MamGA: a deep neural network architecture for dual-channel parallel monthly runoff prediction based on mamba and depth-gated attention layer

•The first application of the Mamba architecture is to predict monthly runoff.•Development of a depth-gated attention layer to enhance bidirectional information capture.•Implement coding and decoding systems to capture temporal dynamics and enrich features.•Construction of a dual-channel parallel ar...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of hydrology (Amsterdam) Jg. 663; S. 134304
Hauptverfasser: Wang, Wen-chuan, Tian, Wei-can, Ren, Ming-lei, Xu, Dong-mei
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier B.V 01.12.2025
Schlagworte:
ISSN:0022-1694
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract •The first application of the Mamba architecture is to predict monthly runoff.•Development of a depth-gated attention layer to enhance bidirectional information capture.•Implement coding and decoding systems to capture temporal dynamics and enrich features.•Construction of a dual-channel parallel architecture (MamGA) for accurate runoff prediction.•MamGA achieves a balance between accuracy and efficiency, outperforming other comparison models. Monthly runoff prediction is crucial in water resource management, involving both short-term hydrological dynamics and long-term planning. It has a decisive impact on flood prevention, resource allocation, and ecological protection. In the context of increasing uncertainties in runoff due to climate change and human activities, accurate monthly runoff forecasting becomes even more essential. Therefore, this paper proposes a novel dual-channel parallel monthly runoff prediction deep neural network architecture—MamGA—built on the significant application value of deep neural networks in runoff prediction. The architecture first introduces the Mamba model, which employs a selection mechanism to achieve selective information propagation and suppression, effectively enhancing the processing capability of global feature information while reducing the computational complexity of modelling long sequences. Furthermore, this paper incorporates a Depth-gated Attention Layer that combines bidirectional depth-gated modules and linear attention mechanisms to address the shortcomings of the Mamba network in unidirectional information processing. Integrating an Embedded Coding layer and a Sequential Decoding layer constructs an efficient coding and decoding system, further strengthening the model’s ability to capture global features and temporal information. To validate the effectiveness and advancement of the MamGA model, this study selected the Manwan Station (MW), Xiaowan Station (XW) in China, and the Thunder Creek Station (TC) in the United States as experimental subjects. Five evaluation metrics were employed for comparative analysis against nine benchmark models. The experimental results indicate that the MamGA model exhibits significant superiority across all cases. For instance, at the MW station, compared to the Long Short-Term Memory (LSTM) model, the MamGA model reduced the Mean Absolute Error (MAE) and Normalized Root Mean Square Error (NRMSE) by 33.08% and 23.93%, respectively. Meanwhile, the Nash Efficiency Coefficient (NSE), correlation coefficient (R), and Kling-Gupta Efficiency (KGE) improved by 8.41%, 3.93%, and 8.36%, respectively, with both R and NSE exceeding 0.9. The MamGA model also demonstrated significant performance improvements at other stations compared to the competing models. The study suggests that the MamGA model, as an advanced tool for monthly runoff prediction, can significantly enhance the accuracy of runoff forecasting, providing robust support for the optimal allocation and management of water resources.
AbstractList •The first application of the Mamba architecture is to predict monthly runoff.•Development of a depth-gated attention layer to enhance bidirectional information capture.•Implement coding and decoding systems to capture temporal dynamics and enrich features.•Construction of a dual-channel parallel architecture (MamGA) for accurate runoff prediction.•MamGA achieves a balance between accuracy and efficiency, outperforming other comparison models. Monthly runoff prediction is crucial in water resource management, involving both short-term hydrological dynamics and long-term planning. It has a decisive impact on flood prevention, resource allocation, and ecological protection. In the context of increasing uncertainties in runoff due to climate change and human activities, accurate monthly runoff forecasting becomes even more essential. Therefore, this paper proposes a novel dual-channel parallel monthly runoff prediction deep neural network architecture—MamGA—built on the significant application value of deep neural networks in runoff prediction. The architecture first introduces the Mamba model, which employs a selection mechanism to achieve selective information propagation and suppression, effectively enhancing the processing capability of global feature information while reducing the computational complexity of modelling long sequences. Furthermore, this paper incorporates a Depth-gated Attention Layer that combines bidirectional depth-gated modules and linear attention mechanisms to address the shortcomings of the Mamba network in unidirectional information processing. Integrating an Embedded Coding layer and a Sequential Decoding layer constructs an efficient coding and decoding system, further strengthening the model’s ability to capture global features and temporal information. To validate the effectiveness and advancement of the MamGA model, this study selected the Manwan Station (MW), Xiaowan Station (XW) in China, and the Thunder Creek Station (TC) in the United States as experimental subjects. Five evaluation metrics were employed for comparative analysis against nine benchmark models. The experimental results indicate that the MamGA model exhibits significant superiority across all cases. For instance, at the MW station, compared to the Long Short-Term Memory (LSTM) model, the MamGA model reduced the Mean Absolute Error (MAE) and Normalized Root Mean Square Error (NRMSE) by 33.08% and 23.93%, respectively. Meanwhile, the Nash Efficiency Coefficient (NSE), correlation coefficient (R), and Kling-Gupta Efficiency (KGE) improved by 8.41%, 3.93%, and 8.36%, respectively, with both R and NSE exceeding 0.9. The MamGA model also demonstrated significant performance improvements at other stations compared to the competing models. The study suggests that the MamGA model, as an advanced tool for monthly runoff prediction, can significantly enhance the accuracy of runoff forecasting, providing robust support for the optimal allocation and management of water resources.
ArticleNumber 134304
Author Wang, Wen-chuan
Ren, Ming-lei
Tian, Wei-can
Xu, Dong-mei
Author_xml – sequence: 1
  givenname: Wen-chuan
  orcidid: 0000-0003-1367-5886
  surname: Wang
  fullname: Wang, Wen-chuan
  email: wangwenchuan@ncwu.edu.cn
  organization: College of Water Resources, North China University of Water Resources and Electric Power, Zhengzhou 450046, China
– sequence: 2
  givenname: Wei-can
  orcidid: 0009-0006-5573-2200
  surname: Tian
  fullname: Tian, Wei-can
  email: tianwei200002@163.com
  organization: College of Water Resources, North China University of Water Resources and Electric Power, Zhengzhou 450046, China
– sequence: 3
  givenname: Ming-lei
  surname: Ren
  fullname: Ren, Ming-lei
  email: renml@iwhr.com
  organization: China Institute of Water Resources and Hydropower Research, Beijing 100038, China
– sequence: 4
  givenname: Dong-mei
  surname: Xu
  fullname: Xu, Dong-mei
  email: xudongmei@ncwu.edu.cn
  organization: College of Water Resources, North China University of Water Resources and Electric Power, Zhengzhou 450046, China
BookMark eNqFkEtOwzAQhr0oEm3hCEi-QIofSR9sUFVBQSpiA2trYo9JSmJHjgvKHTg0Lu2e2fwjzT-vb0JGzjsk5IazGWd8fruf7avBBN_MBBPFjMtcsnxExowJkfH5Kr8kk77fsxRS5mPy8wLtdn1HgRrEjjo8BGiSxG8fPikEXdURdTwEpNYHag7QZLoC57ChHSRvk5LWu1g1Aw0H562lXUBT61h7R0vo0dCUtNCWQMGZtKeLVfYBMRUgRnR_xgYGDFfkwkLT4_VZp-T98eFt85TtXrfPm_Uu06JYxcwuUOTzUpRgtZZCs0VRMCiEkOWikOlHk6_EHBlfCc6MTXYpDNPlki-twYWVU1Kc5urg-z6gVV2oWwiD4kwdMaq9OmNUR4zqhDH13Z_6MB33VWNQva7R6fRuSJCU8fU_E34B2suFNA
Cites_doi 10.1016/j.jhydrol.2024.132569
10.1029/2023WR036853
10.1016/j.jhydrol.2023.130558
10.1016/j.jhydrol.2022.127781
10.1038/s41598-024-74329-0
10.1029/2023WR036380
10.1016/j.jhydrol.2024.132276
10.1016/j.jhydrol.2023.130141
10.1016/j.envsoft.2024.106091
10.1016/j.jhydrol.2024.131230
10.1016/j.aej.2021.04.100
10.1109/ICNN.1995.488968
10.2166/ws.2023.332
10.1016/j.jhydrol.2025.133589
10.28991/CEJ-2024-010-07-02
10.1016/j.engappai.2025.110964
10.1016/j.jhydrol.2023.129956
10.1007/s11069-024-06939-w
10.1016/j.knosys.2024.112828
10.1029/2023WR035618
10.28991/ESJ-2024-08-02-020
10.1016/j.engappai.2024.109999
10.1016/j.jhydrol.2024.130650
10.1016/j.jhydrol.2024.132540
10.1038/s41598-024-77655-5
10.1029/2023WR036333
10.2166/hydro.2023.172
10.1016/j.jhydrol.2023.129684
10.2166/nh.2024.063
10.28991/CEJ-2024-010-12-08
10.1016/j.eswa.2024.125144
10.1016/j.jhydrol.2024.132137
10.1016/j.jhydrol.2020.125188
10.1016/j.jhydrol.2024.132453
10.1007/s11269-025-04285-5
10.1016/j.jhydrol.2024.132175
10.1016/j.jhydrol.2022.127553
10.1016/j.aei.2024.102964
10.1029/2024WR039054
10.1007/s12145-024-01544-8
10.1038/s41598-021-03725-7
10.1016/j.jhydrol.2025.133949
10.1016/j.patcog.2025.111991
10.1016/j.jhydrol.2025.133424
10.1016/j.jhydrol.2024.131996
10.1016/j.energy.2025.137225
10.1016/j.envsoft.2020.104669
10.1016/j.advengsoft.2024.103694
10.1016/j.asoc.2024.112294
10.1016/j.aej.2024.10.117
10.1016/j.jhydrol.2025.132700
10.1016/j.asoc.2024.112596
10.1007/s11600-022-00928-y
10.1016/j.asoc.2022.109520
10.1007/s11269-025-04106-9
10.28991/ESJ-2024-08-05-012
10.1016/j.jhydrol.2024.132227
10.1007/s00477-024-02882-1
10.1016/j.jhydrol.2024.131992
10.1016/j.watres.2022.118078
10.1016/j.eswa.2023.120616
10.2166/hydro.2023.216
10.1016/j.envsoft.2025.106570
10.1016/j.neucom.2024.129178
10.1016/j.jenvman.2025.124121
10.1016/j.jhydrol.2024.131275
10.1016/j.aei.2025.103124
10.1007/s12145-025-01966-y
10.1016/j.jhydrol.2025.132719
10.1016/j.inffus.2025.103250
10.1007/s11269-022-03414-8
ContentType Journal Article
Copyright 2025 Elsevier B.V.
