Modern machine learning and particle physics: an in-depth review

Modern machine learning (ML) techniques are ubiquitous in the field of particle physics. These ML models are primarily meant for exploiting large amounts of high-dimensional data to reduce complexity and extract as much information as possible from data. This special issue presents a series of ten c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The European physical journal. ST, Special topics Jg. 233; H. 15-16; S. 2421 - 2424
Hauptverfasser: Bhattacherjee, Biplob, Mukherjee, Swagata
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Berlin/Heidelberg Springer Berlin Heidelberg 01.11.2024
Springer Nature B.V
Schlagworte:
ISSN:1951-6355, 1951-6401
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Modern machine learning (ML) techniques are ubiquitous in the field of particle physics. These ML models are primarily meant for exploiting large amounts of high-dimensional data to reduce complexity and extract as much information as possible from data. This special issue presents a series of ten contributions in the area of application of modern ML techniques in theoretical and experimental particle physics.
AbstractList Modern machine learning (ML) techniques are ubiquitous in the field of particle physics. These ML models are primarily meant for exploiting large amounts of high-dimensional data to reduce complexity and extract as much information as possible from data. This special issue presents a series of ten contributions in the area of application of modern ML techniques in theoretical and experimental particle physics.
Author Mukherjee, Swagata
Bhattacherjee, Biplob
Author_xml – sequence: 1
  givenname: Biplob
  surname: Bhattacherjee
  fullname: Bhattacherjee, Biplob
  organization: Centre for High Energy Physics, Indian Institute of Science
– sequence: 2
  givenname: Swagata
  surname: Mukherjee
  fullname: Mukherjee, Swagata
  email: swagata@iitk.ac.in
  organization: Department of Physics, Indian Institute of Technology
BookMark eNqFkE9LAzEQxYNUsK1-Bhc8r80km2TXk1L8B4oXPYdsMttuabNr0ir99qau4tHDMMPjvTfwm5CR7zwScg70EqCgM-xXcRYBFC9yytIAl0XOj8gYKgG5LCiMfm8uxAmZxLiiVEhW8TG5fu4cBp9tjF22HrM1muBbv8iMd1lvwra1a8z65T62Nl4lNWt97rDfLrOAHy1-npLjxqwjnv3sKXm7u32dP-RPL_eP85un3DJRbXPFQdCmsU0NzBhXKMcqaEpb1koWrk6CYI5Zg6AkSidrBCoMB1dTpZqy5lNyMfT2oXvfYdzqVbcLPr3UnAlZiYqxMrnU4LKhizFgo_vQbkzYa6D6gEsfcOkBl0649DcuzVOyHJIxJfwCw1__f9EvHNtzJg
Cites_doi 10.1140/epjs/s11734-024-01234-y
10.1140/epjs/s11734-024-01280-6
10.1140/epjs/s11734-024-01235-x
10.1140/epjs/s11734-024-01237-9
10.1140/epjs/s11734-024-01257-5
10.1140/epjs/s11734-024-01306-z
10.1140/epjs/s11734-024-01238-8
10.1140/epjs/s11734-024-01308-x
10.1140/epjs/s11734-024-01256-6
10.1140/epjs/s11734-024-01236-w
ContentType Journal Article
Copyright The Author(s), under exclusive licence to EDP Sciences, Springer-Verlag GmbH Germany, part of Springer Nature 2024
The Author(s), under exclusive licence to EDP Sciences, Springer-Verlag GmbH Germany, part of Springer Nature 2024.
Copyright_xml – notice: The Author(s), under exclusive licence to EDP Sciences, Springer-Verlag GmbH Germany, part of Springer Nature 2024
– notice: The Author(s), under exclusive licence to EDP Sciences, Springer-Verlag GmbH Germany, part of Springer Nature 2024.
DBID AAYXX
CITATION
8FE
8FG
ABJCF
AFKRA
ARAPS
BENPR
BGLVJ
CCPQU
D1I
DWQXO
HCIFZ
KB.
