The β maps: Strong clustering and distribution results on the complex unit circle
In the current work, we study the eigenvalue distribution results of a class of non-normal matrix-sequences which may be viewed as a low rank perturbation, depending on a parameter β>1, of the basic Toeplitz matrix-sequence {Tn(eiθ)}n∈N, i2=−1. The latter of which has obviously all eigenvalues eq...
Gespeichert in:
| Veröffentlicht in: | Linear algebra and its applications Jg. 697; S. 365 - 383 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Elsevier Inc
15.09.2024
|
| Schlagworte: | |
| ISSN: | 0024-3795, 1873-1856 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | In the current work, we study the eigenvalue distribution results of a class of non-normal matrix-sequences which may be viewed as a low rank perturbation, depending on a parameter β>1, of the basic Toeplitz matrix-sequence {Tn(eiθ)}n∈N, i2=−1. The latter of which has obviously all eigenvalues equal to zero for any matrix order n, while for the matrix-sequence under consideration we will show a strong clustering on the complex unit circle. A detailed discussion on the outliers is also provided. The problem appears mathematically innocent, but it is indeed quite challenging since all the classical machinery for deducing the eigenvalue clustering does not cover the considered case. In the derivations, we resort to a trick used for the spectral analysis of the Google matrix plus several tools from complex analysis. We only mention that the problem is not an academic curiosity and in fact stems from problems in dynamical systems and number theory. Additionally, we also provide numerical experiments in high precision, a distribution analysis in the Weyl sense concerning both eigenvalues and singular values is given, and more results are sketched for the limit case of β=1. |
|---|---|
| AbstractList | In the current work, we study the eigenvalue distribution results of a class of non-normal matrix-sequences which may be viewed as a low rank perturbation, depending on a parameter beta > 1, of the basic Toeplitz matrix-sequence {T-n(e(i theta))}n is an element of N, i(2) = -1. The latter of which has obviously all eigenvalues equal to zero for any matrix order n, while for the matrix-sequence under consideration we will show a strong clustering on the complex unit circle. A detailed discussion on the outliers is also provided. The problem appears mathematically innocent, but it is indeed quite challenging since all the classical machinery for deducing the eigenvalue clustering does not cover the considered case. In the derivations, we resort to a trick used for the spectral analysis of the Google matrix plus several tools from complex analysis. We only mention that the problem is not an academic curiosity and in fact stems from problems in dynamical systems and number theory. Additionally, we also provide numerical experiments in high precision, a distribution analysis in the Weyl sense concerning both eigenvalues and singular values is given, and more results are sketched for the limit case of beta = 1. (c) 2024 The Author(s). Published by Elsevier Inc. In the current work, we study the eigenvalue distribution results of a class of non-normal matrix-sequences which may be viewed as a low rank perturbation, depending on a parameter β>1, of the basic Toeplitz matrix-sequence {Tn(eiθ)}n∈N, i2=−1. The latter of which has obviously all eigenvalues equal to zero for any matrix order n, while for the matrix-sequence under consideration we will show a strong clustering on the complex unit circle. A detailed discussion on the outliers is also