Deep Joint Source Channel Coding for Privacy-Aware End-to-End Image Transmission
Deep neural network (DNN)-based joint source and channel coding is proposed for privacy-aware end-to-end image transmission against multiple eavesdroppers. Both scenarios of colluding and non-colluding eavesdroppers are considered. Unlike prior works that assume perfectly known and independent ident...
Saved in:
| Published in: | IEEE transactions on machine learning in communications and networking Vol. 3; pp. 568 - 584 |
|---|---|
| Main Authors: | , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
IEEE
2025
|
| Subjects: | |
| ISSN: | 2831-316X, 2831-316X |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Deep neural network (DNN)-based joint source and channel coding is proposed for privacy-aware end-to-end image transmission against multiple eavesdroppers. Both scenarios of colluding and non-colluding eavesdroppers are considered. Unlike prior works that assume perfectly known and independent identically distributed (i.i.d.) source and channel statistics, the proposed scheme operates under unknown and non-i.i.d. conditions, making it more applicable to real-world scenarios. The goal is to transmit images with minimum distortion, while simultaneously preventing eavesdroppers from inferring certain private attributes of images. Simultaneously generalizing the ideas of privacy funnel and wiretap coding, a multi-objective optimization framework is expressed that characterizes the trade-off between image reconstruction quality and information leakage to eavesdroppers, taking into account the structural similarity index (SSIM) for improving the perceptual quality of image reconstruction. Extensive experiments on the CIFAR-10 and CelebA, along with ablation studies, demonstrate significant performance improvements in terms of SSIM, adversarial accuracy, and the mutual information leakage compared to benchmarks. Experiments show that the proposed scheme restrains the adversarially-trained eavesdroppers from intercepting privatized data for both cases of eavesdropping a common secret, as well as the case in which eavesdroppers are interested in different secrets. Furthermore, useful insights on the privacy-utility trade-off are also provided. |
|---|---|
| AbstractList | Deep neural network (DNN)-based joint source and channel coding is proposed for privacy-aware end-to-end image transmission against multiple eavesdroppers. Both scenarios of colluding and non-colluding eavesdroppers are considered. Unlike prior works that assume perfectly known and independent identically distributed (i.i.d.) source and channel statistics, the proposed scheme operates under unknown and non-i.i.d. conditions, making it more applicable to real-world scenarios. The goal is to transmit images with minimum distortion, while simultaneously preventing eavesdroppers from inferring certain private attributes of images. Simultaneously generalizing the ideas of privacy funnel and wiretap coding, a multi-objective optimization framework is expressed that characterizes the trade-off between image reconstruction quality and information