Copyright_xml – notice: 2025 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.jhydrol.2025.134304
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Geography
ExternalDocumentID 10_1016_j_jhydrol_2025_134304
S0022169425016440
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
29K
4.4
457
4G.
5GY
5VS
6TJ
7-5
71M
8P~
9DU
9JM
9JN
AABNK
AAEDT
AAEDW
AAHBH
AAIKJ
AAKOC
AALCJ
AALRI
AAOAW
AAQFI
AAQXK
AATLK
AATTM
AAXKI
AAXUO
AAYWO
ABEFU
ABFNM
ABGRD
ABJNI
ABMAC
ABQEM
ABQYD
ABUFD
ABWVN
ABXDB
ACDAQ
ACGFS
ACIUM
ACLOT
ACLVX
ACNCT
ACRLP
ACRPL
ACSBN
ACVFH
ADBBV
ADCNI
ADEZE
ADMUD
ADNMO
ADQTV
ADVLN
AEBSH
AEIPS
AEKER
AENEX
AEQOU
AEUPX
AFFNX
AFJKZ
AFPUW
AFTJW
AFXIZ
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
ASPBG
ATOGT
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
D-I
DU5
EBS
EFJIC
EFKBS
EFLBG
EJD
EO8
EO9
EP2
EP3
FA8
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLV
HMA
HVGLF
HZ~
H~9
IHE
IMUCA
J1W
K-O
KOM
LW9
LY3
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
SAB
SCC
SDF
SDG
SDP
SEP
SES
SEW
SPC
SPCBC
SPD
SSA
SSE
SSZ
T5K
TN5
UQL
VOH
WUQ
Y6R
ZCA
ZMT
ZY4
~02
~G-
~HD
~KM
AAYXX
CITATION
ID FETCH-LOGICAL-c259t-f7e246b2bafcc32c07550a5223b753694d4926e019210dff7e32d0cb818fde7f3
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001584773700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0022-1694
IngestDate Thu Nov 27 01:04:38 EST 2025
Wed Dec 10 14:23:01 EST 2025
IsPeerReviewed true
IsScholarly true
Keywords Attention mechanism
Mamba
Deep neural network
Runoff prediction
Coding and decoding system
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c259t-f7e246b2bafcc32c07550a5223b753694d4926e019210dff7e32d0cb818fde7f3
ORCID 0000-0003-1367-5886
0009-0006-5573-2200
ParticipantIDs crossref_primary_10_1016_j_jhydrol_2025_134304
elsevier_sciencedirect_doi_10_1016_j_jhydrol_2025_134304
PublicationCentury 2000
PublicationDate December 2025
2025-12-00
PublicationDateYYYYMMDD 2025-12-01
PublicationDate_xml – month: 12
  year: 2025
  text: December 2025
PublicationDecade 2020
PublicationTitle Journal of hydrology (Amsterdam)
PublicationYear 2025
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Wang, Jin, Jing, Bi, Yang (b0215) 2025; 169
Xu, Liao, Wang, Tian, Zang (b0310) 2023; 26
Wagena, Goering, Collick, Bock, Fuka, Buda, Easton (b0205) 2020; 126
Wang, Ngoduy, Zou, Dantsuji, Liu, Li (b0225) 2024; 258
Kennedy, J., Eberhart, R., 1995. Particle swarm optimization, Proceedings of ICNN'95 - International Conference on Neural Networks, pp. 1942-1948 vol.4. DOI:https://doi.org/10.1109/ICNN.1995.488968.