L6V
M7S
P5Z
P62
PDBOC
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOI 10.1140/epjs/s11734-024-01364-3
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central
Technology collection
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central
SciTech Premium Collection
Materials Science Database
ProQuest Engineering Collection
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering collection
DatabaseTitle CrossRef
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
Materials Science Collection
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
Materials Science Database
ProQuest Central (New)
Engineering Collection
ProQuest Materials Science Collection
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
Technology Collection
Database_xml – sequence: 1
  dbid: KB.
  name: Materials Science Database
  url: http://search.proquest.com/materialsscijournals
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1951-6401
EndPage 2424
ExternalDocumentID 10_1140_epjs_s11734_024_01364_3
GroupedDBID -5F
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06D
0R~
123
199
1N0
203
29G
29~
2J2
2JY
2KG
2KM
2LR
30V
4.4
406
408
40D
40E
67Z
6NX
78A
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAJBT
AAJKR
AANZL
AARTL
AASML
AATNV
AATVU
AAUYE
AAYIU
AAYQN
ABAKF
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABMNI
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABWNU
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACPIV
ACZOJ
ADHIR
ADINQ
ADKNI
ADKPE
ADTPH
ADURQ
ADYFF
ADZKW
AEFQL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFFNX
AFQWF
AFWTZ
AFZKB
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHSBF
AHYZX
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BDATZ
BGNMA
BSONS
CAG
COF
CSCUP
DDRTE
DNIVK
DPUIP
EBS
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
H13
HF~
HG5
HG6
HLICF
HMJXF
HRMNR
HVGLF
HZ~
IKXTQ
IWAJR
IXC
IXD
IXE
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JZLTJ
KDC
KOV
LLZTM
M4Y
MA-
NPVJJ
NQJWS
NU0
O9-
O93
O9J
P9T
PF0
QOS
R89
RED
RNS
ROL
RPX
RSV
S16
S1Z
S27
S3B
SAP
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPH
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
WK8
YLTOR
Z45
Z5O
Z7R
Z7S
Z7V
Z7X
Z7Y
Z7Z
Z83
Z85
Z88
ZMTXR
2JN
AAPKM
AAYXX
ABBRH
ABDBE
ABJCF
ABRTQ
AFDZB
AFFHD
AFKRA
AFOHR
AHPBZ
ARAPS
ATHPR
AYFIA
BENPR
BGLVJ
CCPQU
CITATION
EBLON
HCIFZ
KB.
M7S
PDBOC
PHGZM
PHGZT
PQGLB
PTHSS
8FE
8FG
D1I
DWQXO
L6V
P62
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c259t-73150ffcfb12aad47d291f8c8b764dbd4752d2cae176e6d6be105a31db077f8b3
IEDL.DBID RSV
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001335128100002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1951-6355
IngestDate Sun Nov 02 05:05:42 EST 2025
Sat Nov 29 03:49:45 EST 2025
Fri Feb 21 02:38:40 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 15-16
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c259t-73150ffcfb12aad47d291f8c8b764dbd4752d2cae176e6d6be105a31db077f8b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://link.springer.com/content/pdf/10.1140/epjs/s11734-024-01364-3.pdf
PQID 3256959228
PQPubID 2044459
PageCount 4
ParticipantIDs proquest_journals_3256959228
crossref_primary_10_1140_epjs_s11734_024_01364_3
springer_journals_10_1140_epjs_s11734_024_01364_3
PublicationCentury 2000
PublicationDate 20241100
2024-11-00
20241101
PublicationDateYYYYMMDD 2024-11-01
PublicationDate_xml – month: 11
  year: 2024
  text: 20241100
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationTitle The European physical journal. ST, Special topics
PublicationTitleAbbrev Eur. Phys. J. Spec. Top
PublicationYear 2024
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References Bose, Chakraborty, Chowdhury, Dutta (CR2) 2024
Barman, Biswas (CR6) 2024
Kar (CR3) 2024
Bhardwaj, Konar, Ngairangbam (CR1) 2024
Baruah, Mondal (CR7) 2024
Poonthottathil (CR5) 2024
Mondal, Mastrolorenzo (CR8) 2024
Sahu, Ashanujjaman, Ghosh (CR9) 2024
Choudhury, Mondal, Sarkar (CR10) 2024
Bardhan, Mandal, Mitra, Neeraj, Patra (CR4) 2024
A Choudhury (1364_CR10) 2024
R Baruah (1364_CR7) 2024
R Sahu (1364_CR9) 2024
A Bhardwaj (1364_CR1) 2024
C Bose (1364_CR2) 2024
N Poonthottathil (1364_CR5) 2024
RK Barman (1364_CR6) 2024
S Mondal (1364_CR8) 2024
D Kar (1364_CR3) 2024
J Bardhan (1364_CR4) 2024
References_xml – year: 2024
  ident: CR8
  article-title: Machine learning in high energy physics: a review of heavy-flavor jet tagging at the LHC
  publication-title: Eur. Phys. J. Spec. Top.
