared to Transformers publication-title: J. Hydrol. – reference: Kennedy, J., Eberhart, R., 1995. Particle swarm optimization, Proceedings of ICNN'95 - International Conference on Neural Networks, pp. 1942-1948 vol.4. DOI:https://doi.org/10.1109/ICNN.1995.488968. – volume: 662 year: 2025 ident: b0195 article-title: Accurate runoff prediction in nonlinear and nonstationary environments using a novel hybrid model publication-title: J. Hydrol. – volume: 26 start-page: 255 year: 2023 end-page: 283 ident: b0310 article-title: Improved monthly runoff time series prediction using the CABES-LSTM mixture model based on CEEMDAN-VMD decomposition publication-title: J. Hydroinf. – volume: 121 start-page: 3915 year: 2025 end-page: 3937 ident: b0125 article-title: Enhancing runoff forecasting through the integration of satellite precipitation data and hydrological knowledge into machine learning models publication-title: Nat. Hazards – volume: 332 year: 2025 ident: b0055 article-title: Dual-path frequency Mamba-Transformer model for wind power forecasting publication-title: Energy – volume: 636 year: 2024 ident: b0325 article-title: Investigating the potential of EMA-embedded feature selection method for ESVR and LSTM to enhance the robustness of monthly streamflow forecasting from local meteorological information publication-title: J. Hydrol. – volume: 64 year: 2025 ident: b0365 article-title: Cross-supervised contrastive learning domain adaptation network for steel defect segmentation publication-title: Adv. Eng. Inf. – volume: 31 start-page: 22 year: 2021 end-page: 24+33 ident: bib376 article-title: Review of flood and drought disaster prevention in the Haihe River Basin in 2021 publication-title: China Flood Drought Manage. – year: 2025 ident: b0155 article-title: Advanced Framework for predicting Rainfall-Runoff: Comparative Evaluation of AI Models for Enhanced forecasting Accuracy publication-title: Water Resour. Manag. – volume: 8 start-page: 1860 year: 2024 end-page: 1874 ident: b0345 article-title: Extreme Rainfall Trends and Hydrometeorological disasters in Tropical Regions: Implications for climate Resilience publication-title: Emerging Science Journal – volume: 60 year: 2024 ident: b0370 article-title: Development of a distributed Physics-Informed Deep Learning Hydrological Model for Data-Scarce Regions publication-title: Water Resour. Res. – volume: 651 year: 2025 ident: b0020 article-title: Associations between deep learning runoff predictions and hydrogeological conditions in Australia publication-title: J. Hydrol. – reference: Gu, A., Dao, T., 2023. Mamba: Linear-Time Sequence Modeling with Selective State Spaces, pp. arXiv:2312.00752. Doi: 10.48550/arXiv.2312.0075. – volume: 123 year: 2025 ident: b0060 article-title: DPEM: Dual-Perspective Enhanced Mamba for multivariate time series forecasting publication-title: Inf. Fusion – volume: 37 start-page: 937 year: 2023 end-page: 953 ident: b0285 article-title: Runoff forecasting using Convolutional Neural Networks and optimized Bi-directional Long short-term memory publication-title: Water Resour. Manag. – volume: 12 start-page: 518 year: 2022 ident: b0175 article-title: Ensemble streamflow forecasting based on variational mode decomposition and long short term memory publication-title: Sci. Rep. – volume: 661 year: 2025 ident: b0190 article-title: What can be expected from a semi-distributed multi-model approach for streamflow forecasting? Tailoring the structure and size of a super-ensemble on the Rhône basin publication-title: J. Hydrol. – volume: 645 year: 2024 ident: b0295 article-title: A novel daily runoff forecasting model based on global features and enhanced local feature interpretation publication-title: J. Hydrol. – volume: 60 year: 2024 ident: b0200 article-title: Streamflow Prediction in Human-Regulated Catchments using Multiscale Deep Learning Modeling with Anthropogenic Similarities publication-title: Water Resour. Res. – volume: 625 year: 2023 ident: b0340 article-title: Deep transfer learning based on transformer for flood forecasting in data-sparse basins publication-title: J. Hydrol. – volume: 60 