Wenchuan, Yanwei, Dongmei, Yanghao (b0275) 2024; 643
Gao, Huang, Zhang, Han, Wang, Zhang, Lin (b0040) 2020; 589
Shi, Huang, Hao, Yang, Li (b0170) 2022; 129
Xu, Wang, Wang, Chau, Zang (b0315) 2023; 25
Xu, Hong, Wang, Li, Wang (b0295) 2024; 645
Xu, Zeng, Wang, Gu, Wang, Li (b0320) 2025; 18
Granata, Zhu, Di Nunno (b0045) 2024; 645
Xu, Yang, Zhao (bib376) 2021; 31
Yin, Zhu, Zhang, Xing, Xia, Liu, Zhang (b0355) 2023; 622
Zhu, Liu, Chen, Liu, Tao (b0375) 2025; 309
Fang, Yang, Wen, Yu, Li, Adamowski, Barzegar (b0035) 2024; 636
Ng, Huang, Koo, Chong, El-Shafie, Najah Ahmed (b0130) 2023; 625
Cui, Li, Shen, Wang (b0025) 2026; 169
Xu, Shi, Wu, Qu, Li, Sun, Yang, Jiang, Qiu (b0325) 2024; 636
Qiao, Peng, Sun, Zhang, Liu, Zhang, Wang, Shahzad Nazir (b0140) 2023; 229
Wang, Gu, Hong, Hu, Zang, Chen, Jin (b0230) 2024; 14
Khoshkalam, Rousseau, Rahmani, Shen, Abbasnezhadi (b0090) 2025; 650
Clark, Jaffrés (b0020) 2025; 651
Mihel, Krvavica, Lerga (b0120) 2025; 646
Xu, Hu, Wu, Jian, Li, Chen, Zhang, Zhang, Wang (b0335) 2022; 608
Sanikhani, Nikpour, Jamshidi (b0155) 2025
Wang, Xu, Bao, Wu, Cui (b0265) 2024; 178
Wang, Tian, Hu, Hong, Chai, Xu (b0240) 2024; 643
Xu, Lin, Hu, Wang, Wu, Zhang, Ran (b0340) 2023; 625
Wang, Kong, Feng, Wang, Yang, Zhao, Wang, Zhang (b0260) 2025; 619
Komiya, Kiyotake, Nakada, Fujishima, Mori (b0095) 2025; 61
Thébault, Perrin, Legrand, Andréassian, Thirel, Delaigue (b0190) 2025; 661
Huang, Zhang, Liu (b0070) 2025; 154
Tang, Qin, Wu, Zhao, Li (b0185) 2025; 653
Daramola, Muñoz, Muñoz, Saksena, Irish (b0030) 2025; 61
Wang, Gu, Li, Hong, Zang, Xu (b0235) 2024; 18
Wei, Yang, Fu, Xue (b0270) 2025; 374
Liu, Liang, Zhao (b0115) 2024; 167
Yanfatriani, Marzuki, Vonnisa, Razi, Hapsoro, Ramadhan, Yusnaini (b0345) 2024; 8
Kumar, Choudhary, Thomas (b0100) 2024; 14
Wu, Wang, Hu, Tao, Dong (b0285) 2023; 37
Zhong, Lei, Yang (b0370) 2024; 60
Sun, Zhang, Wang, Shi, Hua, Li (b0175) 2022; 12
Tursun, Xie, Wang, Peng, Liu, Zheng, Wu, Nie (b0200) 2024; 60
Wang, Tian, Xu, Zang (b0245) 2024; 195
Xu, Li, Wang (b0300) 2024; 629
Hong, Han, Yan, Liu (b0055) 2025; 332
Liu, Ren, Ming, Qu, Guo, Li (b0110) 2023; 71
Wang, Qiu, Li (b0255) 2018
Wang, Dai, Wang, Yinglan, Miao, Xue, Wang, Zhu (b0210) 2025; 652
Yunita, Soekarno, Nugroho, Santosa (b0360) 2024; 10
Li, Qiao, Yu, Wang, Li, Liao, Zhu (b0105) 2022; 211
Hou, Liu, He, Liu, Huang, Xie, Xie, Dai (b0060) 2025; 123
Ibrahim, Huang, Ahmed, Koo, El-Shafie (b0075) 2022; 61
Wang, Peng (b0220) 2024; 630
Wu, Dong, Guzmán, Conde, Wang, Zhu, Shao, Meng (b0290) 2024; 84
Yin, Guo, Zhang, Chen, Zhang (b0350) 2022; 609
Worachairungreung, Kulpanich, Thanakunwutthirot, Hemwan (b0280) 2024; 8
Shi, Wan, Zhao, Deng (b0165) 2025; 192
Chang, Yuan, Li (b0010) 2025; 143
Huang, Zhou, Li, Yu, Li, Fang (b0065) 2024; 645
Tian, Wang, Wang, Shi, Ma (b0195) 2025; 662
Prajapati, Ibrahim, Goyal, Thapa, Maharjan (b0135) 2023; 24
Chang, Lu, Xue, Lu (b0015) 2025; 113
Xu, Li, Wang, Hong, Gu, Hu, Wang (b0305) 2025; 39
Gu, A., Dao, T., 2023. Mamba: Linear-Time Sequence Modeling with Selective State Spaces, pp. arXiv:2312.00752. Doi: 10.48550/arXiv.2312.0075.
Xu, Chen, Corzo, Xu, Zhang, Xiong, Liu, Xia (b0330) 2024; 60
Jia, Li, Huang, Chen (b0080) 2024; 55
Zhao, Zhang, Duan, Yu (b0365) 2025; 64
Samantaray, Sahoo, Yaseen, Al-Suwaiyan (b0150) 2025; 649
Bai, Tan, Yue (b0005) 2025
Muñoz, Muñoz, Orellana-Alvear, Célleri (b0125) 2025; 121
Tan, Bai, Yue, Jia (b0180) 2025; 660
Wang, Tian, Chau, Zang, Ma, Feng, Xu (b0250) 2023
Saad, Khayyun (b0145) 2024; 10
Shang, Xu, Li, Xiao, Zhou, He (b0160) 2025; 65
Yunita (10.1016/j.jhydrol.2025.134304_b0360) 2024; 10
Cui (10.1016/j.jhydrol.2025.134304_b0025) 2026; 169
Sun (10.1016/j.jhydrol.2025.134304_b0175) 2022; 12
Xu (10.1016/j.jhydrol.2025.134304_b0315) 2023; 25
Fang (10.1016/j.jhydrol.2025.134304_b0035) 2024; 636
Wang (10.1016/j.jhydrol.2025.134304_b0220) 2024; 630
Jia (10.1016/j.jhydrol.2025.134304_b0080) 2024; 55
Xu (10.1016/j.jhydrol.2025.134304_b0325) 2024; 636
Ng (10.1016/j.jhydrol.2025.134304_b0130) 2023; 625
Yanfatriani (10.1016/j.jhydrol.2025.134304_b0345) 2024; 8
Shi (10.1016/j.jhydrol.2025.134304_b0165) 2025; 192
Wang (10.1016/j.jhydrol.2025.134304_b0215) 2025; 169
Wang (10.1016/j.jhydrol.2025.134304_b0255) 2018
Komiya (10.1016/j.jhydrol.2025.134304_b0095) 2025; 61
Prajapati (10.1016/j.jhydrol.2025.134304_b0135) 2023; 24
Wu (10.1016/j.jhydrol.2025.134304_b0285) 2023; 37
Liu (10.1016/j.jhydrol.2025.134304_b0115) 2024; 167
Shang (10.1016/j.jhydrol.2025.134304_b0160) 2025; 65
10.1016/j.jhydrol.2025.134304_b0085
Xu (10.1016/j.jhydrol.2025.134304_b0300) 2024; 629
Huang (10.1016/j.jhydrol.2025.134304_b0070) 2025; 154
Saad (10.1016/j.jhydrol.2025.134304_b0145) 2024; 10
Chang (10.1016/j.jhydrol.2025.134304_b0010) 2025; 143
Granata (10.1016/j.jhydrol.2025.134304_b0045) 2024; 645
Tan (10.1016/j.jhydrol.2025.134304_b0180) 2025; 660
Tursun (10.1016/j.jhydrol.2025.134304_b0200) 2024; 60
Samantaray (10.1016/j.jhydrol.2025.134304_b0150) 2025; 649
Wang (10.1016/j.jhydrol.2025.134304_b0265) 2024; 178
Gao (10.1016/j.jhydrol.2025.134304_b0040) 2020; 589
Xu (10.1016/j.jhydrol.2025.134304_b0340) 2023; 625
Xu (10.1016/j.jhydrol.2025.134304_b0295) 2024; 645
Xu (10.1016/j.jhydrol.2025.134304_b0320) 2025; 18
Wenchuan (10.1016/j.jhydrol.2025.134304_b0275) 2024; 643
Wagena (10.1016/j.jhydrol.2025.134304_b0205) 2020; 126
Zhu (10.1016/j.jhydrol.2025.134304_b0375) 2025; 309
Wang (10.1016/j.jhydrol.2025.134304_b0240) 2024; 643
Hou (10.1016/j.jhydrol.2025.134304_b0060) 2025; 123
Wang (10.1016/j.jhydrol.2025.134304_b0210) 2025; 652
Muñoz (10.1016/j.jhydrol.2025.134304_b0125) 2025; 121
Sanikhani (10.1016/j.jhydrol.2025.134304_b0155) 2025
Wang (10.1016/j.jhydrol.2025.134304_b0230) 2024; 14
Xu (10.1016/j.jhydrol.2025.134304_b0330) 2024; 60
Clark (10.1016/j.jhydrol.2025.134304_b0020) 2025; 651
Daramola (10.1016/j.jhydrol.2025.134304_b0030) 2025; 61
Mihel (10.1016/j.jhydrol.2025.134304_b0120) 2025; 646
Wang (10.1016/j.jhydrol.2025.134304_b0225) 2024; 258
Li (10.1016/j.jhydrol.2025.134304_b0105) 2022; 211
Wang (10.1016/j.jhydrol.2025.134304_b0250) 2023
Ibrahim (10.1016/j.jhydrol.2025.134304_b0075) 2022; 61
Xu (10.1016/j.jhydrol.2025.134304_bib376) 2021; 31
Yin (10.1016/j.jhydrol.2025.134304_b0355) 2023; 622
Yin (10.1016/j.jhydrol.2025.134304_b0350) 2022; 609
Bai (10.1016/j.jhydrol.2025.134304_b0005) 2025
Thébault (10.1016/j.jhydrol.2025.134304_b0190) 2025; 661
Worachairungreung (10.1016/j.jhydrol.2025.134304_b0280) 2024; 8
Wang (10.1016/j.jhydrol.2025.134304_b0260) 2025; 619
Xu (10.1016/j.jhydrol.2025.134304_b0310) 2023; 26
Zhong (10.1016/j.jhydrol.2025.134304_b0370) 2024; 60
Xu (10.1016/j.jhydrol.2025.134304_b0335) 2022; 608
Kumar (10.1016/j.jhydrol.2025.134304_b0100) 2024; 14
Chang (10.1016/j.jhydrol.2025.134304_b0015) 2025; 113
Tian (10.1016/j.jhydrol.2025.134304_b0195) 2025; 662
Wu (10.1016/j.jhydrol.2025.134304_b0290) 2024; 84
Wang (10.1016/j.jhydrol.2025.134304_b0235) 2024; 18
Wang (10.1016/j.jhydrol.2025.134304_b0245) 2024; 195
Hong (10.1016/j.jhydrol.2025.134304_b0055) 2025; 332
Zhao (10.1016/j.jhydrol.2025.134304_b0365) 2025; 64
Shi (10.1016/j.jhydrol.2025.134304_b0170) 2022; 129
Xu (10.1016/j.jhydrol.2025.134304_b0305) 2025; 39
Wei (10.1016/j.jhydrol.2025.134304_b0270) 2025; 374
Liu (10.1016/j.jhydrol.2025.134304_b0110) 2023; 71
Tang (10.1016/j.jhydrol.2025.134304_b0185) 2025; 653
Huang (10.1016/j.jhydrol.2025.134304_b0065) 2024; 645
Khoshkalam (10.1016/j.jhydrol.2025.134304_b0090) 2025; 650
Qiao (10.1016/j.jhydrol.2025.134304_b0140) 2023; 229
10.1016/j.jhydrol.2025.134304_b0050
References_xml – volume: 636
  year: 2024
  ident: b0035
  article-title: Ensemble learning using multivariate variational mode decomposition based on the Transformer for multi-step-ahead streamflow forecasting
  publication-title: J. Hydrol.