provided. The problem appears mathematically innocent, but it is indeed quite challenging since all the classical machinery for deducing the eigenvalue clustering does not cover the considered case. In the derivations, we resort to a trick used for the spectral analysis of the Google matrix plus several tools from complex analysis. We only mention that the problem is not an academic curiosity and in fact stems from problems in dynamical systems and number theory. Additionally, we also provide numerical experiments in high precision, a distribution analysis in the Weyl sense concerning both eigenvalues and singular values is given, and more results are sketched for the limit case of β=1. |
| Author | Schiavoni-Piazza, Alec J.A. Serra-Capizzano, Stefano Meadon, David |
| Author_xml | – sequence: 1 givenname: Alec J.A. surname: Schiavoni-Piazza fullname: Schiavoni-Piazza, Alec J.A. email: ajapiazza@studenti.uninsubria.it organization: Department of Science and High Technology, University of Insubria, via Valleggio, 11, 22100 Como, Italy – sequence: 2 givenname: David orcidid: 0000-0001-8956-2998 surname: Meadon fullname: Meadon, David email: david.meadon@uu.se organization: Division of Scientific Computing, Department of Information Technology, University of Uppsala, Lägerhyddsv. 1, Box 337, SE-751 05, Uppsala, Sweden – sequence: 3 givenname: Stefano surname: Serra-Capizzano fullname: Serra-Capizzano, Stefano email: s.serracapizzano@uninsubria.it organization: Department of Science and High Technology, University of Insubria, via Valleggio, 11, 22100 Como, Italy |
| BackLink | https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-534773$$DView record from Swedish Publication Index (Uppsala universitet) |
| BookMark | eNp9kEtOwzAQhr0oEi1wAHY-AAl2HCcxrKrylCohQWFrOc6kuErjyHZ4XIuDcCZcFbFkNf9I_zfSfDM06W0PCJ1SklJCi_NN2imVZiTLU8JTQvMJmpK4JawU_BDNvN8QQvKSZFP0uHoF_P2Ft2rwF_gpONuvse5GH8CZGFXf4Mb44Ew9BmN77MCPXfA4xhBRbbdDBx947E3A2jjdwTE6aFXn4eR3HqHnm-vV4i5ZPtzeL-bLRGdchKSmWuiiFaIGSmleNrxVjEHN2qIuKlFVBQjetkoRoepKVYpnGSlpUTAqaNkIdoTO9nf9OwxjLQdntsp9SquMvDIvc2ndWo6j5CwvSxbrdF_XznrvoP0DKJE7b3Ijoze58yYJl9FbZC73DMQ_3gw46bWBXkNjHOggG2v-oX8Aot16_A |
| Cites_doi | 10.1016/S0024-3795(97)80001-8 10.1080/03081089808818584 10.1006/jmaa.1999.6572 10.1016/j.laa.2021.10.014 10.1112/jlms/s2-38.2.307 10.1007/BF02020954 10.1002/nla.2286 10.1007/s11075-018-0508-0 10.1016/0024-3795(92)90374-J 10.1016/j.jat.2006.05.002 10.1080/10586458.2017.1320241 10.1016/S0024-3795(99)00044-0 10.1016/S0024-3795(96)00445-4 10.56021/9781421407944 10.1002/nla.1922 10.1137/S0895479804441407 10.1137/040608027 10.1016/S0024-3795(01)00335-4 |
| ContentType | Journal Article |
| Copyright | 2024 The Author(s) |
| Copyright_xml | – notice: 2024 The Author(s) |
| DBID | 6I. AAFTH AAYXX CITATION ACNBI ADTPV AOWAS D8T DF2 ZZAVC |
| DOI | 10.1016/j.laa.2024.05.014 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef SWEPUB Uppsala universitet full text SwePub SwePub Articles SWEPUB Freely available online SWEPUB Uppsala universitet SwePub Articles full text |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Mathematics |
| EndPage | 383 |
| ExternalDocumentID | oai_DiVA_org_uu_534773 10_1016_j_laa_2024_05_014 S0024379524002192 |