leakage to eavesdroppers, taking into account the structural similarity index (SSIM) for improving the perceptual quality of image reconstruction. Extensive experiments on the CIFAR-10 and CelebA, along with ablation studies, demonstrate significant performance improvements in terms of SSIM, adversarial accuracy, and the mutual information leakage compared to benchmarks. Experiments show that the proposed scheme restrains the adversarially-trained eavesdroppers from intercepting privatized data for both cases of eavesdropping a common secret, as well as the case in which eavesdroppers are interested in different secrets. Furthermore, useful insights on the privacy-utility trade-off are also provided. |
| Author | Amirhossein Ameli Kalkhoran, Seyyed Behroozi, Hamid Gunduz, Deniz Erdemir, Ecenaz Hossein Khalaj, Babak Letafati, Mehdi |
| Author_xml | – sequence: 1 givenname: Mehdi orcidid: 0000-0003-3731-3943 surname: Letafati fullname: Letafati, Mehdi email: mletafati@ee.sharif.edu organization: Department of Electrical Engineering, Sharif University of Technology, Tehran, Iran – sequence: 2 givenname: Seyyed orcidid: 0009-0004-9612-9585 surname: Amirhossein Ameli Kalkhoran fullname: Amirhossein Ameli Kalkhoran, Seyyed organization: Computer Engineering Department, Sharif University of Technology, Tehran, Iran – sequence: 3 givenname: Ecenaz orcidid: 0000-0002-2170-4985 surname: Erdemir fullname: Erdemir, Ecenaz organization: Department of Electrical and Electronic Engineering, Imperial College London, London, U.K – sequence: 4 givenname: Babak orcidid: 0000-0002-9289-2338 surname: Hossein Khalaj fullname: Hossein Khalaj, Babak organization: Department of Electrical Engineering, Sharif University of Technology, Tehran, Iran – sequence: 5 givenname: Hamid orcidid: 0000-0001-9294-3134 surname: Behroozi fullname: Behroozi, Hamid organization: Department of Electrical Engineering, Sharif University of Technology, Tehran, Iran – sequence: 6 givenname: Deniz orcidid: 0000-0002-7725-395X surname: Gunduz fullname: Gunduz, Deniz organization: Department of Electrical and Electronic Engineering, Imperial College London, London, U.K |
| BookMark | eNpNkMtKAzEARYMoWLU_IC7yA1PzmmSyLOOrUrVgBXchz5rSJiVTlf69oxVxdS8X7lmcE3CYcvIAnGM0whjJy_nDtH0cEUTqEa05k0gcgAFpKK4o5q-H__oxGHbdEiFEKRKCkwGYXXm_gfc5pi18zu_Feti-6ZT8CrbZxbSAIRc4K_FD2101_tTFw-vkqm2u-oCTtV54OC86devYdTGnM3AU9Krzw988BS831_P2rpo-3U7a8bSypJbbyhjqHdHU1t7VRjchMEYd5dpa3PQLE6YWpkGSB95IShpntOCcYsdFUxtCT8Fkz3VZL9WmxLUuO5V1VD9DLgulyzbalVeGUcwkYbgxmjHcR0DeoWACsbWgsmeRPcuW3HXFhz8eRupbsfpRrL4Vq1_F_elif4re-38HKSRjhH4BOR15Ag |
| CODEN | ITMLBB |
| Cites_doi | 10.1109/TCOMM.2021.3128423 10.1109/LWC.2023.3275383 10.1109/MCOM.001.1900511 10.1109/MSP.2014.2330661 10.1109/ICIP.2017.8297089 10.1109/TIFS.2019.2945619 10.1109/ITW.2014.6970882 10.1109/ICASSP40776.2020.9053216 10.1145/3395352.3402654 10.1109/MCOM.006.2200878 10.1109/ICCWorkshops50388.2021.9473492 10.1109/TIT.2005.860427 10.1109/ICCV.2015.425 10.1109/GLOBECOM46510.2021.9685537 10.1109/OJVT.2023.3315216 10.1109/ICC45041.2023.10278612 10.1109/TMLCN.2024.3522872 10.1109/JIOT.2020.3026475 10.1109/GLOBECOM54140.2023.10436928 