– volume: 589
  year: 2020
  ident: b0040
  article-title: Short-term runoff prediction with GRU and LSTM networks without requiring time step optimization during sample generation
  publication-title: J. Hydrol.
– volume: 192
  year: 2025
  ident: b0165
  article-title: A dual-model framework combining nonlinear autoregressive with exogenous inputs (NARX) and LSTM networks for enhanced daily runoff prediction and error correction
  publication-title: Environ. Model. Software
– year: 2023
  ident: b0250
  article-title: Multi-Reservoir Flood Control operation using improved Bald Eagle Search Algorithm with ε Constraint Method
  publication-title: Water
– volume: 630
  year: 2024
  ident: b0220
  article-title: Multiple spatio-temporal scale runoff forecasting and driving mechanism exploration by K-means optimized XGBoost and SHAP
  publication-title: J. Hydrol.
– volume: 649
  year: 2025
  ident: b0150
  article-title: River discharge prediction based multivariate climatological variables using hybridized long short-term memory with nature inspired algorithm
  publication-title: J. Hydrol.
– volume: 652
  year: 2025
  ident: b0210
  article-title: Establishment of a slope-scale innovated rainfall-runoff model by combining infiltration equation and motion wave equation for watershed flash flood risk prediction
  publication-title: J. Hydrol.
– volume: 24
  start-page: 254
  year: 2023
  end-page: 271
  ident: b0135
  article-title: Ground water availability assessment for a data-scarce river basin in Nepal using SWAT hydrological model
  publication-title: Water Supply
– volume: 126
  year: 2020
  ident: b0205
  article-title: Comparison of short-term streamflow forecasting using stochastic time series, neural networks, process-based, and Bayesian models
  publication-title: Environ. Model. Software
– volume: 660
  year: 2025
  ident: b0180
  article-title: A Mamba-based method for multi-feature water quality prediction fusing dual denoising and attention enhancement
  publication-title: J. Hydrol.
– volume: 129
  year: 2022
  ident: b0170
  article-title: Sliding window and dual-channel CNN (SWDC-CNN): a novel method for synchronous prediction of coal and electricity consumption in cement calcination process
  publication-title: Appl. Soft Comput.
– volume: 143
  year: 2025
  ident: b0010
  article-title: Mamba-enhanced spectral-attentive wavelet network for underwater image restoration
  publication-title: Eng. Appl. Artif. Intel.
– volume: 18
  start-page: 120
  year: 2024
  ident: b0235
  article-title: A stacking ensemble machine learning model for improving monthly runoff prediction
  publication-title: Earth Sci. Inf.
– volume: 61
  start-page: 279
  year: 2022
  end-page: 303
  ident: b0075
  article-title: A review of the hybrid artificial intelligence and optimization modelling of hydrological streamflow forecasting
  publication-title: Alex. Eng. J.
– volume: 169
  year: 2025
  ident: b0215
  article-title: Learning with noisy labels via Mamba and entropy KNN framework
  publication-title: Appl. Soft Comput.
– year: 2018
  ident: b0255
  article-title: Hybrid Models Combining EMD/EEMD and ARIMA for Long-Term Streamflow forecasting
  publication-title: Water
– volume: 10
  start-page: 2088
  year: 2024
  end-page: 2104
  ident: b0360
  article-title: Empirical Model of Unconsolidated Tephra erosion: Verification and Application on Micro Catchment
  publication-title: Civil Engineering Journal
– volume: 71
  start-page: 905
  year: 2023
  end-page: 925
  ident: b0110
  article-title: Investigating the effects of local weather, streamflow lag, and global climate information on 1-month-ahead streamflow forecasting by using XGBoost and SHAP: two case studies involving the contiguous USA
  publication-title: Acta Geophys.
– volume: 39
  start-page: 883
  year: 2025
  end-page: 910
  ident: b0305
  article-title: WaveTransTimesNet: an enhanced deep learning monthly runoff prediction model based on wavelet transform and transformer architecture
  publication-title: Stoch. Env. Res. Risk A.
– volume: 14
  start-page: 26263
  year: 2024
  ident: b0100
  article-title: A hybrid technique to enhance the rainfall-runoff prediction of physical and data-driven model: a case study of Upper Narmada River Sub-basin
  publication-title: India. Scientific Reports
– year: 2025
  ident: b0005
  article-title: A Hybrid Mamba Architecture with Graph Convolution and Convolutional Self-attention for Multivariate Water Quality forecasting
  publication-title: Water Resour. Manag.
– volume: 154
  year: 2025
  ident: b0070
  article-title: A channel-independent network based on wavelet enhancement for long-term time series forecasting
  publication-title: Eng. Appl. Artif. Intel.
– volume: 619
  year: 2025
  ident: b0260
  article-title: Is Mamba effective for time series forecasting?
  publication-title: Neurocomputing
– volume: 309
  year: 2025
  ident: b0375
  article-title: DTSFormer: Decoupled temporal-spatial diffusion transformer for enhanced long-term time series forecasting
  publication-title: Knowl.-Based Syst.
– volume: 650
  year: 2025
  ident: b0090
  article-title: Does grouping watersheds by hydrographic regions offer any advantages in fine-tuning transfer learning model for temporal and spatial streamflow predictions?
  publication-title: J. Hydrol.
– volume: 8
  start-page: 687
  year: 2024
  end-page: 699
  ident: b0280
  article-title: Monitoring Agricultural Land loss by Analyzing changes in Land Use and Land Cover
  publication-title: Emerging Science Journal
– volume: 229
  year: 2023
  ident: b0140
  article-title: Metaheuristic evolutionary deep learning model based on temporal convolutional network, improved aquila optimizer and random forest for rainfall-runoff simulation and multi-step runoff prediction
  publication-title: Expert Syst. Appl.
– volume: 169
  year: 2026
  ident: b0025
  article-title: MGCM: Multi-modal graph convolutional mamba for cancer survival prediction
  publication-title: Pattern Recogn.
– volume: 374
  year: 2025
  ident: b0270
  article-title: Dynamic classification and attention mechanism-based bidirectional long short-term memory network for daily runoff prediction in Aksu River basin, Northwest China
  publication-title: J. Environ. Manage.
– volume: 653
  year: 2025
  ident: b0185
  article-title: Causality-Guided deep learning for streamflow predicting in a mountainous region
  publication-title: J. Hydrol.
– volume: 167
  year: 2024
  ident: b0115
  article-title: A lightweight visual mamba network for image recognition under resource-limited environments
  publication-title: Appl. Soft Comput.