| GroupedDBID | --K --M --Z -~X .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 6I. 6TJ 7-5 71M 8P~ 9JN AACTN AAEDW AAFTH AAIKJ AAKOC AALRI AAOAW AAQFI AASFE AATTM AAXKI AAXUO ABAOU ABJNI ABMAC ACDAQ ACGFS ACRLP ADBBV ADEZE AEBSH AEIPS AEKER AENEX AFJKZ AFTJW AGUBO AGYEJ AHHHB AIEXJ AIGVJ AIKHN AITUG AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ARUGR AXJTR BKOJK BLXMC BNPGV CS3 DU5 EBS EFJIC EO8 EO9 EP2 EP3 F5P FDB FEDTE FIRID FNPLU FYGXN G-Q GBLVA HVGLF IHE IXB J1W KOM M26 M41 MCRUF MHUIS MO0 N9A O-L O9- OAUVE OK1 OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SDF SDG SES SEW SPC SPCBC SSH SSW T5K TN5 TWZ WH7 XPP YQT ZMT ~G- 29L 5VS 9DU AAEDT AAQXK AAYWO AAYXX ABDPE ABEFU ABFNM ABWVN ABXDB ACLOT ACRPL ACVFH ADCNI ADIYS ADMUD ADNMO ADVLN AETEA AEUPX AEXQZ AFFNX AFPUW AGHFR AGQPQ AIGII AIIUN AKBMS AKYEP APXCP ASPBG AVWKF AZFZN CITATION EFKBS EFLBG EJD FA8 FGOYB G-2 HZ~ MVM OHT R2- SSZ T9H WUQ ~HD ACNBI ADTPV AOWAS D8T DF2 ZZAVC |
| ID | FETCH-LOGICAL-c259t-b1c9c6f99be11147d5fa33eb3f6b689886e95ffaa09ab8a8a5220716631917d93 |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001253216900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0024-3795 1873-1856 |
| IngestDate | Tue Nov 04 16:40:36 EST 2025 Sat Nov 29 04:02:03 EST 2025 Sun Apr 06 06:53:41 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | 30B10 37A30 Eigenvalue clustering 15B05 β maps Toeplitz matrix and matrix-sequence 37E05 15A18 |
| Language | English |
| License | This is an open access article under the CC BY license. |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c259t-b1c9c6f99be11147d5fa33eb3f6b689886e95ffaa09ab8a8a5220716631917d93 |
| ORCID | 0000-0001-8956-2998 |
| OpenAccessLink | https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-534773 |
| PageCount | 19 |
| ParticipantIDs | swepub_primary_oai_DiVA_org_uu_534773 crossref_primary_10_1016_j_laa_2024_05_014 elsevier_sciencedirect_doi_10_1016_j_laa_2024_05_014 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-09-15 |
| PublicationDateYYYYMMDD | 2024-09-15 |
| PublicationDate_xml | – month: 09 year: 2024 text: 2024-09-15 day: 15 |
| PublicationDecade | 2020 |
| PublicationTitle | Linear algebra and its applications |
| PublicationYear | 2024 |
| Publisher | Elsevier Inc |
| Publisher_xml | – name: Elsevier Inc |
| References | Varga (br0280) 2004; vol. 36 Böttcher, Grudsky (br0050) 2000 Golinskii, Serra-Capizzano (br0120) 2007; 144 Schiavoni-Piazza, Serra-Capizzano (br0190) 2023; 59 Tyrtyshnikov, Yeremin, Zamarashkin (br0250) 1997; 263 Böttcher, Grudsky (br0060) 2005 Reichel, Trefethen (br0170) 1992; 162 Al-Fhaid, Serra-Capizzano, Sesana, Ullah (br0010) 2014; 21 Verger-Gaugry (br0290) 2008; 3 Lemmens, Nussbaum (br0140) 2012; vol. 189 Saff, Totik (br0180) 1997; vol. 316 Serra-Capizzano (br0200) 2001; 337 Ekström, Garoni (br0080) 2019; 80 Ekström, Garoni, Serra-Capizzano (br0090) 2018; 27 Golub, Van Loan (br0130) 2013 Garoni, Serra Capizzano (br0100) 2017 Garoni, Serra Capizzano (br0110) 2018 Tyrtyshnikov, Zamarashkin (br0270) 1999; 292–1/3 Tilli (br0230) 1998; 45–2/3 Lubinsky (br0150) 2022; 633 Blatt, Saff, Simkani (br0040) 1988; 38 Serra-Capizzano (br0210) 2005; 27 Tilli (br0240) 1999; 239 Bhatia (br0030) 1997; vol. 169 Böttcher, Silbermann (br0070) 1999 Parry (br0160) 1960; 11 Serra-Capizzano, Bertaccini, Golub (br0220) 2005; 27 Barbarino, Serra-Capizzano (br0020) 2020; 27 Tyrtyshnikov, Zamarashkin (br0260) 1998; 270 Tyrtyshnikov (10.1016/j.laa.2024.05.014_br0250) 1997; 263 Tyrtyshnikov (10.1016/j.laa.2024.05.014_br0270) 1999; 292–1/3 Saff (10.1016/j.laa.2024.05.014_br0180) 1997; vol. 316 Varga (10.1016/j.laa.2024.05.014_br0280) 2004; vol. 36 Al-Fhaid (10.1016/j.laa.2024.05.014_br0010) 2014; 21 Tyrtyshnikov (10.1016/j.laa.2024.05.014_br0260) 1998; 270 Schiavoni-Piazza (10.1016/j.laa.2024.05.014_br0190) 2023; 59 Garoni (10.1016/j.laa.2024.05.014_br0110) 2018 Lemmens (10.1016/j.laa.2024.05.014_br0140) 2012; vol. 189 Garoni (10.1016/j.laa.2024.05.014_br0100) 2017 Golinskii (10.1016/j.laa.2024.05.014_br0120) 2007; 144 Ekström (10.1016/j.laa.2024.05.014_br0080) 2019; 80 Tilli (10.1016/j.laa.2024.05.014_br0240) 1999; 239 Böttcher (10.1016/j.laa.2024.05.014_br0060) 2005 Reichel (10.1016/j.laa.2024.05.014_br0170) 1992; 162 Serra-Capizzano (10.1016/j.laa.2024.05.014_br0200) 2001; 337 Böttcher (10.1016/j.laa.2024.05.014_br0070) 1999 Bhatia (10.1016/j.laa.2024.05.014_br0030) 1997; vol. 169 Tilli (10.1016/j.laa.2024.05.014_br0230) 1998; 45–2/3 Böttcher (10.1016/j.laa.2024.05.014_br0050) 2000 Lubinsky (10.1016/j.laa.2024.05.014_br0150) 2022; 633 Verger-Gaugry (10.1016/j.laa.2024.05.014_br0290) 2008; 3 Serra-Capizzano (10.1016/j.laa.2024.05.014_br0220) 2005; 27 Ekström (10.1016/j.laa.2024.05.014_br0090) 2018; 27 Parry (10.1016/j.laa.2024.05.014_br0160) 1960; 11 Serra-Capizzano (10.1016/j.laa.2024.05.014_br0210) 2005; 27 Barbarino (10.1016/j.laa.2024.05.014_br0020) 2020; 27 Blatt (10.1016/j.laa.2024.05.014_br0040) 1988; 38 Golub (10.1016/j.laa.2024.05.014_br0130) 2013 |
| References_xml | – volume: vol. 169 year: 1997 ident: br0030 article-title: Matrix Analysis publication-title: Graduate Texts in Mathematics – volume: 633 start-page: 332 year: 2022 end-page: 365 ident: br0150 article-title: Distribution of eigenvalues of Toeplitz matrices with smooth entries publication-title: Linear Algebra Appl. – volume: vol. 316 year: 1997 ident: br0180 article-title: Logarithmic Potentials with External Fields. Appendix B by Thomas Bloom publication-title: Grundlehren der mathematischen Wissenschaften – volume: 38 start-page: 307 year: 1988 end-page: 316 ident: br0040 article-title: Jentzsch-Szegő type theorems for the zeros of best approximants publication-title: J. Lond. Math. Soc. (2) – volume: 144 start-page: 84 year: 2007 end-page: 102 ident: br0120 article-title: The asymptotic properties of the spectrum of nonsymmetrically perturbed Jacobi matrix sequences publication-title: J. Approx. Theory – volume: vol. 189 year: 2012 ident: br0140 article-title: Nonlinear Perron-Frobenius Theory publication-title: Cambridge Tracts in Mathematics – volume: 263 start-page: 25 year: 1997 end-page: 48 ident: br0250 article-title: Clusters, preconditioners, convergence publication-title: Linear Algebra Appl. – volume: vol. 36 year: 2004 ident: br0280 article-title: Geršgorin and His Circles publication-title: Series in Computational Mathematics – year: 2017 ident: br0100 article-title: Generalized Locally Toeplitz Sequences: Theory and Applications. Vol. I – volume: 11 start-page: 401 year: 1960 end-page: 416 ident: br0160 article-title: On the publication-title: Acta Math. Acad. Sci. Hung. – year: 1999 ident: br0070 article-title: Introduction to Large Truncated Toeplitz Matrices – volume: 45–2/3 start-page: 147 year: 1998 end-page: 159 ident: br0230 article-title: A note on the spectral distribution of Toeplitz matrices publication-title: Linear Multilinear Algebra – volume: 59 start-page: 1 year: 2023 end-page: 8 ident: br0190 article-title: Distribution results for a special class of matrix sequences: joining approximation theory and asymptotic linear algebra publication-title: Electron. Trans. Numer. Anal. – volume: 239 start-page: 390 year: 1999 end-page: 401 ident: br0240 article-title: Some results on complex Toeplitz eigenvalues publication-title: J. Math. Anal. Appl. – volume: 80 start-page: 819 year: 2019 end-page: 848 ident: br0080 article-title: A matrix-less and parallel interpolation–extrapolation algorithm for computing the eigenvalues of preconditioned banded symmetric Toeplitz matrices publication-title: Numer. Algorithms – volume: 292–1/3 start-page: 297 year: 1999 end-page: 310 ident: br0270 article-title: Thin