10.1109/JSAC.2020.3036955 10.1109/ALLERTON.2019.8919758 10.1109/TCCN.2023.3306851 10.1109/WCNC57260.2024.10570533 10.1109/TCCN.2019.2919300 10.1109/TCI.2016.2644865 10.1109/JSAIT.2020.2987203 10.1109/jproc.2024.3477331 10.1109/LWC.2022.3147952 10.1109/ICASSP43922.2022.9747068 10.1109/ICCV.2015.123 10.1109/MCOMSTD.0001.2000082 10.1109/TIFS.2023.3262112 10.1109/TWC.2020.3006012 10.1109/MCOM.004.2200819 10.1109/GLOBECOM52923.2024.10901326 10.1109/LWC.2024.3457008 10.1109/ICASSP.2019.8683409 10.1109/VTC2022-Spring54318.2022.9860947 |
| ContentType | Journal Article |
| DBID | 97E ESBDL RIA RIE AAYXX CITATION DOA |
| DOI | 10.1109/TMLCN.2025.3564907 |
| DatabaseName | IEEE Xplore (IEEE) IEEE Xplore Open Access Journals (LUT & LAB) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Xplore url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2831-316X |
| EndPage | 584 |
| ExternalDocumentID | oai_doaj_org_article_b431492418ba44118bf0ed0fbf2c5739 10_1109_TMLCN_2025_3564907 10979442 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Institute for Research in Fundamental Sciences (IPM) funderid: 10.13039/501100006115 |
| GroupedDBID | 0R~ 97E ABVLG ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ EBS ESBDL GROUPED_DOAJ JAVBF M~E OCL RIA RIE AAYXX CITATION |
| ID | FETCH-LOGICAL-c259t-bb3ed2a3c5ed5ba8ff443d36acc18d5b47b57b8096f689328dba76631d6785b23 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001484660900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2831-316X |
| IngestDate | Fri Oct 03 12:46:32 EDT 2025 Sat Nov 29 07:56:38 EST 2025 Thu May 29 05:57:20 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://creativecommons.org/licenses/by/4.0/legalcode |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c259t-bb3ed2a3c5ed5ba8ff443d36acc18d5b47b57b8096f689328dba76631d6785b23 |
| ORCID | 0000-0003-3731-3943 0009-0004-9612-9585 0000-0001-9294-3134 0000-0002-7725-395X 0000-0002-2170-4985 0000-0002-9289-2338 |
| OpenAccessLink | https://doaj.org/article/b431492418ba44118bf0ed0fbf2c5739 |
| PageCount | 17 |
| ParticipantIDs | crossref_primary_10_1109_TMLCN_2025_3564907 doaj_primary_oai_doaj_org_article_b431492418ba44118bf0ed0fbf2c5739 ieee_primary_10979442 |
| PublicationCentury | 2000 |
| PublicationDate | 20250000 2025-00-00 2025-01-01 |
| PublicationDateYYYYMMDD | 2025-01-01 |
| PublicationDate_xml | – year: 2025 text: 20250000 |
| PublicationDecade | 2020 |
| PublicationTitle | IEEE transactions on machine learning in communications and networking |
| PublicationTitleAbbrev | TMLCN |
| PublicationYear | 2025 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| References | ref13 ref35 ref12 ref15 ref14 ref36 ref31 ref30 ref11 ref33 ref10 ref32 ref2 ref1 ref17 ref39 ref16 ref19 ref18 Ballé (ref27) 2025 ref24 ref23 ref26 ref25 ref20 Ba (ref34) 2016 Kingma (ref40) ref42 ref41 ref22 ref21 ref43 ref28 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 Krizhevsky (ref38) 2009 Abadi (ref37) 2025 |
