The β maps: Strong clustering and distribution results on the complex unit circle

In the current work, we study the eigenvalue distribution results of a class of non-normal matrix-sequences which may be viewed as a low rank perturbation, depending on a parameter β>1, of the basic Toeplitz matrix-sequence {Tn(eiθ)}n∈N, i2=−1. The latter of which has obviously all eigenvalues eq...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Linear algebra and its applications Jg. 697; S. 365 - 383
Hauptverfasser: Schiavoni-Piazza, Alec J.A., Meadon, David, Serra-Capizzano, Stefano
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier Inc 15.09.2024
Schlagworte:
ISSN:0024-3795, 1873-1856
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract In the current work, we study the eigenvalue distribution results of a class of non-normal matrix-sequences which may be viewed as a low rank perturbation, depending on a parameter β>1, of the basic Toeplitz matrix-sequence {Tn(eiθ)}n∈N, i2=−1. The latter of which has obviously all eigenvalues equal to zero for any matrix order n, while for the matrix-sequence under consideration we will show a strong clustering on the complex unit circle. A detailed discussion on the outliers is also provided. The problem appears mathematically innocent, but it is indeed quite challenging since all the classical machinery for deducing the eigenvalue clustering does not cover the considered case. In the derivations, we resort to a trick used for the spectral analysis of the Google matrix plus several tools from complex analysis. We only mention that the problem is not an academic curiosity and in fact stems from problems in dynamical systems and number theory. Additionally, we also provide numerical experiments in high precision, a distribution analysis in the Weyl sense concerning both eigenvalues and singular values is given, and more results are sketched for the limit case of β=1.
AbstractList In the current work, we study the eigenvalue distribution results of a class of non-normal matrix-sequences which may be viewed as a low rank perturbation, depending on a parameter beta > 1, of the basic Toeplitz matrix-sequence {T-n(e(i theta))}n is an element of N, i(2) = -1. The latter of which has obviously all eigenvalues equal to zero for any matrix order n, while for the matrix-sequence under consideration we will show a strong clustering on the complex unit circle. A detailed discussion on the outliers is also provided. The problem appears mathematically innocent, but it is indeed quite challenging since all the classical machinery for deducing the eigenvalue clustering does not cover the considered case. In the derivations, we resort to a trick used for the spectral analysis of the Google matrix plus several tools from complex analysis. We only mention that the problem is not an academic curiosity and in fact stems from problems in dynamical systems and number theory. Additionally, we also provide numerical experiments in high precision, a distribution analysis in the Weyl sense concerning both eigenvalues and singular values is given, and more results are sketched for the limit case of beta = 1. (c) 2024 The Author(s). Published by Elsevier Inc.
In the current work, we study the eigenvalue distribution results of a class of non-normal matrix-sequences which may be viewed as a low rank perturbation, depending on a parameter β>1, of the basic Toeplitz matrix-sequence {Tn(eiθ)}n∈N, i2=−1. The latter of which has obviously all eigenvalues equal to zero for any matrix order n, while for the matrix-sequence under consideration we will show a strong clustering on the complex unit circle. A detailed discussion on the outliers is also provided. The problem appears mathematically innocent, but it is indeed quite challenging since all the classical machinery for deducing the eigenvalue clustering does not cover the considered case. In the derivations, we resort to a trick used for the spectral analysis of the Google matrix plus several tools from complex analysis. We only mention that the problem is not an academic curiosity and in fact stems from problems in dynamical systems and number theory. Additionally, we also provide numerical experiments in high precision, a distribution analysis in the Weyl sense concerning both eigenvalues and singular values is given, and more results are sketched for the limit case of β=1.
Author Schiavoni-Piazza, Alec J.A.
Serra-Capizzano, Stefano
Meadon, David
Author_xml – sequence: 1
  givenname: Alec J.A.
  surname: Schiavoni-Piazza
  fullname: Schiavoni-Piazza, Alec J.A.