year: 2024 ident: b0330 article-title: Coupling Deep Learning and Physically based Hydrological Models for Monthly Streamflow predictions publication-title: Water Resour. Res. – volume: 609 year: 2022 ident: b0350 article-title: RR-Former: Rainfall-runoff modeling based on Transformer publication-title: J. Hydrol. – volume: 608 year: 2022 ident: b0335 article-title: Research on particle swarm optimization in LSTM neural networks for rainfall-runoff simulation publication-title: J. Hydrol. – volume: 25 start-page: 943 year: 2023 end-page: 970 ident: b0315 article-title: Improved monthly runoff time series prediction using the SOA–SVM model based on ICEEMDAN–WD decomposition publication-title: J. Hydroinf. – volume: 643 year: 2024 ident: b0240 article-title: DTTR: Encoding and decoding monthly runoff prediction model based on deep temporal attention convolution and multimodal fusion publication-title: J. Hydrol. – volume: 629 year: 2024 ident: b0300 article-title: An ensemble model for monthly runoff prediction using least squares support vector machine based on variational modal decomposition with dung beetle optimization algorithm and error correction strategy publication-title: J. Hydrol. – volume: 195 year: 2024 ident: b0245 article-title: Arctic puffin optimization: a bio-inspired metaheuristic algorithm for solving engineering design optimization publication-title: Adv. Eng. Softw. – volume: 61 year: 2025 ident: b0030 article-title: Predicting the Evolution of Extreme Water Levels with Long Short-Term memory Station-based Approximated Models and transfer Learning Techniques publication-title: Water Resour. Res. – volume: 10 start-page: 3944 year: 2024 end-page: 3952 ident: b0145 article-title: Rainfall-Runoff Modeling in a Regional Watershed using the MIKE 11-NAM Model publication-title: Civil Engineering Journal – volume: 643 year: 2024 ident: b0275 article-title: Error correction method based on deep learning for improving the accuracy of conceptual rainfall-runoff model publication-title: J. Hydrol. – volume: 84 year: 2024 ident: b0290 article-title: Two-step hybrid model for monthly runoff prediction utilizing integrated machine learning algorithms and dual signal decompositions publication-title: Eco. Inform. – volume: 622 year: 2023 ident: b0355 article-title: Runoff predictions in new-gauged basins using two transformer-based models publication-title: J. Hydrol. – volume: 651 year: 2025 ident: 10.1016/j.jhydrol.2025.134304_b0020 article-title: Associations between deep learning runoff predictions and hydrogeological conditions in Australia publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2024.132569 – volume: 60 issue: 9 year: 2024 ident: 10.1016/j.jhydrol.2025.134304_b0200 article-title: Streamflow Prediction in Human-Regulated Catchments using Multiscale Deep Learning Modeling with Anthropogenic Similarities publication-title: Water Resour. Res. doi: 10.1029/2023WR036853 – volume: 629 year: 2024 ident: 10.1016/j.jhydrol.2025.134304_b0300 article-title: An ensemble model for monthly runoff prediction using least squares support vector machine based on variational modal decomposition with dung beetle optimization algorithm and error correction strategy publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2023.130558 – volume: 84 year: 2024 ident: 10.1016/j.jhydrol.2025.134304_b0290 article-title: Two-step hybrid model for monthly runoff prediction utilizing integrated machine learning algorithms and dual signal decompositions publication-title: Eco. Inform. – volume: 609 year: 2022 ident: 10.1016/j.jhydrol.2025.134304_b0350 article-title: RR-Former: Rainfall-runoff modeling based on Transformer publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2022.127781 – volume: 14 start-page: 23550 issue: 1 year: 2024 ident: 10.1016/j.jhydrol.2025.134304_b0230 article-title: SMGformer: integrating STL and multi-head self-attention in deep learning model for multi-step runoff forecasting publication-title: Sci. Rep. doi: 10.1038/s41598-024-74329-0 – volume: 61 issue: 3 year: 2025 ident: 10.1016/j.jhydrol.2025.134304_b0095 article-title: Informed