– volume: 61
  year: 2025
  ident: b0095
  article-title: Informed neural networks for flood forecasting with limited amount of training data
  publication-title: Water Resour. Res.
– volume: 211
  year: 2022
  ident: b0105
  article-title: Interpretable tree-based ensemble model for predicting beach water quality
  publication-title: Water Res.
– volume: 113
  start-page: 287
  year: 2025
  end-page: 293
  ident: b0015
  article-title: Combining market-guided patterns and mamba for stock price prediction
  publication-title: Alex. Eng. J.
– volume: 625
  year: 2023
  ident: b0130
  article-title: A review of hybrid deep learning applications for streamflow forecasting
  publication-title: J. Hydrol.
– volume: 258
  year: 2024
  ident: b0225
  article-title: PI-STGnet: Physics-integrated spatiotemporal graph neural network with fundamental diagram learner for highway traffic flow prediction
  publication-title: Expert Syst. Appl.
– volume: 65
  year: 2025
  ident: b0160
  article-title: Prediction of seam tracking errors in the intelligent welding system: a rapid prediction method based on real-time monitoring data
  publication-title: Adv. Eng. Inf.
– volume: 14
  start-page: 23550
  year: 2024
  ident: b0230
  article-title: SMGformer: integrating STL and multi-head self-attention in deep learning model for multi-step runoff forecasting
  publication-title: Sci. Rep.
– volume: 178
  year: 2024
  ident: b0265
  article-title: Spatio-temporal deep learning model for accurate streamflow prediction with multi-source data fusion
  publication-title: Environ. Model. Software
– volume: 646
  year: 2025
  ident: b0120
  article-title: Regression-based machine learning approaches for estimating discharge from water levels in microtidal rivers
  publication-title: J. Hydrol.
– volume: 55
  start-page: 1182
  year: 2024
  end-page: 1196
  ident: b0080
  article-title: Daily runoff prediction based on lightweight Mamba with partial normalization
  publication-title: Hydrol. Res.
– volume: 645
  year: 2024
  ident: b0065
  article-title: A coupled model integrating dual attention mechanism into BiGRU-RED for multi-step-ahead streamflow forecasting
  publication-title: J. Hydrol.
– volume: 18
  start-page: 467
  year: 2025
  ident: b0320
  article-title: A novel TCN-augmented CNN-LSTM architecture for accurate monthly runoff forecasting
  publication-title: Earth Sci. Inf.
– volume: 645
  year: 2024
  ident: b0045
  article-title: Advanced streamflow forecasting for central European Rivers: the Cutting-Edge Kolmogorov-Arnold networks compared to Transformers
  publication-title: J. Hydrol.
– reference: Kennedy, J., Eberhart, R., 1995. Particle swarm optimization, Proceedings of ICNN'95 - International Conference on Neural Networks, pp. 1942-1948 vol.4. DOI:https://doi.org/10.1109/ICNN.1995.488968.
– volume: 662
  year: 2025
  ident: b0195
  article-title: Accurate runoff prediction in nonlinear and nonstationary environments using a novel hybrid model
  publication-title: J. Hydrol.
– volume: 26
  start-page: 255
  year: 2023
  end-page: 283
  ident: b0310
  article-title: Improved monthly runoff time series prediction using the CABES-LSTM mixture model based on CEEMDAN-VMD decomposition
  publication-title: J. Hydroinf.
– volume: 121
  start-page: 3915
  year: 2025
  end-page: 3937
  ident: b0125
  article-title: Enhancing runoff forecasting through the integration of satellite precipitation data and hydrological knowledge into machine learning models
  publication-title: Nat. Hazards
– volume: 332
  year: 2025
  ident: b0055
  article-title: Dual-path frequency Mamba-Transformer model for wind power forecasting
  publication-title: Energy
– volume: 636
  year: 2024
  ident: b0325
  article-title: Investigating the potential of EMA-embedded feature selection method for ESVR and LSTM to enhance the robustness of monthly streamflow forecasting from local meteorological information
  publication-title: J. Hydrol.
– volume: 64
  year: 2025
  ident: b0365
  article-title: Cross-supervised contrastive learning domain adaptation network for steel defect segmentation
  publication-title: Adv. Eng. Inf.
– volume: 31
  start-page: 22
  year: 2021
  end-page: 24+33
  ident: bib376
  article-title: Review of flood and drought disaster prevention in the Haihe River Basin in 2021
  publication-title: China Flood Drought Manage.
– year: 2025
  ident: b0155
  article-title: Advanced Framework for predicting Rainfall-Runoff: Comparative Evaluation of AI Models for Enhanced forecasting Accuracy
  publication-title: Water Resour. Manag.
– volume: 8
  start-page: 1860
  year: 2024
  end-page: 1874
  ident: b0345
  article-title: Extreme Rainfall Trends and Hydrometeorological disasters in Tropical Regions: Implications for climate Resilience
  publication-title: Emerging Science Journal
– volume: 60
  year: 2024
  ident: b0370
  article-title: Development of a distributed Physics-Informed Deep Learning Hydrological Model for Data-Scarce Regions
  publication-title: Water Resour. Res.
– volume: 651
  year: 2025
  ident: b0020
  article-title: Associations between deep learning runoff predictions and hydrogeological conditions in Australia
  publication-title: J. Hydrol.
– reference: Gu, A., Dao, T., 2023. Mamba: Linear-Time Sequence Modeling with Selective State Spaces, pp. arXiv:2312.00752. Doi: 10.48550/arXiv.2312.0075.
– volume: 123
  year: 2025
  ident: b0060
  article-title: DPEM: Dual-Perspective Enhanced Mamba for multivariate time series forecasting
  publication-title: Inf. Fusion
– volume: 37
  start-page: 937
  year: 2023
  end-page: 953
  ident: b0285
  article-title: Runoff forecasting using Convolutional Neural Networks and optimized Bi-directional Long short-term memory
  publication-title: Water Resour. Manag.
– volume: 12
  start-page: 518
  year: 2022
  ident: b0175
  article-title: Ensemble streamflow forecasting based on variational mode decomposition and long short term memory
  publication-title: Sci. Rep.
– volume: 661
  year: 2025
  ident: b0190
  article-title: What can be expected from a semi-distributed multi-model approach for streamflow forecasting? Tailoring the structure and size of a super-ensemble on the Rhône basin
  publication-title: J. Hydrol.
– volume: 645
  year: 2024
  ident: b0295
  article-title: A novel daily runoff forecasting model based on global features and enhanced local feature interpretation
  publication-title: J. Hydrol.
– volume: 60
  year: 2024
  ident: b0200
  article-title: Streamflow Prediction in Human-Regulated Catchments using Multiscale Deep Learning Modeling with Anthropogenic Similarities
  publication-title: Water Resour. Res.
– volume: 625
  year: 2023
  ident: b0340
  article-title: Deep transfer learning based on transformer for flood forecasting in data-sparse basins
  publication-title: J. Hydrol.
– volume: 60
  year: 2024
  ident: b0330
  article-title: Coupling Deep Learning and Physically based Hydrological Models for Monthly Streamflow predictions
  publication-title: Water Resour. Res.
– volume: 609
  year: 2022
  ident: b0350
  article-title: RR-Former: Rainfall-runoff modeling based on Transformer
  publication-title: J. Hydrol.
– volume: 608
  year: 2022
  ident: b0335
  article-title: Research on particle swarm optimization in LSTM neural networks for rainfall-runoff simulation
  publication-title: J. Hydrol.
– volume: 25
  start-page: 943
  year: 2023
  end-page: 970
  ident: b0315
  article-title: Improved monthly runoff time series prediction using the SOA–SVM model based on ICEEMDAN–WD decomposition
  publication-title: J. Hydroinf.
– volume: 643
  year: 2024
  ident: b0240
  article-title: DTTR: Encoding and decoding monthly runoff prediction model based on deep temporal attention convolution and multimodal fusion
  publication-title: J. Hydrol.
– volume: 629
  year: 2024
  ident: b0300
  article-title: An ensemble model for monthly runoff prediction using least squares support vector machine based on variational modal decomposition with dung beetle optimization algorithm and error correction strategy
  publication-title: J. Hydrol.
– volume: 195
  year: 2024
  ident: b0245
  article-title: Arctic puffin optimization: a bio-inspired metaheuristic algorithm for solving engineering design optimization
  publication-title: Adv. Eng. Softw.
