Hybrid deep learning model for image de-noising and de-mosaicking with adaptive Gannet optimization algorithm
Image reconstruction is a critical step in various applications, such as art restoration, medical image processing, and agriculture, but it faces challenges due to noise and mosaic artefacts. In this research, a novel approach is introduced for de-noising and de-mosaicking images to enhance image re...
Uloženo v:
| Vydáno v: | Network (Bristol) s. 1 - 27 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
England
23.07.2025
|
| Témata: | |
| ISSN: | 0954-898X, 1361-6536, 1361-6536 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Image reconstruction is a critical step in various applications, such as art restoration, medical image processing, and agriculture, but it faces challenges due to noise and mosaic artefacts. In this research, a novel approach is introduced for de-noising and de-mosaicking images to enhance image reconstruction quality. The proposed model consists of three main steps: detail layer extraction, image de-noising using an Efficient Generative Adversarial Network (E-GAN), and de-mosaicking using an Adaptive Gannet-based Residual DenseNet (AG_DenseResNet). The publicly available Kodak dataset is utilized for the evaluation of the proposed model. The results show that the proposed outperforms conventional methods in terms of Peak Signal-to-Noise Ratio (PSNR), Structural Similarity Index (SSIM), Mean Squared Error (MSE), and Learned Perceptual Image Patch Similarity (LPIPS) and acquired the values of 53.93, 0.98, 2.76, and 0.23, respectively. |
|---|---|
| AbstractList | Image reconstruction is a critical step in various applications, such as art restoration, medical image processing, and agriculture, but it faces challenges due to noise and mosaic artefacts. In this research, a novel approach is introduced for de-noising and de-mosaicking images to enhance image reconstruction quality. The proposed model consists of three main steps: detail layer extraction, image de-noising using an Efficient Generative Adversarial Network (E-GAN), and de-mosaicking using an Adaptive Gannet-based Residual DenseNet (AG_DenseResNet). The publicly available Kodak dataset is utilized for the evaluation of the proposed model. The results show that the proposed outperforms conventional methods in terms of Peak Signal-to-Noise Ratio (PSNR), Structural Similarity Index (SSIM), Mean Squared Error (MSE), and Learned Perceptual Image Patch Similarity (LPIPS) and acquired the values of 53.93, 0.98, 2.76, and 0.23, respectively.Image reconstruction is a critical step in various applications, such as art restoration, medical image processing, and agriculture, but it faces challenges due to noise and mosaic artefacts. In this research, a novel approach is introduced for de-noising and de-mosaicking images to enhance image reconstruction quality. The proposed model consists of three main steps: detail layer extraction, image de-noising using an Efficient Generative Adversarial Network (E-GAN), and de-mosaicking using an Adaptive Gannet-based Residual DenseNet (AG_DenseResNet). The publicly available Kodak dataset is utilized for the evaluation of the proposed model. The results show that the proposed outperforms conventional methods in terms of Peak Signal-to-Noise Ratio (PSNR), Structural Similarity Index (SSIM), Mean Squared Error (MSE), and Learned Perceptual Image Patch Similarity (LPIPS) and acquired the values of 53.93, 0.98, 2.76, and 0.23, respectively. Image reconstruction is a critical step in various applications, such as art