neural networks for flood forecasting with limited amount of training data publication-title: Water Resour. Res. doi: 10.1029/2023WR036380 – volume: 646 year: 2025 ident: 10.1016/j.jhydrol.2025.134304_b0120 article-title: Regression-based machine learning approaches for estimating discharge from water levels in microtidal rivers publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2024.132276 – volume: 625 year: 2023 ident: 10.1016/j.jhydrol.2025.134304_b0130 article-title: A review of hybrid deep learning applications for streamflow forecasting publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2023.130141 – volume: 178 year: 2024 ident: 10.1016/j.jhydrol.2025.134304_b0265 article-title: Spatio-temporal deep learning model for accurate streamflow prediction with multi-source data fusion publication-title: Environ. Model. Software doi: 10.1016/j.envsoft.2024.106091 – volume: 636 year: 2024 ident: 10.1016/j.jhydrol.2025.134304_b0325 article-title: Investigating the potential of EMA-embedded feature selection method for ESVR and LSTM to enhance the robustness of monthly streamflow forecasting from local meteorological information publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2024.131230 – volume: 61 start-page: 279 issue: 1 year: 2022 ident: 10.1016/j.jhydrol.2025.134304_b0075 article-title: A review of the hybrid artificial intelligence and optimization modelling of hydrological streamflow forecasting publication-title: Alex. Eng. J. doi: 10.1016/j.aej.2021.04.100 – ident: 10.1016/j.jhydrol.2025.134304_b0085 doi: 10.1109/ICNN.1995.488968 – volume: 24 start-page: 254 issue: 1 year: 2023 ident: 10.1016/j.jhydrol.2025.134304_b0135 article-title: Ground water availability assessment for a data-scarce river basin in Nepal using SWAT hydrological model publication-title: Water Supply doi: 10.2166/ws.2023.332 – volume: 661 year: 2025 ident: 10.1016/j.jhydrol.2025.134304_b0190 article-title: What can be expected from a semi-distributed multi-model approach for streamflow forecasting? Tailoring the structure and size of a super-ensemble on the Rhône basin publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2025.133589 – volume: 10 start-page: 2088 issue: 7 year: 2024 ident: 10.1016/j.jhydrol.2025.134304_b0360 article-title: Empirical Model of Unconsolidated Tephra erosion: Verification and Application on Micro Catchment publication-title: Civil Engineering Journal doi: 10.28991/CEJ-2024-010-07-02 – volume: 154 year: 2025 ident: 10.1016/j.jhydrol.2025.134304_b0070 article-title: A channel-independent network based on wavelet enhancement for long-term time series forecasting publication-title: Eng. Appl. Artif. Intel. doi: 10.1016/j.engappai.2025.110964 – volume: 625 year: 2023 ident: 10.1016/j.jhydrol.2025.134304_b0340 article-title: Deep transfer learning based on transformer for flood forecasting in data-sparse basins publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2023.129956 – volume: 121 start-page: 3915 issue: 4 year: 2025 ident: 10.1016/j.jhydrol.2025.134304_b0125 article-title: Enhancing runoff forecasting through the integration of satellite precipitation data and hydrological knowledge into machine learning models publication-title: Nat. Hazards doi: 10.1007/s11069-024-06939-w – year: 2018 ident: 10.1016/j.jhydrol.2025.134304_b0255 article-title: Hybrid Models Combining EMD/EEMD and ARIMA for Long-Term Streamflow forecasting publication-title: Water – volume: 309 year: 2025 ident: 10.1016/j.jhydrol.2025.134304_b0375 article-title: DTSFormer: Decoupled temporal-spatial diffusion transformer for enhanced long-term time series forecasting publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2024.112828 – volume: 60 issue: 2 year: 2024 ident: 10.1016/j.jhydrol.2025.134304_b0330 article-title: Coupling Deep Learning and Physically based Hydrological Models for Monthly Streamflow predictions publication-title: Water Resour. Res. doi: 10.1029/2023WR035618 – volume: 8 start-page: 687 issue: 2 year: 2024 ident: 10.1016/j.jhydrol.2025.134304_b0280 article-title: Monitoring Agricultural Land loss by Analyzing changes in Land Use and Land