  email: ajapiazza@studenti.uninsubria.it
  organization: Department of Science and High Technology, University of Insubria, via Valleggio, 11, 22100 Como, Italy
– sequence: 2
  givenname: David
  orcidid: 0000-0001-8956-2998
  surname: Meadon
  fullname: Meadon, David
  email: david.meadon@uu.se
  organization: Division of Scientific Computing, Department of Information Technology, University of Uppsala, Lägerhyddsv. 1, Box 337, SE-751 05, Uppsala, Sweden
– sequence: 3
  givenname: Stefano
  surname: Serra-Capizzano
  fullname: Serra-Capizzano, Stefano
  email: s.serracapizzano@uninsubria.it
  organization: Department of Science and High Technology, University of Insubria, via Valleggio, 11, 22100 Como, Italy
BackLink https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-534773$$DView record from Swedish Publication Index (Uppsala universitet)
BookMark eNp9kEtOwzAQhr0oEi1wAHY-AAl2HCcxrKrylCohQWFrOc6kuErjyHZ4XIuDcCZcFbFkNf9I_zfSfDM06W0PCJ1SklJCi_NN2imVZiTLU8JTQvMJmpK4JawU_BDNvN8QQvKSZFP0uHoF_P2Ft2rwF_gpONuvse5GH8CZGFXf4Mb44Ew9BmN77MCPXfA4xhBRbbdDBx947E3A2jjdwTE6aFXn4eR3HqHnm-vV4i5ZPtzeL-bLRGdchKSmWuiiFaIGSmleNrxVjEHN2qIuKlFVBQjetkoRoepKVYpnGSlpUTAqaNkIdoTO9nf9OwxjLQdntsp9SquMvDIvc2ndWo6j5CwvSxbrdF_XznrvoP0DKJE7b3Ijoze58yYJl9FbZC73DMQ_3gw46bWBXkNjHOggG2v-oX8Aot16_A
Cites_doi 10.1016/S0024-3795(97)80001-8
10.1080/03081089808818584
10.1006/jmaa.1999.6572
10.1016/j.laa.2021.10.014
10.1112/jlms/s2-38.2.307
10.1007/BF02020954
10.1002/nla.2286
10.1007/s11075-018-0508-0
10.1016/0024-3795(92)90374-J
10.1016/j.jat.2006.05.002
10.1080/10586458.2017.1320241
10.1016/S0024-3795(99)00044-0
10.1016/S0024-3795(96)00445-4
10.56021/9781421407944
10.1002/nla.1922
10.1137/S0895479804441407
10.1137/040608027
10.1016/S0024-3795(01)00335-4
ContentType Journal Article
Copyright 2024 The Author(s)
Copyright_xml – notice: 2024 The Author(s)
DBID 6I.
AAFTH
AAYXX
CITATION
ACNBI
ADTPV
AOWAS
D8T
DF2
ZZAVC
DOI 10.1016/j.laa.2024.05.014
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
SWEPUB Uppsala universitet full text
SwePub
SwePub Articles
SWEPUB Freely available online
SWEPUB Uppsala universitet
SwePub Articles full text
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EndPage 383
ExternalDocumentID oai_DiVA_org_uu_534773
10_1016_j_laa_2024_05_014
S0024379524002192
GroupedDBID --K
--M
--Z
-~X
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
6I.
6TJ
7-5
71M
8P~
9JN
AACTN
AAEDW
AAFTH
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AASFE
AATTM
AAXKI
AAXUO
ABAOU
ABJNI
ABMAC
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
AEBSH
AEIPS
AEKER
AENEX
AFJKZ
AFTJW
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGVJ
AIKHN
AITUG
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ARUGR
AXJTR
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
IHE
IXB
J1W
KOM
M26
M41
MCRUF
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OK1
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SSH
SSW
T5K
TN5
TWZ
WH7
XPP
YQT
ZMT
~G-
29L
5VS
9DU
AAEDT
AAQXK
AAYWO
AAYXX
ABDPE
ABEFU
ABFNM
ABWVN
ABXDB
ACLOT
ACRPL
ACVFH
ADCNI
ADIYS
ADMUD
ADNMO
ADVLN
AETEA
AEUPX
AEXQZ
AFFNX
AFPUW
AGHFR
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EFLBG
EJD
FA8
FGOYB
G-2
HZ~
MVM
OHT
R2-
SSZ
T9H
WUQ
~HD
ACNBI
ADTPV
AOWAS
D8T
DF2
ZZAVC
ID FETCH-LOGICAL-c259t-b1c9c6f99be11147d5fa33eb3f6b689886e95ffaa09ab8a8a5220716631917d93
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001253216900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0024-3795
1873-1856
IngestDate Tue Nov 04 16:40:36 EST 2025
Sat Nov 29 04:02:03 EST 2025
Sun Apr 06 06:53:41 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords 30B10
37A30
Eigenvalue clustering
15B05
β maps
Toeplitz matrix and matrix-sequence
37E05
15A18
Language English