– volume: 61
  year: 2025
  ident: b0030
  article-title: Predicting the Evolution of Extreme Water Levels with Long Short-Term memory Station-based Approximated Models and transfer Learning Techniques
  publication-title: Water Resour. Res.
– volume: 10
  start-page: 3944
  year: 2024
  end-page: 3952
  ident: b0145
  article-title: Rainfall-Runoff Modeling in a Regional Watershed using the MIKE 11-NAM Model
  publication-title: Civil Engineering Journal
– volume: 643
  year: 2024
  ident: b0275
  article-title: Error correction method based on deep learning for improving the accuracy of conceptual rainfall-runoff model
  publication-title: J. Hydrol.
– volume: 84
  year: 2024
  ident: b0290
  article-title: Two-step hybrid model for monthly runoff prediction utilizing integrated machine learning algorithms and dual signal decompositions
  publication-title: Eco. Inform.
– volume: 622
  year: 2023
  ident: b0355
  article-title: Runoff predictions in new-gauged basins using two transformer-based models
  publication-title: J. Hydrol.
– volume: 651
  year: 2025
  ident: 10.1016/j.jhydrol.2025.134304_b0020
  article-title: Associations between deep learning runoff predictions and hydrogeological conditions in Australia
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2024.132569
– volume: 60
  issue: 9
  year: 2024
  ident: 10.1016/j.jhydrol.2025.134304_b0200
  article-title: Streamflow Prediction in Human-Regulated Catchments using Multiscale Deep Learning Modeling with Anthropogenic Similarities
  publication-title: Water Resour. Res.
  doi: 10.1029/2023WR036853
– volume: 629
  year: 2024
  ident: 10.1016/j.jhydrol.2025.134304_b0300
  article-title: An ensemble model for monthly runoff prediction using least squares support vector machine based on variational modal decomposition with dung beetle optimization algorithm and error correction strategy
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2023.130558
– volume: 84
  year: 2024
  ident: 10.1016/j.jhydrol.2025.134304_b0290
  article-title: Two-step hybrid model for monthly runoff prediction utilizing integrated machine learning algorithms and dual signal decompositions
  publication-title: Eco. Inform.
– volume: 609
  year: 2022
  ident: 10.1016/j.jhydrol.2025.134304_b0350
  article-title: RR-Former: Rainfall-runoff modeling based on Transformer
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2022.127781
– volume: 14
  start-page: 23550
  issue: 1
  year: 2024
  ident: 10.1016/j.jhydrol.2025.134304_b0230
  article-title: SMGformer: integrating STL and multi-head self-attention in deep learning model for multi-step runoff forecasting
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-024-74329-0
– volume: 61
  issue: 3
  year: 2025
  ident: 10.1016/j.jhydrol.2025.134304_b0095
  article-title: Informed neural networks for flood forecasting with limited amount of training data
  publication-title: Water Resour. Res.
  doi: 10.1029/2023WR036380
– volume: 646
  year: 2025
  ident: 10.1016/j.jhydrol.2025.134304_b0120
  article-title: Regression-based machine learning approaches for estimating discharge from water levels in microtidal rivers
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2024.132276
– volume: 625
  year: 2023
  ident: 10.1016/j.jhydrol.2025.134304_b0130
  article-title: A review of hybrid deep learning applications for streamflow forecasting
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2023.130141
– volume: 178
  year: 2024
  ident: 10.1016/j.jhydrol.2025.134304_b0265
  article-title: Spatio-temporal deep learning model for accurate streamflow prediction with multi-source data fusion
  publication-title: Environ. Model. Software
  doi: 10.1016/j.envsoft.2024.106091
– volume: 636
  year: 2024
  ident: 10.1016/j.jhydrol.2025.134304_b0325
  article-title: Investigating the potential of EMA-embedded feature selection method for ESVR and LSTM to enhance the robustness of monthly streamflow forecasting from local meteorological information
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2024.131230
– volume: 61
  start-page: 279
  issue: 1
  year: 2022
  ident: 10.1016/j.jhydrol.2025.134304_b0075
  article-title: A review of the hybrid artificial intelligence and optimization modelling of hydrological streamflow forecasting
  publication-title: Alex. Eng. J.
  doi: 10.1016/j.aej.2021.04.100
– ident: 10.1016/j.jhydrol.2025.134304_b0085
  doi: 10.1109/ICNN.1995.488968
– volume: 24
  start-page: 254
  issue: 1
  year: 2023
  ident: 10.1016/j.jhydrol.2025.134304_b0135
  article-title: Ground water availability assessment for a data-scarce river basin in Nepal using SWAT hydrological model
  publication-title: Water Supply
  doi: 10.2166/ws.2023.332
– volume: 661
  year: 2025
  ident: 10.1016/j.jhydrol.2025.134304_b0190
  article-title: What can be expected from a semi-distributed multi-model approach for streamflow forecasting? Tailoring the structure and size of a super-ensemble on the Rhône basin
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2025.133589
– volume: 10
  start-page: 2088
  issue: 7
  year: 2024
  ident: 10.1016/j.jhydrol.2025.134304_b0360
  article-title: Empirical Model of Unconsolidated Tephra erosion: Verification and Application on Micro Catchment
  publication-title: Civil Engineering Journal
  doi: 10.28991/CEJ-2024-010-07-02
– volume: 154
  year: 2025
  ident: 10.1016/j.jhydrol.2025.134304_b0070
  article-title: A channel-independent network based on wavelet enhancement for long-term time series forecasting
  publication-title: Eng. Appl. Artif. Intel.
  doi: 10.1016/j.engappai.2025.110964
– volume: 625
  year: 2023
  ident: 10.1016/j.jhydrol.2025.134304_b0340
  article-title: Deep transfer learning based on transformer for flood forecasting in data-sparse basins
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2023.129956
– volume: 121
  start-page: 3915
  issue: 4
  year: 2025
  ident: 10.1016/j.jhydrol.2025.134304_b0125
  article-title: Enhancing runoff forecasting through the integration of satellite precipitation data and hydrological knowledge into machine learning models
  publication-title: Nat. Hazards
  doi: 10.1007/s11069-024-06939-w
– year: 2018
  ident: 10.1016/j.jhydrol.2025.134304_b0255
  article-title: Hybrid Models Combining EMD/EEMD and ARIMA for Long-Term Streamflow forecasting
  publication-title: Water
– volume: 309
  year: 2025
  ident: 10.1016/j.jhydrol.2025.134304_b0375
  article-title: DTSFormer: Decoupled temporal-spatial diffusion transformer for enhanced long-term time series forecasting
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2024.112828
– volume: 60
  issue: 2
  year: 2024
  ident: 10.1016/j.jhydrol.2025.134304_b0330
  article-title: Coupling Deep Learning and Physically based Hydrological Models for Monthly Streamflow predictions
  publication-title: Water Resour. Res.
  doi: 10.1029/2023WR035618
– volume: 8
  start-page: 687
  issue: 2
  year: 2024
  ident: 10.1016/j.jhydrol.2025.134304_b0280
  article-title: Monitoring Agricultural Land loss by Analyzing changes in Land Use and Land Cover
  publication-title: Emerging Science Journal
  doi: 10.28991/ESJ-2024-08-02-020
– volume: 143
  year: 2025
  ident: 10.1016/j.jhydrol.2025.134304_b0010
  article-title: Mamba-enhanced spectral-attentive wavelet network for underwater image restoration
  publication-title: Eng. Appl. Artif. Intel.
  doi: 10.1016/j.engappai.2024.109999
– volume: 630
  year: 2024
  ident: 10.1016/j.jhydrol.2025.134304_b0220
  article-title: Multiple spatio-temporal scale runoff forecasting and driving mechanism exploration by K-means optimized XGBoost and SHAP
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2024.130650
– volume: 650
  year: 2025
  ident: 10.1016/j.jhydrol.2025.134304_b0090
  article-title: Does grouping watersheds by hydrographic regions offer any advantages in fine-tuning transfer learning model for temporal and spatial streamflow predictions?