Cover publication-title: Emerging Science Journal doi: 10.28991/ESJ-2024-08-02-020 – volume: 143 year: 2025 ident: 10.1016/j.jhydrol.2025.134304_b0010 article-title: Mamba-enhanced spectral-attentive wavelet network for underwater image restoration publication-title: Eng. Appl. Artif. Intel. doi: 10.1016/j.engappai.2024.109999 – volume: 630 year: 2024 ident: 10.1016/j.jhydrol.2025.134304_b0220 article-title: Multiple spatio-temporal scale runoff forecasting and driving mechanism exploration by K-means optimized XGBoost and SHAP publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2024.130650 – volume: 650 year: 2025 ident: 10.1016/j.jhydrol.2025.134304_b0090 article-title: Does grouping watersheds by hydrographic regions offer any advantages in fine-tuning transfer learning model for temporal and spatial streamflow predictions? publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2024.132540 – volume: 14 start-page: 26263 issue: 1 year: 2024 ident: 10.1016/j.jhydrol.2025.134304_b0100 article-title: A hybrid technique to enhance the rainfall-runoff prediction of physical and data-driven model: a case study of Upper Narmada River Sub-basin publication-title: India. Scientific Reports doi: 10.1038/s41598-024-77655-5 – volume: 60 issue: 6 year: 2024 ident: 10.1016/j.jhydrol.2025.134304_b0370 article-title: Development of a distributed Physics-Informed Deep Learning Hydrological Model for Data-Scarce Regions publication-title: Water Resour. Res. doi: 10.1029/2023WR036333 – volume: 25 start-page: 943 issue: 3 year: 2023 ident: 10.1016/j.jhydrol.2025.134304_b0315 article-title: Improved monthly runoff time series prediction using the SOA–SVM model based on ICEEMDAN–WD decomposition publication-title: J. Hydroinf. doi: 10.2166/hydro.2023.172 – volume: 622 year: 2023 ident: 10.1016/j.jhydrol.2025.134304_b0355 article-title: Runoff predictions in new-gauged basins using two transformer-based models publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2023.129684 – volume: 55 start-page: 1182 issue: 12 year: 2024 ident: 10.1016/j.jhydrol.2025.134304_b0080 article-title: Daily runoff prediction based on lightweight Mamba with partial normalization publication-title: Hydrol. Res. doi: 10.2166/nh.2024.063 – volume: 10 start-page: 3944 issue: 12 year: 2024 ident: 10.1016/j.jhydrol.2025.134304_b0145 article-title: Rainfall-Runoff Modeling in a Regional Watershed using the MIKE 11-NAM Model publication-title: Civil Engineering Journal doi: 10.28991/CEJ-2024-010-12-08 – volume: 258 year: 2024 ident: 10.1016/j.jhydrol.2025.134304_b0225 article-title: PI-STGnet: Physics-integrated spatiotemporal graph neural network with fundamental diagram learner for highway traffic flow prediction publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2024.125144 – volume: 645 year: 2024 ident: 10.1016/j.jhydrol.2025.134304_b0065 article-title: A coupled model integrating dual attention mechanism into BiGRU-RED for multi-step-ahead streamflow forecasting publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2024.132137 – year: 2023 ident: 10.1016/j.jhydrol.2025.134304_b0250 article-title: Multi-Reservoir Flood Control operation using improved Bald Eagle Search Algorithm with ε Constraint Method publication-title: Water – volume: 589 year: 2020 ident: 10.1016/j.jhydrol.2025.134304_b0040 article-title: Short-term runoff prediction with GRU and LSTM networks without requiring time step optimization during sample generation publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2020.125188 – volume: 649 year: 2025 ident: 10.1016/j.jhydrol.2025.134304_b0150 article-title: River discharge prediction based multivariate climatological variables using hybridized long short-term memory with nature inspired algorithm publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2024.132453 – year: 2025 ident: 10.1016/j.jhydrol.2025.134304_b0005 article-title: A Hybrid Mamba Architecture with Graph Convolution and Convolutional Self-attention for Multivariate Water Quality forecasting publication-title: Water Resour. Manag. doi: 10.1007/s11269-025-04285-5 – volume: 645 year: 2024 ident: 