License This is an open access article under the CC BY license.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c259t-b1c9c6f99be11147d5fa33eb3f6b689886e95ffaa09ab8a8a5220716631917d93
ORCID 0000-0001-8956-2998
OpenAccessLink https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-534773
PageCount 19
ParticipantIDs swepub_primary_oai_DiVA_org_uu_534773
crossref_primary_10_1016_j_laa_2024_05_014
elsevier_sciencedirect_doi_10_1016_j_laa_2024_05_014
PublicationCentury 2000
PublicationDate 2024-09-15
PublicationDateYYYYMMDD 2024-09-15
PublicationDate_xml – month: 09
  year: 2024
  text: 2024-09-15
  day: 15
PublicationDecade 2020
PublicationTitle Linear algebra and its applications
PublicationYear 2024
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Varga (br0280) 2004; vol. 36
Böttcher, Grudsky (br0050) 2000
Golinskii, Serra-Capizzano (br0120) 2007; 144
Schiavoni-Piazza, Serra-Capizzano (br0190) 2023; 59
Tyrtyshnikov, Yeremin, Zamarashkin (br0250) 1997; 263
Böttcher, Grudsky (br0060) 2005
Reichel, Trefethen (br0170) 1992; 162
Al-Fhaid, Serra-Capizzano, Sesana, Ullah (br0010) 2014; 21
Verger-Gaugry (br0290) 2008; 3
Lemmens, Nussbaum (br0140) 2012; vol. 189
Saff, Totik (br0180) 1997; vol. 316
Serra-Capizzano (br0200) 2001; 337
Ekström, Garoni (br0080) 2019; 80
Ekström, Garoni, Serra-Capizzano (br0090) 2018; 27
Golub, Van Loan (br0130) 2013
Garoni, Serra Capizzano (br0100) 2017
Garoni, Serra Capizzano (br0110) 2018
Tyrtyshnikov, Zamarashkin (br0270) 1999; 292–1/3
Tilli (br0230) 1998; 45–2/3
Lubinsky (br0150) 2022; 633
Blatt, Saff, Simkani (br0040) 1988; 38
Serra-Capizzano (br0210) 2005; 27
Tilli (br0240) 1999; 239
Bhatia (br0030) 1997; vol. 169
Böttcher, Silbermann (br0070) 1999
Parry (br0160) 1960; 11
Serra-Capizzano, Bertaccini, Golub (br0220) 2005; 27
Barbarino, Serra-Capizzano (br0020) 2020; 27
Tyrtyshnikov, Zamarashkin (br0260) 1998; 270
Tyrtyshnikov (10.1016/j.laa.2024.05.014_br0250) 1997; 263
Tyrtyshnikov (10.1016/j.laa.2024.05.014_br0270) 1999; 292–1/3
Saff (10.1016/j.laa.2024.05.014_br0180) 1997; vol. 316
Varga (10.1016/j.laa.2024.05.014_br0280) 2004; vol. 36
Al-Fhaid (10.1016/j.laa.2024.05.014_br0010) 2014; 21
Tyrtyshnikov (10.1016/j.laa.2024.05.014_br0260) 1998; 270
Schiavoni-Piazza (10.1016/j.laa.2024.05.014_br0190) 2023; 59
Garoni (10.1016/j.laa.2024.05.014_br0110) 2018
Lemmens (10.1016/j.laa.2024.05.014_br0140) 2012; vol. 189
Garoni (10.1016/j.laa.2024.05.014_br0100) 2017
Golinskii (10.1016/j.laa.2024.05.014_br0120) 2007; 144
Ekström (10.1016/j.laa.2024.05.014_br0080) 2019; 80
Tilli (10.1016/j.laa.2024.05.014_br0240) 1999; 239
Böttcher (10.1016/j.laa.2024.05.014_br0060) 2005
Reichel (10.1016/j.laa.2024.05.014_br0170) 1992; 162
Serra-Capizzano (10.1016/j.laa.2024.05.014_br0200) 2001; 337
Böttcher (10.1016/j.laa.2024.05.014_br0070) 1999
Bhatia (10.1016/j.laa.2024.05.014_br0030) 1997; vol. 169
Tilli (10.1016/j.laa.2024.05.014_br0230) 1998; 45–2/3
Böttcher (10.1016/j.laa.2024.05.014_br0050) 2000
Lubinsky (10.1016/j.laa.2024.05.014_br0150) 2022; 633
Verger-Gaugry (10.1016/j.laa.2024.05.014_br0290) 2008; 3
Serra-Capizzano (10.1016/j.laa.2024.05.014_br0220) 2005; 27
Ekström (10.1016/j.laa.2024.05.014_br0090) 2018; 27
Parry (10.1016/j.laa.2024.05.014_br0160) 1960; 11
Serra-Capizzano (10.1016/j.laa.2024.05.014_br0210) 2005; 27
Barbarino (10.1016/j.laa.2024.05.014_br0020) 2020; 27
Blatt (10.1016/j.laa.2024.05.014_br0040) 1988; 38
Golub (10.1016/j.laa.2024.05.014_br0130) 2013
References_xml – volume: vol. 169
  year: 1997
  ident: br0030
  article-title: Matrix Analysis
  publication-title: Graduate Texts in Mathematics
– volume: 633
  start-page: 332
  year: 2022
  end-page: 365
  ident: br0150
  article-title: Distribution of eigenvalues of Toeplitz matrices with smooth entries
  publication-title: Linear Algebra Appl.