| References_xml | – ident: ref11 doi: 10.1109/TCOMM.2021.3128423 – ident: ref24 doi: 10.1109/LWC.2023.3275383 – ident: ref2 doi: 10.1109/MCOM.001.1900511 – ident: ref30 doi: 10.1109/MSP.2014.2330661 – ident: ref35 doi: 10.1109/ICIP.2017.8297089 – ident: ref20 doi: 10.1109/TIFS.2019.2945619 – ident: ref29 doi: 10.1109/ITW.2014.6970882 – ident: ref16 doi: 10.1109/ICASSP40776.2020.9053216 – start-page: 1 volume-title: Proc. Int. Conf. Learn. Represent. ident: ref40 article-title: Adam: A method for stochastic optimization – ident: ref21 doi: 10.1145/3395352.3402654 – ident: ref26 doi: 10.1109/MCOM.006.2200878 – ident: ref12 doi: 10.1109/ICCWorkshops50388.2021.9473492 – ident: ref28 doi: 10.1109/TIT.2005.860427 – ident: ref39 doi: 10.1109/ICCV.2015.425 – ident: ref4 doi: 10.1109/GLOBECOM46510.2021.9685537 – year: 2016 ident: ref34 article-title: Layer normalization publication-title: arXiv:1607.06450 – ident: ref5 doi: 10.1109/OJVT.2023.3315216 – ident: ref22 doi: 10.1109/ICC45041.2023.10278612 – ident: ref41 doi: 10.1109/TMLCN.2024.3522872 – year: 2009 ident: ref38 article-title: Learning multiple layers of features from tiny images – ident: ref9 doi: 10.1109/JIOT.2020.3026475 – ident: ref1 doi: 10.1109/GLOBECOM54140.2023.10436928 – ident: ref3 doi: 10.1109/JSAC.2020.3036955 – ident: ref32 doi: 10.1109/ALLERTON.2019.8919758 – ident: ref23 doi: 10.1109/TCCN.2023.3306851 – ident: ref43 doi: 10.1109/WCNC57260.2024.10570533 – ident: ref14 doi: 10.1109/TCCN.2019.2919300 – ident: ref36 doi: 10.1109/TCI.2016.2644865 – ident: ref15 doi: 10.1109/JSAIT.2020.2987203 – ident: ref13 doi: 10.1109/jproc.2024.3477331 – ident: ref7 doi: 10.1109/LWC.2022.3147952 – year: 2025 ident: ref27 article-title: Density modeling of images using a generalized normalization transformation publication-title: arXiv:1511.06281 – volume-title: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems year: 2025 ident: ref37 – ident: ref17 doi: 10.1109/ICASSP43922.2022.9747068 – ident: ref33 doi: 10.1109/ICCV.2015.123 – ident: ref10 doi: 10.1109/MCOMSTD.0001.2000082 – ident: ref31 doi: 10.1109/TIFS.2023.3262112 – ident: ref6 doi: 10.1109/TWC.2020.3006012 – ident: ref18 doi: 10.1109/MCOM.004.2200819 – ident: ref25 doi: 10.1109/GLOBECOM52923.2024.10901326 – ident: ref42 doi: 10.1109/LWC.2024.3457008 – ident: ref19 doi: 10.1109/ICASSP.2019.8683409 – ident: ref8 doi: 10.1109/VTC2022-Spring54318.2022.9860947 |
| SSID | ssj0003307762 |
| Score | 2.278735 |
| Snippet | Deep neural network (DNN)-based joint source and channel coding is proposed for privacy-aware end-to-end image transmission against multiple eavesdroppers.... |
| SourceID | doaj crossref ieee |
| SourceType | Open Website Index Database Publisher |
| StartPage | 568 |
| SubjectTerms | adversarial neural networks Autoencoders Channel coding Communication system security deep learning DeepJSCC Eavesdropping end-to-end learning Image communication Image reconstruction privacy-utility trade-off secure image transmission Security Training Wireless networks Wireless sensor networks |