10.1016/j.jhydrol.2025.134304_b0045 article-title: Advanced streamflow forecasting for central European Rivers: the Cutting-Edge Kolmogorov-Arnold networks compared to Transformers publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2024.132175 – volume: 608 year: 2022 ident: 10.1016/j.jhydrol.2025.134304_b0335 article-title: Research on particle swarm optimization in LSTM neural networks for rainfall-runoff simulation publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2022.127553 – volume: 64 year: 2025 ident: 10.1016/j.jhydrol.2025.134304_b0365 article-title: Cross-supervised contrastive learning domain adaptation network for steel defect segmentation publication-title: Adv. Eng. Inf. doi: 10.1016/j.aei.2024.102964 – volume: 61 issue: 3 year: 2025 ident: 10.1016/j.jhydrol.2025.134304_b0030 article-title: Predicting the Evolution of Extreme Water Levels with Long Short-Term memory Station-based Approximated Models and transfer Learning Techniques publication-title: Water Resour. Res. doi: 10.1029/2024WR039054 – volume: 18 start-page: 120 issue: 1 year: 2024 ident: 10.1016/j.jhydrol.2025.134304_b0235 article-title: A stacking ensemble machine learning model for improving monthly runoff prediction publication-title: Earth Sci. Inf. doi: 10.1007/s12145-024-01544-8 – volume: 12 start-page: 518 issue: 1 year: 2022 ident: 10.1016/j.jhydrol.2025.134304_b0175 article-title: Ensemble streamflow forecasting based on variational mode decomposition and long short term memory publication-title: Sci. Rep. doi: 10.1038/s41598-021-03725-7 – volume: 662 year: 2025 ident: 10.1016/j.jhydrol.2025.134304_b0195 article-title: Accurate runoff prediction in nonlinear and nonstationary environments using a novel hybrid model publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2025.133949 – volume: 169 year: 2026 ident: 10.1016/j.jhydrol.2025.134304_b0025 article-title: MGCM: Multi-modal graph convolutional mamba for cancer survival prediction publication-title: Pattern Recogn. doi: 10.1016/j.patcog.2025.111991 – volume: 660 year: 2025 ident: 10.1016/j.jhydrol.2025.134304_b0180 article-title: A Mamba-based method for multi-feature water quality prediction fusing dual denoising and attention enhancement publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2025.133424 – volume: 643 year: 2024 ident: 10.1016/j.jhydrol.2025.134304_b0240 article-title: DTTR: Encoding and decoding monthly runoff prediction model based on deep temporal attention convolution and multimodal fusion publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2024.131996 – volume: 31 start-page: 22 issue: 12 year: 2021 ident: 10.1016/j.jhydrol.2025.134304_bib376 article-title: Review of flood and drought disaster prevention in the Haihe River Basin in 2021 publication-title: China Flood Drought Manage. – volume: 332 year: 2025 ident: 10.1016/j.jhydrol.2025.134304_b0055 article-title: Dual-path frequency Mamba-Transformer model for wind power forecasting publication-title: Energy doi: 10.1016/j.energy.2025.137225 – volume: 126 year: 2020 ident: 10.1016/j.jhydrol.2025.134304_b0205 article-title: Comparison of short-term streamflow forecasting using stochastic time series, neural networks, process-based, and Bayesian models publication-title: Environ. Model. Software doi: 10.1016/j.envsoft.2020.104669 – volume: 195 year: 2024 ident: 10.1016/j.jhydrol.2025.134304_b0245 article-title: Arctic puffin optimization: a bio-inspired metaheuristic algorithm for solving engineering design optimization publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2024.103694 – volume: 167 year: 2024 ident: 10.1016/j.jhydrol.2025.134304_b0115 article-title: A lightweight visual mamba network for image recognition under resource-limited environments publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2024.112294 – volume: 113 start-page: 287 year: 2025 ident: 10.1016/j.jhydrol.2025.134304_b0015 article-title: Combining market-guided patterns and mamba for stock price prediction publication-title: Alex. Eng. J. doi: 10.1016/j.aej.2024.10.117 – volume: 652 year: 2025 ident: 10.1016/j.jhydrol.2025.134304_b0210 article-title: Establishment of a slope-scale innovated rainfall-runoff model by combining infiltration equation and motion wave equation for watershed flash flood risk prediction publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2025.132700 – volume: 169 year: 2025 ident: 10.1016/j.jhydrol.2025.134304_b0215 article-title: Learning with noisy labels via Mamba and entropy KNN framework publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2024.112596 – volume: 71 start-page: 905 issue: 2 year: 2023 ident: 10.1016/j.jhydrol.2025.134304_b0110 article-title: Investigating the effects of local weather, streamflow lag, and global climate information on 1-month-ahead streamflow forecasting by using XGBoost and SHAP: two case studies involving the contiguous USA publication-title: Acta Geophys. doi: 10.1007/s11600-022-00928-y – ident: 10.1016/j.jhydrol.2025.134304_b0050 – volume: 129 year: 2022 ident: 10.1016/j.jhydrol.2025.134304_b0170 article-title: Sliding window and dual-channel CNN (SWDC-CNN): a novel method for synchronous prediction of coal and electricity consumption in cement calcination process publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2022.109520 – year: 2025 ident: 10.1016/j.jhydrol.2025.134304_b0155 article-title: Advanced Framework for predicting Rainfall-Runoff: Comparative Evaluation of AI Models for Enhanced forecasting Accuracy publication-title: Water Resour. Manag. doi: 10.1007/s11269-025-04106-9 – volume: 8 start-page: 1860 issue: 5 year: 2024 ident: 10.1016/j.jhydrol.2025.134304_b0345 article-title: Extreme Rainfall Trends and Hydrometeorological disasters in Tropical Regions: Implications for climate Resilience publication-title: Emerging Science Journal doi: 10.28991/ESJ-2024-08-05-012 – volume: 645 year: 2024 ident: 10.1016/j.jhydrol.2025.134304_b0295 article-title: A novel daily runoff forecasting model based on global features and enhanced local feature interpretation publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2024.132227 – volume: 39 start-page: 883 issue: 3 year: 2025 ident: 10.1016/j.jhydrol.2025.134304_b0305 article-title: WaveTransTimesNet: an enhanced deep learning monthly runoff prediction model based on wavelet transform and transformer architecture publication-title: Stoch. Env. Res. Risk A. doi: 10.1007/s00477-024-02882-1 – volume: 643 year: 2024 ident: 10.1016/j.jhydrol.2025.134304_b0275 article-title: Error correction method based on deep learning for improving the accuracy of conceptual rainfall-runoff model publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2024.131992 – volume: 211 year: 2022 ident: 10.1016/j.jhydrol.2025.134304_b0105 article-title: Interpretable tree-based ensemble model for predicting beach water quality publication-title: Water Res. doi: 10.1016/j.watres.2022.118078 – volume: 229 year: 2023 ident: 10.1016/j.jhydrol.2025.134304_b0140 article-title: Metaheuristic evolutionary deep learning model based on temporal convolutional network, improved aquila optimizer and random forest for rainfall-runoff simulation and multi-step runoff prediction publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2023.120616 – volume: 26 start-page: 255 issue: 1 year: 2023 ident: 10.1016/j.jhydrol.2025.134304_b0310 article-title: Improved monthly runoff time series prediction using the CABES-LSTM mixture model based on CEEMDAN-VMD decomposition publication-title: J. Hydroinf. doi: 10.2166/hydro.2023.216 – volume: 192 year: 2025 ident: 10.1016/j.jhydrol.2025.134304_b0165 article-title: A dual-model framework combining nonlinear autoregressive with exogenous inputs (NARX) and LSTM networks for enhanced daily runoff prediction and error correction publication-title: Environ. Model. Software doi: 10.1016/j.envsoft.2025.106570 – volume: 619 year: 2025 ident: 10.1016/j.jhydrol.2025.134304_b0260 article-title: Is Mamba effective for time series forecasting? publication-title: Neurocomputing doi: 10.1016/j.neucom.2024.129178 – volume: 374 year: 2025 ident: 10.1016/j.jhydrol.2025.134304_b0270 article-title: Dynamic classification and attention mechanism-based bidirectional long short-term memory network