– volume: vol. 316
  year: 1997
  ident: br0180
  article-title: Logarithmic Potentials with External Fields. Appendix B by Thomas Bloom
  publication-title: Grundlehren der mathematischen Wissenschaften
– volume: 38
  start-page: 307
  year: 1988
  end-page: 316
  ident: br0040
  article-title: Jentzsch-Szegő type theorems for the zeros of best approximants
  publication-title: J. Lond. Math. Soc. (2)
– volume: 144
  start-page: 84
  year: 2007
  end-page: 102
  ident: br0120
  article-title: The asymptotic properties of the spectrum of nonsymmetrically perturbed Jacobi matrix sequences
  publication-title: J. Approx. Theory
– volume: vol. 189
  year: 2012
  ident: br0140
  article-title: Nonlinear Perron-Frobenius Theory
  publication-title: Cambridge Tracts in Mathematics
– volume: 263
  start-page: 25
  year: 1997
  end-page: 48
  ident: br0250
  article-title: Clusters, preconditioners, convergence
  publication-title: Linear Algebra Appl.
– volume: vol. 36
  year: 2004
  ident: br0280
  article-title: Geršgorin and His Circles
  publication-title: Series in Computational Mathematics
– year: 2017
  ident: br0100
  article-title: Generalized Locally Toeplitz Sequences: Theory and Applications. Vol. I
– volume: 11
  start-page: 401
  year: 1960
  end-page: 416
  ident: br0160
  article-title: On the
  publication-title: Acta Math. Acad. Sci. Hung.
– year: 1999
  ident: br0070
  article-title: Introduction to Large Truncated Toeplitz Matrices
– volume: 45–2/3
  start-page: 147
  year: 1998
  end-page: 159
  ident: br0230
  article-title: A note on the spectral distribution of Toeplitz matrices
  publication-title: Linear Multilinear Algebra
– volume: 59
  start-page: 1
  year: 2023
  end-page: 8
  ident: br0190
  article-title: Distribution results for a special class of matrix sequences: joining approximation theory and asymptotic linear algebra
  publication-title: Electron. Trans. Numer. Anal.
– volume: 239
  start-page: 390
  year: 1999
  end-page: 401
  ident: br0240
  article-title: Some results on complex Toeplitz eigenvalues
  publication-title: J. Math. Anal. Appl.
– volume: 80
  start-page: 819
  year: 2019
  end-page: 848
  ident: br0080
  article-title: A matrix-less and parallel interpolation–extrapolation algorithm for computing the eigenvalues of preconditioned banded symmetric Toeplitz matrices
  publication-title: Numer. Algorithms
– volume: 292–1/3
  start-page: 297
  year: 1999
  end-page: 310
  ident: br0270
  article-title: Thin structure of eigenvalue clusters for non-Hermitian Toeplitz matrices
  publication-title: Linear Algebra Appl.
– year: 2013
  ident: br0130
  article-title: Matrix Computations
  publication-title: Johns Hopkins Studies in the Mathematical Sciences
– volume: 21
  start-page: 722
  year: 2014
  end-page: 743
  ident: br0010
  article-title: Singular-value (and eigenvalue) distribution and Krylov preconditioning of sequences of sampling matrices approximating integral operators
  publication-title: Numer. Linear Algebra Appl.