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2024.132540
– volume: 14
  start-page: 26263
  issue: 1
  year: 2024
  ident: 10.1016/j.jhydrol.2025.134304_b0100
  article-title: A hybrid technique to enhance the rainfall-runoff prediction of physical and data-driven model: a case study of Upper Narmada River Sub-basin
  publication-title: India. Scientific Reports
  doi: 10.1038/s41598-024-77655-5
– volume: 60
  issue: 6
  year: 2024
  ident: 10.1016/j.jhydrol.2025.134304_b0370
  article-title: Development of a distributed Physics-Informed Deep Learning Hydrological Model for Data-Scarce Regions
  publication-title: Water Resour. Res.
  doi: 10.1029/2023WR036333
– volume: 25
  start-page: 943
  issue: 3
  year: 2023
  ident: 10.1016/j.jhydrol.2025.134304_b0315
  article-title: Improved monthly runoff time series prediction using the SOA–SVM model based on ICEEMDAN–WD decomposition
  publication-title: J. Hydroinf.
  doi: 10.2166/hydro.2023.172
– volume: 622
  year: 2023
  ident: 10.1016/j.jhydrol.2025.134304_b0355
  article-title: Runoff predictions in new-gauged basins using two transformer-based models
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2023.129684
– volume: 55
  start-page: 1182
  issue: 12
  year: 2024
  ident: 10.1016/j.jhydrol.2025.134304_b0080
  article-title: Daily runoff prediction based on lightweight Mamba with partial normalization
  publication-title: Hydrol. Res.
  doi: 10.2166/nh.2024.063
– volume: 10
  start-page: 3944
  issue: 12
  year: 2024
  ident: 10.1016/j.jhydrol.2025.134304_b0145
  article-title: Rainfall-Runoff Modeling in a Regional Watershed using the MIKE 11-NAM Model
  publication-title: Civil Engineering Journal
  doi: 10.28991/CEJ-2024-010-12-08
– volume: 258
  year: 2024
  ident: 10.1016/j.jhydrol.2025.134304_b0225
  article-title: PI-STGnet: Physics-integrated spatiotemporal graph neural network with fundamental diagram learner for highway traffic flow prediction
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2024.125144
– volume: 645
  year: 2024
  ident: 10.1016/j.jhydrol.2025.134304_b0065
  article-title: A coupled model integrating dual attention mechanism into BiGRU-RED for multi-step-ahead streamflow forecasting
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2024.132137
– year: 2023
  ident: 10.1016/j.jhydrol.2025.134304_b0250
  article-title: Multi-Reservoir Flood Control operation using improved Bald Eagle Search Algorithm with ε Constraint Method
  publication-title: Water
– volume: 589
  year: 2020
  ident: 10.1016/j.jhydrol.2025.134304_b0040
  article-title: Short-term runoff prediction with GRU and LSTM networks without requiring time step optimization during sample generation
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2020.125188
– volume: 649
  year: 2025
  ident: 10.1016/j.jhydrol.2025.134304_b0150
  article-title: River discharge prediction based multivariate climatological variables using hybridized long short-term memory with nature inspired algorithm
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2024.132453
– year: 2025
  ident: 10.1016/j.jhydrol.2025.134304_b0005
  article-title: A Hybrid Mamba Architecture with Graph Convolution and Convolutional Self-attention for Multivariate Water Quality forecasting
  publication-title: Water Resour. Manag.
  doi: 10.1007/s11269-025-04285-5
– volume: 645
  year: 2024
  ident: 10.1016/j.jhydrol.2025.134304_b0045
  article-title: Advanced streamflow forecasting for central European Rivers: the Cutting-Edge Kolmogorov-Arnold networks compared to Transformers
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2024.132175
– volume: 608
  year: 2022
  ident: 10.1016/j.jhydrol.2025.134304_b0335
  article-title: Research on particle swarm optimization in LSTM neural networks for rainfall-runoff simulation
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2022.127553
– volume: 64
  year: 2025
  ident: 10.1016/j.jhydrol.2025.134304_b0365
  article-title: Cross-supervised contrastive learning domain adaptation network for steel defect segmentation
  publication-title: Adv. Eng. Inf.
  doi: 10.1016/j.aei.2024.102964
– volume: 61
  issue: 3
  year: 2025
  ident: 10.1016/j.jhydrol.2025.134304_b0030
  article-title: Predicting the Evolution of Extreme Water Levels with Long Short-Term memory Station-based Approximated Models and transfer Learning Techniques
  publication-title: Water Resour. Res.
  doi: 10.1029/2024WR039054
– volume: 18
  start-page: 120
  issue: 1
  year: 2024
  ident: 10.1016/j.jhydrol.2025.134304_b0235
  article-title: A stacking ensemble machine learning model for improving monthly runoff prediction
  publication-title: Earth Sci. Inf.
  doi: 10.1007/s12145-024-01544-8
– volume: 12
  start-page: 518
  issue: 1
  year: 2022
  ident: 10.1016/j.jhydrol.2025.134304_b0175
  article-title: Ensemble streamflow forecasting based on variational mode decomposition and long short term memory
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-021-03725-7
– volume: 662
  year: 2025
  ident: 10.1016/j.jhydrol.2025.134304_b0195
  article-title: Accurate runoff prediction in nonlinear and nonstationary environments using a novel hybrid model
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2025.133949
– volume: 169
  year: 2026
  ident: 10.1016/j.jhydrol.2025.134304_b0025
  article-title: MGCM: Multi-modal graph convolutional mamba for cancer survival prediction
  publication-title: Pattern Recogn.
  doi: 10.1016/j.patcog.2025.111991
– volume: 660
  year: 2025
  ident: 10.1016/j.jhydrol.2025.134304_b0180
  article-title: A Mamba-based method for multi-feature water quality prediction fusing dual denoising and attention enhancement
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2025.133424
– volume: 643
  year: 2024
  ident: 10.1016/j.jhydrol.2025.134304_b0240
  article-title: DTTR: Encoding and decoding monthly runoff prediction model based on deep temporal attention convolution and multimodal fusion
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2024.131996
– volume: 31
  start-page: 22
  issue: 12
  year: 2021
  ident: 10.1016/j.jhydrol.2025.134304_bib376
  article-title: Review of flood and drought disaster prevention in the Haihe River Basin in 2021
  publication-title: China Flood Drought Manage.
– volume: 332
  year: 2025
  ident: 10.1016/j.jhydrol.2025.134304_b0055
  article-title: Dual-path frequency Mamba-Transformer model for wind power forecasting
  publication-title: Energy
  doi: 10.1016/j.energy.2025.137225
– volume: 126
  year: 2020
  ident: 10.1016/j.jhydrol.2025.134304_b0205
  article-title: Comparison of short-term streamflow forecasting using stochastic time series, neural networks, process-based, and Bayesian models
  publication-title: Environ. Model. Software
  doi: 10.1016/j.envsoft.2020.104669
– volume: 195
  year: 2024
  ident: 10.1016/j.jhydrol.2025.134304_b0245
  article-title: Arctic puffin optimization: a bio-inspired metaheuristic algorithm for solving engineering design optimization
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2024.103694
– volume: 167
  year: 2024
  ident: 10.1016/j.jhydrol.2025.134304_b0115
  article-title: A lightweight visual mamba network for image recognition under resource-limited environments
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2024.112294
– volume: 113
  start-page: 287
  year: 2025
  ident: 10.1016/j.jhydrol.2025.134304_b0015
  article-title: Combining market-guided patterns and mamba for stock price prediction
  publication-title: Alex. Eng. J.
  doi: 10.1016/j.aej.2024.10.117
– volume: 652
  year: 2025
  ident: 10.1016/j.jhydrol.2025.134304_b0210
  article-title: Establishment of a slope-scale innovated rainfall-runoff model by combining infiltration equation and motion wave equation for watershed flash flood risk prediction
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2025.132700
– volume: 169
  year: 2025
  ident: 10.1016/j.jhydrol.2025.134304_b0215
  article-title: Learning with noisy labels via Mamba and entropy KNN framework
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2024.112596
– volume: 71
  start-page: 905
  issue: 2
  year: 2023
  ident: 10.1016/j.jhydrol.2025.134304_b0110
  article-title: Investigating the effects of local weather, streamflow lag, and global climate information on 1-month-ahead streamflow forecasting by using XGBoost and SHAP: two case studies involving the contiguous USA
  publication-title: Acta Geophys.