restoration, medical image processing, and agriculture, but it faces challenges due to noise and mosaic artefacts. In this research, a novel approach is introduced for de-noising and de-mosaicking images to enhance image reconstruction quality. The proposed model consists of three main steps: detail layer extraction, image de-noising using an Efficient Generative Adversarial Network (E-GAN), and de-mosaicking using an Adaptive Gannet-based Residual DenseNet (AG_DenseResNet). The publicly available Kodak dataset is utilized for the evaluation of the proposed model. The results show that the proposed outperforms conventional methods in terms of Peak Signal-to-Noise Ratio (PSNR), Structural Similarity Index (SSIM), Mean Squared Error (MSE), and Learned Perceptual Image Patch Similarity (LPIPS) and acquired the values of 53.93, 0.98, 2.76, and 0.23, respectively. |
| Author | S.R, SylajaVallee Narayan S.P, Predeep Kumar N, Muthuvairavan Pillai K, John Peter |
| Author_xml | – sequence: 1 givenname: John Peter surname: K fullname: K, John Peter – sequence: 2 givenname: SylajaVallee Narayan surname: S.R fullname: S.R, SylajaVallee Narayan – sequence: 3 givenname: Muthuvairavan Pillai surname: N fullname: N, Muthuvairavan Pillai – sequence: 4 givenname: Predeep Kumar surname: S.P fullname: S.P, Predeep Kumar |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40697071$$D View this record in MEDLINE/PubMed |
| BookMark | eNo90U1PwzAMBuAIDcEY_ARQjlw6UqdfOaIJGNIkLiBxq9zUHYE2GUkHGr-eVmycIsePLNnvGZtYZ4mxy1jMY1GIG6HSpFDF6xwEpHNIQYFSR2wayyyOslRmEzYdTTSiU3YWwrsQIodcnrDTRGQqF3k8Zd1yV3lT85pow1tCb41d887V1PLGeW46XNPQjawzYWyhHXHUuYBGf4w_36Z_41jjpjdfxB_QWuq5G6rO_GBvnOXYrp0fVHfOjhtsA13s3xl7ub97Xiyj1dPD4-J2FWlIVR9VCaGUCRLEStVY6AwaUqrIE0GV0FLISgPqTCEkuaa8gCaVUAFopXKFWs7Y9d_cjXefWwp92ZmgqW3RktuGUoKE4XoxFAO92tNt1VFdbvywst-VhxMNIP0D2rsQPDX_JBblGEV5iKIcoyj3UchfX_983w |
| Cites_doi | 10.1109/ACCESS.2022.3192451 10.1016/j.engappai.2022.105373 10.1364/OE.483268 10.3390/jimaging8110295 10.1109/TIP.2022.3211471 10.1109/ACCESS.2021.3086984 10.1155/2022/6200931 10.3390/technologies11040111 10.1364/OE.460495 10.1109/TCYB.2021.3124231 10.1109/ICIP49359.2023.10221948 10.1109/TII.2023.3316180 10.3390/bioengineering11040399 10.3390/s21093265 10.1109/JSTSP.2022.3172865 10.3390/electronics12143038 10.3390/s22051767 10.3934/mbe.2023329 10.1137/23M1545859 10.1109/OJSP.2022.3172842 10.23919/cje.2022.00.414 10.1016/j.matcom.2022.06.007 10.1007/s11633-023-1466-0 10.1016/j.cam.2023.115330 |
| ContentType | Journal Article |
| DBID | AAYXX CITATION NPM 7X8 |
| DOI | 10.1080/0954898X.2025.2529299 |
| DatabaseName | CrossRef PubMed MEDLINE - Academic |
| DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic PubMed |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Mathematics Computer Science |
| EISSN | 1361-6536 |
| EndPage | 27 |
| ExternalDocumentID | 40697071 10_1080_0954898X_2025_2529299 |
| Genre | Journal Article |
| GroupedDBID | --- -~X .4S .DC 00X 03L 0R~ 123 29N 36B 4.4 AAGDL AALUX AAMIU AAPUL AAQRR AAYXX ABBKH ABEIZ ABIVO ABJNI ABLIJ ABLKL ABUPF ABWVI ABXYU ACENM ACGEJ ACGFS ACIEZ ADCVX ADRBQ ADXPE AECIN AEOZL AFKVX AFRVT AGDLA AGFJD AGRBW AGYJP AIJEM AIRBT AJWEG AKBVH ALMA_UNASSIGNED_HOLDINGS ALQZU ALYBC AMDAE BABNJ BLEHA BOHLJ CCCUG CITATION CS3 DKSSO EBS EMB F5P H13 HZ~ KRBQP KWAYT KYCEM M4Z O9- P2P RNANH RO9 RVRKI TASJS TBQAZ TDBHL TERGH TFDNU TFL TFW TUROJ TUS UEQFS V1S ~1N ADYSH NPM 7X8 |
| ID | FETCH-LOGICAL-c259t-b4ea334ae2199da8c62fe998740eb0c303bc2ac69a247ce782f532b22c9979ac3 |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001533729500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0954-898X 1361-6536 |