– volume: 3
  start-page: 157
  year: 2008
  end-page: 190
  ident: br0290
  article-title: Uniform distribution of Galois conjugates and beta-conjugates of a Parry number near the unit circle and dichotomy of Perron numbers
  publication-title: Unif. Distrib. Theory
– volume: 27
  start-page: 82
  year: 2005
  end-page: 86
  ident: br0220
  article-title: How to deduce a proper eigenvalue cluster from a proper singular value cluster in the nonnormal case
  publication-title: SIAM J. Matrix Anal. Appl.
– year: 2000
  ident: br0050
  article-title: Toeplitz Matrices, Asymptotic Linear Algebra, and Functional Analysis
– volume: 270
  start-page: 15
  year: 1998
  end-page: 27
  ident: br0260
  article-title: Spectra of multilevel Toeplitz matrices: advanced theory via simple matrix relationships
  publication-title: Linear Algebra Appl.
– volume: 27
  start-page: 478
  year: 2018
  end-page: 487
  ident: br0090
  article-title: Are the eigenvalues of banded symmetric Toeplitz matrices known in almost closed form?
  publication-title: Exp. Math.
– year: 2005
  ident: br0060
  article-title: Spectral Properties of Banded Toeplitz Matrices
– year: 2018
  ident: br0110
  article-title: Generalized Locally Toeplitz Sequences: Theory and Applications. Vol. II
– volume: 27
  year: 2020
  ident: br0020
  article-title: Non-Hermitian perturbations of Hermitian matrix-sequences and applications to the spectral analysis of the numerical approximation of partial differential equations
  publication-title: Numer. Linear Algebra Appl.
– volume: 162
  start-page: 153
  year: 1992
  end-page: 185
  ident: br0170
  article-title: Eigenvalues and pseudo-eigenvalues of Toeplitz matrices
  publication-title: Directions in Matrix Theory
– volume: 337
  start-page: 37
  year: 2001
  end-page: 78
  ident: br0200
  article-title: Spectral behavior of matrix sequences and discretized boundary value problems
  publication-title: Linear Algebra Appl.
– volume: 27
  start-page: 305
  year: 2005
  end-page: 312
  ident: br0210
  article-title: Jordan canonical form of the Google matrix: a potential contribution to the PageRank computation
  publication-title: SIAM J. Matrix Anal. Appl.
– volume: vol. 316
  year: 1997
  ident: 10.1016/j.laa.2024.05.014_br0180
  article-title: Logarithmic Potentials with External Fields. Appendix B by Thomas Bloom
– volume: vol. 36
  year: 2004
  ident: 10.1016/j.laa.2024.05.014_br0280
  article-title: Geršgorin and His Circles
– volume: 270
  start-page: 15
  year: 1998
  ident: 10.1016/j.laa.2024.05.014_br0260
  article-title: Spectra of multilevel Toeplitz matrices: advanced theory via simple matrix relationships
  publication-title: Linear Algebra Appl.
  doi: 10.1016/S0024-3795(97)80001-8
– volume: 45–2/3
  start-page: 147
  year: 1998
  ident: 10.1016/j.laa.2024.05.014_br0230
  article-title: A note on the spectral distribution of Toeplitz matrices
  publication-title: Linear Multilinear Algebra
  doi: 10.1080/03081089808818584
– volume: 239
  start-page: 390
  issue: 2
  year: 1999
  ident: 10.1016/j.laa.2024.05.014_br0240
  article-title: Some results on complex Toeplitz eigenvalues
  publication-title: J. Math. Anal. Appl.
  doi: 10.1006/jmaa.1999.6572
– year: 1999
  ident: 10.1016/j.laa.2024.05.014_br0070
– volume: 633
  start-page: 332
  year: 2022
  ident: 10.1016/j.laa.2024.05.014_br0150
  article-title: Distribution of eigenvalues of Toeplitz matrices with smooth entries
  publication-title: Linear Algebra Appl.
  doi: 10.1016/j.laa.2021.10.014
– volume: 38
  start-page: 307
  issue: 2
  year: 1988
  ident: 10.1016/j.laa.2024.05.014_br0040
  article-title: Jentzsch-Szegő type theorems for the zeros of best approximants
  publication-title: J. Lond. Math. Soc. (2)
  doi: 10.1112/jlms/s2-38.2.307
– volume: 3
  start-page: 157
  issue: 2
  year: 2008
  ident: 10.1016/j.laa.2024.05.014_br0290
  article-title: Uniform distribution of Galois conjugates and beta-conjugates of a Parry number near the unit circle and dichotomy of Perron numbers
  publication-title: Unif. Distrib. Theory
– volume: 59
  start-page: 1
  year: 2023
  ident: 10.1016/j.laa.2024.05.014_br0190
  article-title: Distribution results for a special class of matrix sequences: joining approximation theory and asymptotic linear algebra
  publication-title: Electron. Trans. Numer. Anal.