structure of eigenvalue clusters for non-Hermitian Toeplitz matrices publication-title: Linear Algebra Appl. – year: 2013 ident: br0130 article-title: Matrix Computations publication-title: Johns Hopkins Studies in the Mathematical Sciences – volume: 21 start-page: 722 year: 2014 end-page: 743 ident: br0010 article-title: Singular-value (and eigenvalue) distribution and Krylov preconditioning of sequences of sampling matrices approximating integral operators publication-title: Numer. Linear Algebra Appl. – volume: 3 start-page: 157 year: 2008 end-page: 190 ident: br0290 article-title: Uniform distribution of Galois conjugates and beta-conjugates of a Parry number near the unit circle and dichotomy of Perron numbers publication-title: Unif. Distrib. Theory – volume: 27 start-page: 82 year: 2005 end-page: 86 ident: br0220 article-title: How to deduce a proper eigenvalue cluster from a proper singular value cluster in the nonnormal case publication-title: SIAM J. Matrix Anal. Appl. – year: 2000 ident: br0050 article-title: Toeplitz Matrices, Asymptotic Linear Algebra, and Functional Analysis – volume: 270 start-page: 15 year: 1998 end-page: 27 ident: br0260 article-title: Spectra of multilevel Toeplitz matrices: advanced theory via simple matrix relationships publication-title: Linear Algebra Appl. – volume: 27 start-page: 478 year: 2018 end-page: 487 ident: br0090 article-title: Are the eigenvalues of banded symmetric Toeplitz matrices known in almost closed form? publication-title: Exp. Math. – year: 2005 ident: br0060 article-title: Spectral Properties of Banded Toeplitz Matrices – year: 2018 ident: br0110 article-title: Generalized Locally Toeplitz Sequences: Theory and Applications. Vol. II – volume: 27 year: 2020 ident: br0020 article-title: Non-Hermitian perturbations of Hermitian matrix-sequences and applications to the spectral analysis of the numerical approximation of partial differential equations publication-title: Numer. Linear Algebra Appl. – volume: 162 start-page: 153 year: 1992 end-page: 185 ident: br0170 article-title: Eigenvalues and pseudo-eigenvalues of Toeplitz matrices publication-title: Directions in Matrix Theory – volume: 337 start-page: 37 year: 2001 end-page: 78 ident: br0200 article-title: Spectral behavior of matrix sequences and discretized boundary value problems publication-title: Linear Algebra Appl. – volume: 27 start-page: 305 year: 2005 end-page: 312 ident: br0210 article-title: Jordan canonical form of the Google matrix: a potential contribution to the PageRank computation publication-title: SIAM J. Matrix Anal. Appl. – volume: vol. 316 year: 1997 ident: 10.1016/j.laa.2024.05.014_br0180 article-title: Logarithmic Potentials with External Fields. Appendix B by Thomas Bloom – volume: vol. 36 year: 2004 ident: 10.1016/j.laa.2024.05.014_br0280 article-title: Geršgorin and His Circles – volume: 270 start-page: 15 year: 1998 ident: 10.1016/j.laa.2024.05.014_br0260 article-title: Spectra of multilevel Toeplitz matrices: advanced theory via simple matrix relationships publication-title: Linear Algebra Appl. doi: 10.1016/S0024-3795(97)80001-8 – volume: 45–2/3 start-page: 147 year: 1998 ident: 10.1016/j.laa.2024.05.014_br0230 article-title: A note on the spectral distribution of Toeplitz matrices publication-title: Linear Multilinear Algebra doi: 10.1080/03081089808818584 – volume: 239 start-page: 390 issue: 2 year: 1999 ident: 10.1016/j.laa.2024.05.014_br0240 article-title: Some results on complex Toeplitz eigenvalues publication-title: J. Math. Anal. Appl. doi: 10.1006/jmaa.1999.6572 – year: 1999 ident: 10.1016/j.laa.2024.05.014_br0070 – volume: 633 