  doi: 10.1140/epjs/s11734-024-01234-y
– year: 2024
  ident: CR5
  article-title: Machine learning in experimental neutrino physics
  publication-title: Eur. Phys. J. Spec. Top.
  doi: 10.1140/epjs/s11734-024-01280-6
– year: 2024
  ident: CR4
  article-title: Unsupervised and lightly supervised learning in particle physics
  publication-title: Eur. Phys. J. Spec. Top.
  doi: 10.1140/epjs/s11734-024-01235-x
– year: 2024
  ident: CR6
  article-title: Top-philic machine learning
  publication-title: Eur. Phys. J. Spec. Top.
  doi: 10.1140/epjs/s11734-024-01237-9
– year: 2024
  ident: CR9
  article-title: Unveiling the secrets of new physics through top quark tagging
  publication-title: Eur. Phys. J. Spec. Top.
  doi: 10.1140/epjs/s11734-024-01257-5
– year: 2024
  ident: CR1
  article-title: Foundations of automatic feature extraction at LHC-point clouds and graphs
  publication-title: Eur. Phys. J. Spec. Top.
  doi: 10.1140/epjs/s11734-024-01306-z
– year: 2024
  ident: CR3
  article-title: How deep learning is complementing deep thinking in ATLAS
  publication-title: Eur. Phys. J. Spec. Top.
  doi: 10.1140/epjs/s11734-024-01238-8
– year: 2024
  ident: CR10
  article-title: Searches for the BSM scenarios at the LHC using decision tree based machine learning algorithms: a comparative study and review of Random Forest, AdaBoost, XGBoost and LightGBM frameworks
  publication-title: Eur. Phys. J. Spec. Top.
  doi: 10.1140/epjs/s11734-024-01308-x
– year: 2024
  ident: CR2
  article-title: Interplay of traditional methods and machine learning algorithms for tagging boosted objects
  publication-title: Eur. Phys. J. Spec. Top.
  doi: 10.1140/epjs/s11734-024-01256-6
– year: 2024
  ident: CR7
  article-title: Sunando Kumar Patra and Satyajit Roy, Probing intractable beyond-standard-model parameter spaces armed with machine learning
  publication-title: Eur. Phys. J. Spec. Top.
  doi: 10.1140/epjs/s11734-024-01236-w
– year: 2024
  ident: 1364_CR4
  publication-title: Eur. Phys. J. Spec. Top.
  doi: 10.1140/epjs/s11734-024-01235-x
– year: 2024
  ident: 1364_CR5
  publication-title: Eur. Phys. J. Spec. Top.
  doi: 10.1140/epjs/s11734-024-01280-6
– year: 2024
  ident: 1364_CR8
  publication-title: Eur. Phys. J. Spec. Top.
  doi: 10.1140/epjs/s11734-024-01234-y
– year: 2024
  ident: 1364_CR9
  publication-title: Eur. Phys. J. Spec. Top.