– volume: 11
  start-page: 401
  year: 1960
  ident: 10.1016/j.laa.2024.05.014_br0160
  article-title: On the β-expansions of real numbers
  publication-title: Acta Math. Acad. Sci. Hung.
  doi: 10.1007/BF02020954
– year: 2000
  ident: 10.1016/j.laa.2024.05.014_br0050
– volume: vol. 189
  year: 2012
  ident: 10.1016/j.laa.2024.05.014_br0140
  article-title: Nonlinear Perron-Frobenius Theory
– volume: 27
  issue: 3
  year: 2020
  ident: 10.1016/j.laa.2024.05.014_br0020
  article-title: Non-Hermitian perturbations of Hermitian matrix-sequences and applications to the spectral analysis of the numerical approximation of partial differential equations
  publication-title: Numer. Linear Algebra Appl.
  doi: 10.1002/nla.2286
– volume: 80
  start-page: 819
  issue: 3
  year: 2019
  ident: 10.1016/j.laa.2024.05.014_br0080
  article-title: A matrix-less and parallel interpolation–extrapolation algorithm for computing the eigenvalues of preconditioned banded symmetric Toeplitz matrices
  publication-title: Numer. Algorithms
  doi: 10.1007/s11075-018-0508-0
– volume: 162
  start-page: 153
  issue: 164
  year: 1992
  ident: 10.1016/j.laa.2024.05.014_br0170
  article-title: Eigenvalues and pseudo-eigenvalues of Toeplitz matrices
  publication-title: Linear Algebra Appl.
  doi: 10.1016/0024-3795(92)90374-J
– volume: 144
  start-page: 84
  issue: 1
  year: 2007
  ident: 10.1016/j.laa.2024.05.014_br0120
  article-title: The asymptotic properties of the spectrum of nonsymmetrically perturbed Jacobi matrix sequences
  publication-title: J. Approx. Theory
  doi: 10.1016/j.jat.2006.05.002
– volume: vol. 169
  year: 1997
  ident: 10.1016/j.laa.2024.05.014_br0030
  article-title: Matrix Analysis
– volume: 27
  start-page: 478
  issue: 4
  year: 2018
  ident: 10.1016/j.laa.2024.05.014_br0090
  article-title: Are the eigenvalues of banded symmetric Toeplitz matrices known in almost closed form?
  publication-title: Exp. Math.
  doi: 10.1080/10586458.2017.1320241
– volume: 292–1/3
  start-page: 297
  year: 1999
  ident: 10.1016/j.laa.2024.05.014_br0270
  article-title: Thin structure of eigenvalue clusters for non-Hermitian Toeplitz matrices
  publication-title: Linear Algebra Appl.
  doi: 10.1016/S0024-3795(99)00044-0
– volume: 263
  start-page: 25
  year: 1997
  ident: 10.1016/j.laa.2024.05.014_br0250
  article-title: Clusters, preconditioners, convergence
  publication-title: Linear Algebra Appl.
  doi: 10.1016/S0024-3795(96)00445-4
– year: 2017
  ident: 10.1016/j.laa.2024.05.014_br0100
– year: 2013
  ident: 10.1016/j.laa.2024.05.014_br0130
  article-title: Matrix Computations
  doi: 10.56021/9781421407944
– year: 2005
  ident: 10.1016/j.laa.2024.05.014_br0060
– volume: 21
  start-page: 722
  issue: 6
  year: 2014
  ident: 10.1016/j.laa.2024.05.014_br0010
  article-title: Singular-value (and eigenvalue) distribution and Krylov preconditioning of sequences of sampling matrices approximating integral operators
  publication-title: Numer. Linear Algebra Appl.
  doi: 10.1002/nla.1922
– volume: 27
  start-page: 305
  issue: 2
  year: 2005
  ident: 10.1016/j.laa.2024.05.014_br0210
  article-title: Jordan canonical form of the Google matrix: a potential contribution to the PageRank computation
  publication-title: SIAM J. Matrix Anal. Appl.