start-page: 332 year: 2022 ident: 10.1016/j.laa.2024.05.014_br0150 article-title: Distribution of eigenvalues of Toeplitz matrices with smooth entries publication-title: Linear Algebra Appl. doi: 10.1016/j.laa.2021.10.014 – volume: 38 start-page: 307 issue: 2 year: 1988 ident: 10.1016/j.laa.2024.05.014_br0040 article-title: Jentzsch-Szegő type theorems for the zeros of best approximants publication-title: J. Lond. Math. Soc. (2) doi: 10.1112/jlms/s2-38.2.307 – volume: 3 start-page: 157 issue: 2 year: 2008 ident: 10.1016/j.laa.2024.05.014_br0290 article-title: Uniform distribution of Galois conjugates and beta-conjugates of a Parry number near the unit circle and dichotomy of Perron numbers publication-title: Unif. Distrib. Theory – volume: 59 start-page: 1 year: 2023 ident: 10.1016/j.laa.2024.05.014_br0190 article-title: Distribution results for a special class of matrix sequences: joining approximation theory and asymptotic linear algebra publication-title: Electron. Trans. Numer. Anal. – volume: 11 start-page: 401 year: 1960 ident: 10.1016/j.laa.2024.05.014_br0160 article-title: On the β-expansions of real numbers publication-title: Acta Math. Acad. Sci. Hung. doi: 10.1007/BF02020954 – year: 2000 ident: 10.1016/j.laa.2024.05.014_br0050 – volume: vol. 189 year: 2012 ident: 10.1016/j.laa.2024.05.014_br0140 article-title: Nonlinear Perron-Frobenius Theory – volume: 27 issue: 3 year: 2020 ident: 10.1016/j.laa.2024.05.014_br0020 article-title: Non-Hermitian perturbations of Hermitian matrix-sequences and applications to the spectral analysis of the numerical approximation of partial differential equations publication-title: Numer. Linear Algebra Appl. doi: 10.1002/nla.2286 – volume: 80 start-page: 819 issue: 3 year: 2019 ident: 10.1016/j.laa.2024.05.014_br0080 article-title: A matrix-less and parallel interpolation–extrapolation algorithm for computing the eigenvalues of preconditioned banded symmetric Toeplitz matrices publication-title: Numer. Algorithms doi: 10.1007/s11075-018-0508-0 – volume: 162 start-page: 153 issue: 164 year: 1992 ident: 10.1016/j.laa.2024.05.014_br0170 article-title: Eigenvalues and pseudo-eigenvalues of Toeplitz matrices publication-title: Linear Algebra Appl. doi: 10.1016/0024-3795(92)90374-J – volume: 144 start-page: 84 issue: 1 year: 2007 ident: 10.1016/j.laa.2024.05.014_br0120 article-title: The asymptotic properties of the spectrum of nonsymmetrically perturbed Jacobi matrix sequences publication-title: J. Approx. Theory doi: 10.1016/j.jat.2006.05.002 – volume: vol. 169 year: 1997 ident: 10.1016/j.laa.2024.05.014_br0030 article-title: Matrix Analysis – volume: 27 start-page: 478 issue: 4 year: 2018 ident: 10.1016/j.laa.2024.05.014_br0090 article-title: Are the eigenvalues of banded symmetric Toeplitz matrices known in almost closed form? publication-title: Exp. Math. doi: 10.1080/10586458.2017.1320241 – volume: 292–1/3 start-page: 297 year: 1999 ident: 10.1016/j.laa.2024.05.014_br0270 article-title: Thin structure of eigenvalue clusters for non-Hermitian Toeplitz matrices publication-title: Linear Algebra Appl. doi: 10.1016/S0024-3795(99)00044-0 – volume: 263 start-page: 25 year: 1997 ident: 10.1016/j.laa.2024.05.014_br0250 article-title: Clusters, preconditioners, convergence publication-title: Linear Algebra Appl. doi: 10.1016/S0024-3795(96)00445-4 – year: 2017 ident: 10.1016/j.laa.2024.05.014_br0100 – year: 2013 ident: 10.1016/j.laa.2024.05.014_br0130 article-title: Matrix Computations doi: 10.56021/9781421407944 – year: 2005 ident: 10.1016/j.laa.2024.05.014_br0060 – volume: 21 start-page: 722 issue: 6 year: 2014 ident: 10.1016/j.laa.2024.05.014_br0010 