| SummonAdditionalLinks | – databaseName: IEEE Electronic Library (IEL) dbid: RIE link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT9wwELUK6gEOhbYgtkDlQ2-VIRvbsX1cFlBb0dVKpRW3yB9jaaU2QUug6r9n7GTR9sCBk6ORpVhvHM-bmcyYkE-Om8BNBUxpYZiIMTItpWRIBqqx08gRckb315WazfTNjZkPxeq5FgYA8s9ncJIecy4_tP4-hcpOU7bUCIEn7oZSVV-s9RRQQcccheWqMKYwp9ffr6YzdAFLecJlJUy6MnbN-OQe_f9dqpJtyuXOC1ezS94M5JFOem2_Ja-geUe211oKvifzc4Bb-q1dNB39kQPzNBUQNPCbTttkpyiyVDpfLh6s_8cmf-0S6EUTWNcyHOjXP3i-0GzAcAOkSNoe-Xl5cT39woZbE5hHV6ZjznEIpeVeQpDO6hiF4IFX1vuxRolQTiqn0XWJFZKVUgdnFfKOcUC7JV3J98lm0zZwQChEJyJYqwrvBM53pdYVlNZVSnGu_Ih8XsFZ3_bNMersVBSmzuDXCfx6AH9EzhLiTzNTY-ssQFTr4TupHRIagT7hWDuLTA2HWEAoooull4qbEdlLmlh7Xa-ED8_ID8lWWkMfNDkim93yHo7Ja__QLe6WH_MOegS7usP2 priority: 102 providerName: IEEE |
| Title | Deep Joint Source Channel Coding for Privacy-Aware End-to-End Image Transmission |
| URI | https://ieeexplore.ieee.org/document/10979442 https://doaj.org/article/b431492418ba44118bf0ed0fbf2c5739 |
| Volume | 3 |
| WOSCitedRecordID | wos001484660900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2831-316X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0003307762 issn: 2831-316X databaseCode: DOA dateStart: 20230101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2831-316X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0003307762 issn: 2831-316X databaseCode: M~E dateStart: 20230101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PS8MwFA4iHvQg_pg4f5GDN4l2TdIkR50TlW0MnOKtJGkCA-3GrIoX_3Zf0in15MVLAyG04Xttvvclfe8hdGyoKqjKHBGSKcK890Ryzgk4A1nHSPAR4onuQ18Mh_LxUY0apb7CP2F1euAauDMDDMdAJHSk0UDd0PjEFYk3PrVc0Bi6lwjVEFNhDQaVLuAz_46SSdTZeNDvDkEPpvyU8oypUD-2wUQxYf-vCiuRYK420PrCM8Tn9Yw20ZIrt9BaI1_gNhpdOjfDt9NJWeG7uOuOQ3RA6Z5wdxpICIMLikfzyZu2H-T8Xc8d7pUFqaYEGnzzDIsHjuwE1g3bZC10f9Ubd6_JoiQCsaBTKmIMdUWqqeWu4EZL7xmjBc20tR0JPUwYLowEXeIz8ERSWRgtwKnoFEBK3KR0By2X09LtIuy8Yd5pLRJrGIw3qZSZS7XJhKBU2DY6-YYnn9WZL_KoGBKVRzDzAGa-ALONLgKCPyND1urYAbbMF7bM_7JlG7UC_o3HKVguWLr3HzffR6thwvX2yQFaruav7hCt2Ldq8jI_iq8PXAefvaMYBPgFyirIFw |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTxwxDI4qqEQ5tJSC2D4gh95QYHaSTJIj3YKAblcrQStuozwcaaV2Bm0Hqv57nMyAtoceevLIijSW8_BnO3YI-ei4CdxUwJQWhokYI9NSSoZgoBo7jRghZ3S_T9Vspm9uzHwoVs-1MACQL5_BUfrMufzQ-rsUKjtO2VIjBJ646xJJ0ZdrPYVU0DVXuLcfS2MKc3z9dTqZoRNYyiMuK2HSo7Er5id36f_rWZVsVc5e_ac8W-TlAB_pST_fr8kzaLbJ5kpTwTdk_hngll62i6ajVzk0T1MJQQM_6KRNlooiTqXz5eLe-j_s5LddAj1tAutahoRe_MQThmYThksgxdJ2yLez0-vJORveTWAenZmOOcchlJZ7CUE6q2MUggdeWe_HGjlCOamcRuclVghXSh2cVYg8xgEtl3Ql3yVrTdvAHqEQnYhgrSq8EzjelVpXUFpXKcW58iNy-KjO-rZvj1Fnt6IwdVZ-nZRfD8ofkU9J408jU2vrzECt1sNOqR1CGoFe4Vg7i1gNSSwgFNHF0kvFzYjspJlY-V0_CW__wT8gG-coSj29mH15R14kefoQynuy1i3v4AN57u-7xa_lfl5NDxb_xz0 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+Joint+Source+Channel+Coding+for+Privacy-Aware+End-to-End+Image+Transmission&rft.jtitle=IEEE+transactions+on+machine+learning+in+communications+and+networking&rft.au=Letafati%2C+Mehdi&rft.au=Amirhossein+Ameli+Kalkhoran%2C+Seyyed&rft.au=Erdemir%2C+Ecenaz&rft.au=Hossein+Khalaj%2C+Babak&rft.date=2025&rft.issn=2831-316X&rft.eissn=2831-316X&rft.volume=3&rft.spage=568&rft.epage=584&rft_id=info:doi/10.1109%2FTMLCN.2025.3564907&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TMLCN_2025_3564907 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2831-316X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2831-316X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2831-316X&client=summon |