| IngestDate | Fri Sep 05 15:42:15 EDT 2025 Thu Jul 24 02:15:12 EDT 2025 Sat Nov 29 07:42:09 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | De-noising deep learning de-mosaicking image reconstruction generative adversarial learning |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c259t-b4ea334ae2199da8c62fe998740eb0c303bc2ac69a247ce782f532b22c9979ac3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PMID | 40697071 |
| PQID | 3232489128 |
| PQPubID | 23479 |
| PageCount | 27 |
| ParticipantIDs | proquest_miscellaneous_3232489128 pubmed_primary_40697071 crossref_primary_10_1080_0954898X_2025_2529299 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-Jul-23 |
| PublicationDateYYYYMMDD | 2025-07-23 |
| PublicationDate_xml | – month: 07 year: 2025 text: 2025-Jul-23 day: 23 |
| PublicationDecade | 2020 |
| PublicationPlace | England |
| PublicationPlace_xml | – name: England |
| PublicationTitle | Network (Bristol) |
| PublicationTitleAlternate | Network |
| PublicationYear | 2025 |
| References | Huang Y (e_1_3_2_8_1) 2023 e_1_3_2_27_1 e_1_3_2_28_1 e_1_3_2_29_1 Chen S (e_1_3_2_3_1) 2023 e_1_3_2_20_1 e_1_3_2_21_1 e_1_3_2_22_1 Qian G (e_1_3_2_23_1) 2022 Rao CR (e_1_3_2_24_1) 2022; 13 e_1_3_2_26_1 Guo S (e_1_3_2_5_1) 2022 e_1_3_2_16_1 e_1_3_2_9_1 e_1_3_2_18_1 e_1_3_2_7_1 Koshelev I (e_1_3_2_14_1) 2023 e_1_3_2_19_1 Chen H (e_1_3_2_2_1) 2023 e_1_3_2_31_1 e_1_3_2_30_1 e_1_3_2_10_1 e_1_3_2_33_1 e_1_3_2_32_1 e_1_3_2_6_1 e_1_3_2_12_1 Samuel S (e_1_3_2_25_1) 2022 e_1_3_2_35_1 e_1_3_2_13_1 e_1_3_2_34_1 e_1_3_2_4_1 Kerepecký T (e_1_3_2_11_1) 2023 e_1_3_2_15_1 Li Y (e_1_3_2_17_1) 2023 |
| References_xml | – ident: e_1_3_2_12_1 doi: 10.1109/ACCESS.2022.3192451 – ident: e_1_3_2_21_1 doi: 10.1016/j.engappai.2022.105373 – ident: e_1_3_2_28_1 doi: 10.1364/OE.483268 – ident: e_1_3_2_7_1 doi: 10.3390/jimaging8110295 – ident: e_1_3_2_32_1 doi: 10.1109/TIP.2022.3211471 – start-page: 1692 volume-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition year: 2023 ident: e_1_3_2_2_1 – ident: e_1_3_2_16_1 doi: 10.1109/ACCESS.2021.3086984 – ident: e_1_3_2_13_1 – ident: e_1_3_2_26_1 doi: 10.1155/2022/6200931 – ident: e_1_3_2_10_1 doi: 10.3390/technologies11040111 – ident: e_1_3_2_20_1 doi: 10.1364/OE.460495 – ident: e_1_3_2_33_1 doi: 10.1109/TCYB.2021.3124231 – start-page: 379 volume-title: Microelectronics, Communication Systems, Machine Learning and Internet of Things: Select Proceedings of MCMI 2020 year: 2022 ident: e_1_3_2_25_1 – start-page: 1735 volume-title: 2023 IEEE International Conference on Image Processing (ICIP) year: 2023 ident: e_1_3_2_11_1 doi: 10.1109/ICIP49359.2023.10221948 – ident: e_1_3_2_34_1 doi: 10.1109/TII.2023.3316180 – start-page: 18278 volume-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition year: 2023 ident: e_1_3_2_17_1 – ident: e_1_3_2_18_1 doi: 10.3390/bioengineering11040399 – year: 2023 ident: e_1_3_2_3_1 article-title: Exploring asymmetric tunable blind-spots for self-supervised denoising in real-world scenarios publication-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); June 16–22, 2024; Seattle, Washington, USA – ident: e_1_3_2_27_1 doi: 10.3390/s21093265 – ident: e_1_3_2_19_1 doi: 10.1109/JSTSP.2022.3172865 – volume: 13 start-page: 665 issue: 1 year: 2022 ident: e_1_3_2_24_1 article-title: Hybrid color image demosaicking using densely connected residual sub-pixel CNN with iterative ring resonator-based Gaussian filter publication-title: J Algebr Stat – ident: e_1_3_2_30_1 doi: 10.3390/electronics12143038 – ident: e_1_3_2_15_1 doi: 