article-title: Singular-value (and eigenvalue) distribution and Krylov preconditioning of sequences of sampling matrices approximating integral operators publication-title: Numer. Linear Algebra Appl. doi: 10.1002/nla.1922 – volume: 27 start-page: 305 issue: 2 year: 2005 ident: 10.1016/j.laa.2024.05.014_br0210 article-title: Jordan canonical form of the Google matrix: a potential contribution to the PageRank computation publication-title: SIAM J. Matrix Anal. Appl. doi: 10.1137/S0895479804441407 – year: 2018 ident: 10.1016/j.laa.2024.05.014_br0110 – volume: 27 start-page: 82 issue: 1 year: 2005 ident: 10.1016/j.laa.2024.05.014_br0220 article-title: How to deduce a proper eigenvalue cluster from a proper singular value cluster in the nonnormal case publication-title: SIAM J. Matrix Anal. Appl. doi: 10.1137/040608027 – volume: 337 start-page: 37 year: 2001 ident: 10.1016/j.laa.2024.05.014_br0200 article-title: Spectral behavior of matrix sequences and discretized boundary value problems publication-title: Linear Algebra Appl. doi: 10.1016/S0024-3795(01)00335-4 |
| SSID | ssj0004702 |
| Score | 2.4011445 |
| Snippet | In the current work, we study the eigenvalue distribution results of a class of non-normal matrix-sequences which may be viewed as a low rank perturbation,... |
| SourceID | swepub crossref elsevier |
| SourceType | Open Access Repository Index Database Publisher |
| StartPage | 365 |
| SubjectTerms | Beräkningsvetenskap med inriktning mot numerisk analys beta maps Eigenvalue clustering Scientific Computing with specialization in Numerical Analysis Toeplitz matrix and matrix-sequence β maps |
| Title | The β maps: Strong clustering and distribution results on the complex unit circle |
| URI | https://dx.doi.org/10.1016/j.laa.2024.05.014 https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-534773 |
| Volume | 697 |
| WOSCitedRecordID | wos001253216900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 issn: 1873-1856 databaseCode: AIEXJ dateStart: 20211211 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: false ssIdentifier: ssj0004702 providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1fb9MwELeqjgd4QPwVg4H8QF-IUrVxnNh7K6UIJpgmNqa-WU7ibJlKVmVNVe2Jz8QH4TNxju2kgECAxEtkRYpd3f16Pvt-d4fQc8XjIIkC5VMSwQElU9Tnkmc-VWOWS_CYVXOhf_ouPjxk8zk_6vU-u1yY9SIuS7bZ8OV_VTW8A2Xr1Nm_UHc7KbyAMSgdnqB2eP6x4gfT2eBl4H2Sy4bxdqzvu8-8dFHrsgguLTHTNXNtuysPTt31oo0dGKa52ng1_OO9tKjcGi5zGnxTWXm6RwicttsAxHY0vIvwnBdyDZbDPyrk9bW0WTWpdzCcDFt1A9JM-H-LY9-QkCvpT-WygA-bHuGalZbDcPuyIgg1s8Kka5obNJdF8x3JU_sJYOhMs01nlSND27V2lZiGEnaLJqb3zU_W31xEXAwXUleUCkJTkzXstrqWgHhsKzFSTaEFow2b-E4QU876aGfydjY_6HJr45GtOG9-o4uMNxzBHxb6pW-zXYS2cVxO7qDb9sSBJwYpd1FPlffQrfdtud6r--gDYAZ__YI1XvaxQQvu0IJBv3gbLdiiBcMQpsEWLVijBRu0PEAfX89Opm9822zDT-EEvPKTccrTKOc8UbD9hXFGc0mISkgeJRHjjEWK0zyXcsRlwiST4LiDewoOqz7xZ5w8RP3yslSPEM7ACRzznLA0hv0hJYlSUkVRqCs_JYzmu-iFE5NYmpoqwpENLwTIVGiZihEVINNdFDpBCusUGmdPgNZ_99nACL1dQddRf1WcTsRldSbqWlASxjF5_G_TP0E3O3jvof6qqtVTdCNdr4qr6pnF0Df6cJRx |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+%CE%B2+maps%3A+Strong+clustering+and+distribution+results+on+the+complex+unit+circle&rft.jtitle=Linear+algebra+and+its+applications&rft.au=Schiavoni-Piazza%2C+Alec+J.A.&rft.au=Meadon%2C+David&rft.au=Serra-Capizzano%2C+Stefano&rft.date=2024-09-15&rft.pub=Elsevier+Inc&rft.issn=0024-3795&rft.volume=697&rft.spage=365&rft.epage=383&rft_id=info:doi/10.1016%2Fj.laa.2024.05.014&rft.externalDocID=S0024379524002192 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0024-3795&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0024-3795&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0024-3795&client=summon |