for daily runoff prediction in Aksu River basin, Northwest China publication-title: J. Environ. Manage. doi: 10.1016/j.jenvman.2025.124121 – volume: 636 year: 2024 ident: 10.1016/j.jhydrol.2025.134304_b0035 article-title: Ensemble learning using multivariate variational mode decomposition based on the Transformer for multi-step-ahead streamflow forecasting publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2024.131275 – volume: 65 year: 2025 ident: 10.1016/j.jhydrol.2025.134304_b0160 article-title: Prediction of seam tracking errors in the intelligent welding system: a rapid prediction method based on real-time monitoring data publication-title: Adv. Eng. Inf. doi: 10.1016/j.aei.2025.103124 – volume: 18 start-page: 467 issue: 3 year: 2025 ident: 10.1016/j.jhydrol.2025.134304_b0320 article-title: A novel TCN-augmented CNN-LSTM architecture for accurate monthly runoff forecasting publication-title: Earth Sci. Inf. doi: 10.1007/s12145-025-01966-y – volume: 653 year: 2025 ident: 10.1016/j.jhydrol.2025.134304_b0185 article-title: Causality-Guided deep learning for streamflow predicting in a mountainous region publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2025.132719 – volume: 123 year: 2025 ident: 10.1016/j.jhydrol.2025.134304_b0060 article-title: DPEM: Dual-Perspective Enhanced Mamba for multivariate time series forecasting publication-title: Inf. Fusion doi: 10.1016/j.inffus.2025.103250 – volume: 37 start-page: 937 issue: 2 year: 2023 ident: 10.1016/j.jhydrol.2025.134304_b0285 article-title: Runoff forecasting using Convolutional Neural Networks and optimized Bi-directional Long short-term memory publication-title: Water Resour. Manag. doi: 10.1007/s11269-022-03414-8 |
| SSID | ssj0000334 |
| Score | 2.4883344 |
| Snippet | •The first application of the Mamba architecture is to predict monthly runoff.•Development of a depth-gated attention layer to enhance bidirectional... |
| SourceID | crossref elsevier |
| SourceType | Index Database Publisher |
| StartPage | 134304 |
| SubjectTerms | Attention mechanism Coding and decoding system Deep neural network Mamba Runoff prediction |
| Title | MamGA: a deep neural network architecture for dual-channel parallel monthly runoff prediction based on mamba and depth-gated attention layer |
| URI | https://dx.doi.org/10.1016/j.jhydrol.2025.134304 |
| Volume | 663 |
| WOSCitedRecordID | wos001584773700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 issn: 0022-1694 databaseCode: AIEXJ dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: false ssIdentifier: ssj0000334 providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3bjtMwELVKFwleEFex3OQH3qKUxHFz4a1CywKCFUIL7VuU2A5tlXirkq62_8A38K3MxE4TtisESLxE1qhOUp-jeDyeOSbkOZMq9GPMeeIyd7lMEjcXgrtBAXON4KIomgrvL--jk5N4Nks-DgY_2lqY8zLSOr64SFb_FWqwAdhYOvsXcO9uCgZoA-hwBdjh-kfAf8iq44mpYZZKrRxUrAQctMn3dn7ZOcAcQyzGcrH-V6vSQSXwsoQGvG49L7fOeqPPigKlBOTCnCqO857EPYYqq_KmogvTaet5E6mTDup1mgzKMtva1N9953e-lWuj_gQe7qRCtQaJ1NyFJaY2jj1VGl5uk_XyhU3IdqoWrujMn5StAtBf3VItWvNsY1YJYK2s1YY42PhSush-7c2uDsEPzRHJ7bc8NF_LvXnBhCiWo6X5eyN8ysgPeGDOPr4kuY072AxvDf4hLCe5d40csGicxENyMHl7NHvXzfVBwFs9euzQ1Yi9uPJhV3s_PY_m9Da5ZdGgE0OhO2Sg9F1y41hZEfN75HtDpZc0o0gkaohELZFon0gUiET7RKItkaglEjVEoh2RaEMkCo2GSBSIRHtEojsi0YZI98nn10enr9649vQOV8CSunaLSDEe5izPCiECJsA3HXsZuPtBDktkGCuJWpUKlxi-Jwv4ecCkJ3LwIAupoiJ4QIb6TKuHhKrIg5sAJCIR3GNZHuTKZyJjwg_jjPNDMmpHNV0ZkZa0zV5cphaGFGFIDQyHJG7HPrWepvEgUyDM77s--veuj8nNjt1PyLBeb9RTcl2c14tv62eWWj8BH6Kq4g |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MamGA%3A+a+deep+neural+network+architecture+for+dual-channel+parallel+monthly+runoff+prediction+based+on+mamba+and+depth-gated+attention+layer&rft.jtitle=Journal+of+hydrology+%28Amsterdam%29&rft.au=Wang%2C+Wen-chuan&rft.au=Tian%2C+Wei-can&rft.au=Ren%2C+Ming-lei&rft.au=Xu%2C+Dong-mei&rft.date=2025-12-01&rft.pub=Elsevier+B.V&rft.issn=0022-1694&rft.volume=663&rft_id=info:doi/10.1016%2Fj.jhydrol.2025.134304&rft.externalDocID=S0022169425016440 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-1694&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-1694&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-1694&client=summon |