10.3390/s22051767 – ident: e_1_3_2_29_1 doi: 10.3934/mbe.2023329 – year: 2023 ident: e_1_3_2_14_1 article-title: Iterative reweighted least squares networks with convergence guarantees for solving inverse imaging problems publication-title: In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition – start-page: 188 volume-title: In Proceedings of the IEEE International Conference on Multimedia and Expo Workshops (ICMEW Workshops) year: 2023 ident: e_1_3_2_8_1 – ident: e_1_3_2_4_1 doi: 10.1137/23M1545859 – start-page: 17472 volume-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition year: 2022 ident: e_1_3_2_5_1 – ident: e_1_3_2_9_1 doi: 10.1109/OJSP.2022.3172842 – ident: e_1_3_2_35_1 doi: 10.23919/cje.2022.00.414 – ident: e_1_3_2_22_1 doi: 10.1016/j.matcom.2022.06.007 – ident: e_1_3_2_31_1 doi: 10.1007/s11633-023-1466-0 – ident: e_1_3_2_6_1 doi: 10.1016/j.cam.2023.115330 – start-page: 1 volume-title: 2022 IEEE International Conference on Computational Photography (ICCP) year: 2022 ident: e_1_3_2_23_1 |
| SSID | ssj0007273 |
| Score | 2.4011495 |
| SecondaryResourceType | online_first |
| Snippet | Image reconstruction is a critical step in various applications, such as art restoration, medical image processing, and agriculture, but it faces challenges... |
| SourceID | proquest pubmed crossref |
| SourceType | Aggregation Database Index Database |
| StartPage | 1 |
| Title | Hybrid deep learning model for image de-noising and de-mosaicking with adaptive Gannet optimization algorithm |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/40697071 https://www.proquest.com/docview/3232489128 |
| WOSCitedRecordID | wos001533729500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAWR databaseName: Taylor & Francis Journals Complete customDbUrl: eissn: 1361-6536 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0007273 issn: 0954-898X databaseCode: TFW dateStart: 19900101 isFulltext: true titleUrlDefault: https://www.tandfonline.com providerName: Taylor & Francis |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLa6gdB44DJu5TIZibcqVepcHD8CYkxCqyqtQN8ix3G2QHNR0lbrH-B3c-zEaYo2CR54iWonclV_n06-454LQu_8mLrSo8SSPmOWK0DDRTBnJcxO_CCRThIlutkEnU6DxYLNBoNfJhdms6R5Hlxfs_K_Qg1zALZKnf0HuLtFYQI-A-hwBdjh-lfAn21VEtYolrI0PSEum4Y3OqQwzVSUTiytvEhrk6EIw6yoeSp-dmezPOalDiv6zFXmzqiAUdYmbY748rKo4Kmsr22nTUS50qwfdMWCZe-Y4YuJ-92PCL4Y6UCMi-2S_-DfVF8XCQa_4tsdaXUcwvl6dbXe8LTiKt9qplolpbs1ZloLV1L_Zh003j_MIJ46JW3yjceyMcCOP7F8z-kb1cmNpr6NjVQF61iwGKvVxsQjIPdY_3kAp8w01CrHl9pNw5c_amybWwfoDqEeU6GB89Pv3RtdaTyT_aXqst_0nUfonlllX-Lc4rdo_TJ_hB60jgd-3xDmMRrI_Bg9NE09cGvjj9H9XoVKGJ13ZX3rJyhruIXVPmPDLay5hYFbWHML77iFgVt4j1tYcQsbbuGGW7jPLdxx6yn6evpp_vHMavt1WAKc6JUVuZI7jsslvAVZzAPhk0SCO09dW0a2ALEUCcKFzzhxqZCgTRPPIREhgjHKuHCeocO8yOULhH3HpeBpB7Dz0g1in0e254nYp8ILGJiWIRqbLQ7LpixLODHVblt4QgVP2MIzRG8NECEYUPWvGM9lsa5DR_kUAQOdNkTPG4S6JQ2iL2-98wod7Xj8Gh2uqrV8g-6KzSqtqxN0QBfBiSbTb3wmlII |
| linkProvider | Taylor & Francis |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hybrid+deep+learning+model+for+image+de-noising+and+de-mosaicking+with+adaptive+Gannet+optimization+algorithm&rft.jtitle=Network+%28Bristol%29&rft.au=K%2C+John+Peter&rft.au=S+R%2C+SylajaVallee+Narayan&rft.au=N%2C+Muthuvairavan+Pillai&rft.au=S+P%2C+Predeep+Kumar&rft.date=2025-07-23&rft.eissn=1361-6536&rft.spage=1&rft_id=info:doi/10.1080%2F0954898X.2025.2529299&rft_id=info%3Apmid%2F40697071&rft.externalDocID=40697071 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0954-898X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0954-898X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0954-898X&client=summon |