  doi: 10.1007/s11600-022-00928-y
– ident: 10.1016/j.jhydrol.2025.134304_b0050
– volume: 129
  year: 2022
  ident: 10.1016/j.jhydrol.2025.134304_b0170
  article-title: Sliding window and dual-channel CNN (SWDC-CNN): a novel method for synchronous prediction of coal and electricity consumption in cement calcination process
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2022.109520
– year: 2025
  ident: 10.1016/j.jhydrol.2025.134304_b0155
  article-title: Advanced Framework for predicting Rainfall-Runoff: Comparative Evaluation of AI Models for Enhanced forecasting Accuracy
  publication-title: Water Resour. Manag.
  doi: 10.1007/s11269-025-04106-9
– volume: 8
  start-page: 1860
  issue: 5
  year: 2024
  ident: 10.1016/j.jhydrol.2025.134304_b0345
  article-title: Extreme Rainfall Trends and Hydrometeorological disasters in Tropical Regions: Implications for climate Resilience
  publication-title: Emerging Science Journal
  doi: 10.28991/ESJ-2024-08-05-012
– volume: 645
  year: 2024
  ident: 10.1016/j.jhydrol.2025.134304_b0295
  article-title: A novel daily runoff forecasting model based on global features and enhanced local feature interpretation
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2024.132227
– volume: 39
  start-page: 883
  issue: 3
  year: 2025
  ident: 10.1016/j.jhydrol.2025.134304_b0305
  article-title: WaveTransTimesNet: an enhanced deep learning monthly runoff prediction model based on wavelet transform and transformer architecture
  publication-title: Stoch. Env. Res. Risk A.
  doi: 10.1007/s00477-024-02882-1
– volume: 643
  year: 2024
  ident: 10.1016/j.jhydrol.2025.134304_b0275
  article-title: Error correction method based on deep learning for improving the accuracy of conceptual rainfall-runoff model
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2024.131992
– volume: 211
  year: 2022
  ident: 10.1016/j.jhydrol.2025.134304_b0105
  article-title: Interpretable tree-based ensemble model for predicting beach water quality
  publication-title: Water Res.
  doi: 10.1016/j.watres.2022.118078
– volume: 229
  year: 2023
  ident: 10.1016/j.jhydrol.2025.134304_b0140
  article-title: Metaheuristic evolutionary deep learning model based on temporal convolutional network, improved aquila optimizer and random forest for rainfall-runoff simulation and multi-step runoff prediction
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2023.120616
– volume: 26
  start-page: 255
  issue: 1
  year: 2023
  ident: 10.1016/j.jhydrol.2025.134304_b0310
  article-title: Improved monthly runoff time series prediction using the CABES-LSTM mixture model based on CEEMDAN-VMD decomposition
  publication-title: J. Hydroinf.
  doi: 10.2166/hydro.2023.216
– volume: 192
  year: 2025
  ident: 10.1016/j.jhydrol.2025.134304_b0165
  article-title: A dual-model framework combining nonlinear autoregressive with exogenous inputs (NARX) and LSTM networks for enhanced daily runoff prediction and error correction
  publication-title: Environ. Model. Software
  doi: 10.1016/j.envsoft.2025.106570
– volume: 619
  year: 2025
  ident: 10.1016/j.jhydrol.2025.134304_b0260
  article-title: Is Mamba effective for time series forecasting?
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2024.129178
– volume: 374
  year: 2025
  ident: 10.1016/j.jhydrol.2025.134304_b0270
  article-title: Dynamic classification and attention mechanism-based bidirectional long short-term memory network for daily runoff prediction in Aksu River basin, Northwest China
  publication-title: J. Environ. Manage.
  doi: 10.1016/j.jenvman.2025.124121
– volume: 636
  year: 2024
  ident: 10.1016/j.jhydrol.2025.134304_b0035
  article-title: Ensemble learning using multivariate variational mode decomposition based on the Transformer for multi-step-ahead streamflow forecasting
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2024.131275
– volume: 65
  year: 2025
  ident: 10.1016/j.jhydrol.2025.134304_b0160
  article-title: Prediction of seam tracking errors in the intelligent welding system: a rapid prediction method based on real-time monitoring data
  publication-title: Adv. Eng. Inf.
  doi: 10.1016/j.aei.2025.103124
– volume: 18
  start-page: 467
  issue: 3
  year: 2025
  ident: 10.1016/j.jhydrol.2025.134304_b0320
  article-title: A novel TCN-augmented CNN-LSTM architecture for accurate monthly runoff forecasting
  publication-title: Earth Sci. Inf.
  doi: 10.1007/s12145-025-01966-y
– volume: 653
  year: 2025
  ident: 10.1016/j.jhydrol.2025.134304_b0185
  article-title: Causality-Guided deep learning for streamflow predicting in a mountainous region
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2025.132719
– volume: 123
  year: 2025
  ident: 10.1016/j.jhydrol.2025.134304_b0060
  article-title: DPEM: Dual-Perspective Enhanced Mamba for multivariate time series forecasting
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2025.103250
– volume: 37
  start-page: 937
  issue: 2
  year: 2023
  ident: 10.1016/j.jhydrol.2025.134304_b0285
  article-title: Runoff forecasting using Convolutional Neural Networks and optimized Bi-directional Long short-term memory
  publication-title: Water Resour. Manag.
  doi: 10.1007/s11269-022-03414-8
SSID ssj0000334
Score 2.4883344
Snippet •The first application of the Mamba architecture is to predict monthly runoff.•Development of a depth-gated attention layer to enhance bidirectional...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 134304
SubjectTerms Attention mechanism
Coding and decoding system
Deep neural network
Mamba
Runoff prediction
Title MamGA: a deep neural network architecture for dual-channel parallel monthly runoff prediction based on mamba and depth-gated attention layer
URI https://dx.doi.org/10.1016/j.jhydrol.2025.134304
Volume 663
WOSCitedRecordID wos001584773700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 0022-1694
  databaseCode: AIEXJ
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0000334
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3bjtMwELVKFwleEFex3OQH3qKUxHFz4a1CywKCFUIL7VuU2A5tlXirkq62_8A38K3MxE4TtisESLxE1qhOUp-jeDyeOSbkOZMq9GPMeeIyd7lMEjcXgrtBAXON4KIomgrvL--jk5N4Nks-DgY_2lqY8zLSOr64SFb_FWqwAdhYOvsXcO9uCgZoA-hwBdjh-kfAf8iq44mpYZZKrRxUrAQctMn3dn7ZOcAcQyzGcrH-V6vSQSXwsoQGvG49L7fOeqPPigKlBOTCnCqO857EPYYqq_KmogvTaet5E6mTDup1mgzKMtva1N9953e-lWuj_gQe7qRCtQaJ1NyFJaY2jj1VGl5uk_XyhU3IdqoWrujMn5StAtBf3VItWvNsY1YJYK2s1YY42PhSush-7c2uDsEPzRHJ7bc8NF_LvXnBhCiWo6X5eyN8ysgPeGDOPr4kuY072AxvDf4hLCe5d40csGicxENyMHl7NHvXzfVBwFs9euzQ1Yi9uPJhV3s_PY_m9Da5ZdGgE0OhO2Sg9F1y41hZEfN75HtDpZc0o0gkaohELZFon0gUiET7RKItkaglEjVEoh2RaEMkCo2GSBSIRHtEojsi0YZI98nn10enr9649vQOV8CSunaLSDEe5izPCiECJsA3HXsZuPtBDktkGCuJWpUKlxi-Jwv4ecCkJ3LwIAupoiJ4QIb6TKuHhKrIg5sAJCIR3GNZHuTKZyJjwg_jjPNDMmpHNV0ZkZa0zV5cphaGFGFIDQyHJG7HPrWepvEgUyDM77s--veuj8nNjt1PyLBeb9RTcl2c14tv62eWWj8BH6Kq4g
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MamGA%3A+a+deep+neural+network+architecture+for+dual-channel+parallel+monthly+runoff+prediction+based+on+mamba+and+depth-gated+attention+layer&rft.jtitle=Journal+of+hydrology+%28Amsterdam%29&rft.au=Wang%2C+Wen-chuan&rft.au=Tian%2C+Wei-can&rft.au=Ren%2C+Ming-lei&rft.au=Xu%2C+Dong-mei&rft.date=2025-12-01&rft.pub=Elsevier+B.V&rft.issn=0022-1694&rft.volume=663&rft_id=info:doi/10.1016%2Fj.jhydrol.2025.134304&rft.externalDocID=S0022169425016440
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-1694&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-1694&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-1694&client=summon