  doi: 10.1137/S0895479804441407
– year: 2018
  ident: 10.1016/j.laa.2024.05.014_br0110
– volume: 27
  start-page: 82
  issue: 1
  year: 2005
  ident: 10.1016/j.laa.2024.05.014_br0220
  article-title: How to deduce a proper eigenvalue cluster from a proper singular value cluster in the nonnormal case
  publication-title: SIAM J. Matrix Anal. Appl.
  doi: 10.1137/040608027
– volume: 337
  start-page: 37
  year: 2001
  ident: 10.1016/j.laa.2024.05.014_br0200
  article-title: Spectral behavior of matrix sequences and discretized boundary value problems
  publication-title: Linear Algebra Appl.
  doi: 10.1016/S0024-3795(01)00335-4
SSID ssj0004702
Score 2.4011445
Snippet In the current work, we study the eigenvalue distribution results of a class of non-normal matrix-sequences which may be viewed as a low rank perturbation,...
SourceID swepub
crossref
elsevier
SourceType Open Access Repository
Index Database
Publisher
StartPage 365
SubjectTerms Beräkningsvetenskap med inriktning mot numerisk analys
beta maps
Eigenvalue clustering
Scientific Computing with specialization in Numerical Analysis
Toeplitz matrix and matrix-sequence
β maps
Title The β maps: Strong clustering and distribution results on the complex unit circle
URI https://dx.doi.org/10.1016/j.laa.2024.05.014
https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-534773
Volume 697
WOSCitedRecordID wos001253216900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 1873-1856
  databaseCode: AIEXJ
  dateStart: 20211211
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0004702
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1fb9MwELeqjgd4QPwVg4H8QF-IUrVxnNh7K6UIJpgmNqa-WU7ibJlKVmVNVe2Jz8QH4TNxju2kgECAxEtkRYpd3f16Pvt-d4fQc8XjIIkC5VMSwQElU9Tnkmc-VWOWS_CYVXOhf_ouPjxk8zk_6vU-u1yY9SIuS7bZ8OV_VTW8A2Xr1Nm_UHc7KbyAMSgdnqB2eP6x4gfT2eBl4H2Sy4bxdqzvu8-8dFHrsgguLTHTNXNtuysPTt31oo0dGKa52ng1_OO9tKjcGi5zGnxTWXm6RwicttsAxHY0vIvwnBdyDZbDPyrk9bW0WTWpdzCcDFt1A9JM-H-LY9-QkCvpT-WygA-bHuGalZbDcPuyIgg1s8Kka5obNJdF8x3JU_sJYOhMs01nlSND27V2lZiGEnaLJqb3zU_W31xEXAwXUleUCkJTkzXstrqWgHhsKzFSTaEFow2b-E4QU876aGfydjY_6HJr45GtOG9-o4uMNxzBHxb6pW-zXYS2cVxO7qDb9sSBJwYpd1FPlffQrfdtud6r--gDYAZ__YI1XvaxQQvu0IJBv3gbLdiiBcMQpsEWLVijBRu0PEAfX89Opm9822zDT-EEvPKTccrTKOc8UbD9hXFGc0mISkgeJRHjjEWK0zyXcsRlwiST4LiDewoOqz7xZ5w8RP3yslSPEM7ACRzznLA0hv0hJYlSUkVRqCs_JYzmu-iFE5NYmpoqwpENLwTIVGiZihEVINNdFDpBCusUGmdPgNZ_99nACL1dQddRf1WcTsRldSbqWlASxjF5_G_TP0E3O3jvof6qqtVTdCNdr4qr6pnF0Df6cJRx
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+%CE%B2+maps%3A+Strong+clustering+and+distribution+results+on+the+complex+unit+circle&rft.jtitle=Linear+algebra+and+its+applications&rft.au=Schiavoni-Piazza%2C+Alec+J.A.&rft.au=Meadon%2C+David&rft.au=Serra-Capizzano%2C+Stefano&rft.date=2024-09-15&rft.pub=Elsevier+Inc&rft.issn=0024-3795&rft.volume=697&rft.spage=365&rft.epage=383&rft_id=info:doi/10.1016%2Fj.laa.2024.05.014&rft.externalDocID=S0024379524002192
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0024-3795&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0024-3795&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0024-3795&client=summon