  doi: 10.1140/epjs/s11734-024-01257-5
– year: 2024
  ident: 1364_CR1
  publication-title: Eur. Phys. J. Spec. Top.
  doi: 10.1140/epjs/s11734-024-01306-z
– year: 2024
  ident: 1364_CR6
  publication-title: Eur. Phys. J. Spec. Top.
  doi: 10.1140/epjs/s11734-024-01237-9
– year: 2024
  ident: 1364_CR2
  publication-title: Eur. Phys. J. Spec. Top.
  doi: 10.1140/epjs/s11734-024-01256-6
– year: 2024
  ident: 1364_CR10
  publication-title: Eur. Phys. J. Spec. Top.
  doi: 10.1140/epjs/s11734-024-01308-x
– year: 2024
  ident: 1364_CR3
  publication-title: Eur. Phys. J. Spec. Top.
  doi: 10.1140/epjs/s11734-024-01238-8
– year: 2024
  ident: 1364_CR7
  publication-title: Eur. Phys. J. Spec. Top.
  doi: 10.1140/epjs/s11734-024-01236-w
SSID ssj0056293
Score 2.3938718
Snippet Modern machine learning (ML) techniques are ubiquitous in the field of particle physics. These ML models are primarily meant for exploiting large amounts of...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
StartPage 2421
SubjectTerms Algorithms
Atomic
Classical and Continuum Physics
Condensed Matter Physics
Decision trees
Editorial
Experiments
Machine learning
Materials Science
Measurement Science and Instrumentation
Modern Machine Learning and Particle Physics: An In-Depth Review
Molecular
Neural networks
Optical and Plasma Physics
Particle physics
Physics
Physics and Astronomy
Quarks
Sensors
Simulation
SummonAdditionalLinks – databaseName: Engineering Database
  dbid: M7S
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA66KnjxLa4vcvAatkm2TetFRVw8yCL4YG8hr_oAa7Wrv99JmrLoQQ9e0xLKfNN5JDPzIXQksqFINRfEQN5FQClSUmQiI7yEbKPkSqswZ_v-SozH-WRSXMcDtyaWVXY2MRhq-2r8GfmAg28u0oKx_KR-I541yt-uRgqNebTgpyTQULp301licO1h6C71VPLescb6LsgpBq5-bgYNpYIPCbgp4keXDQn_7p1mIeePW9LgfEar__3sNbQSw0581urJOppz1QZaCuWfptlEpy0lGn4JpZUORy6JB6wqi-uoXbg9BWmOYRU_VcS6evqI296XLXQ3urg9vySRW4EYSHimRHCIBMvSlJoypexQWFbQMje5BvSshoWUWWaUoyJzmc20g0BMcWp1IkSZa76NetVr5XYQVqnO4ZUEDCXECixRiXGQJLE8cZazIumjpJOprNsRGrJth06kh0G2MEiAQQYYJO-j_U6aMv5TjZyJso9oh8fs8R9b7v6-5R5aZl4PQpfhPupN3z_cAVo0n9On5v0wqNUXSs7SJg
  priority: 102
  providerName: ProQuest
Title Modern machine learning and particle physics: an in-depth review
URI https://link.springer.com/article/10.1140/epjs/s11734-024-01364-3
https://www.proquest.com/docview/3256959228
Volume 233
WOSCitedRecordID wos001335128100002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1951-6401
  dateEnd: 20241212
  omitProxy: false
  ssIdentifier: ssj0056293
  issn: 1951-6355
  databaseCode: P5Z
  dateStart: 20230201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1951-6401
  dateEnd: 20241212
  omitProxy: false
  ssIdentifier: ssj0056293
  issn: 1951-6355
  databaseCode: M7S
  dateStart: 20230201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Materials Science Database
  customDbUrl:
  eissn: 1951-6401
  dateEnd: 20241212
  omitProxy: false
  ssIdentifier: ssj0056293
  issn: 1951-6355
  databaseCode: KB.
  dateStart: 20230201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/materialsscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1951-6401
  dateEnd: 20241212
  omitProxy: false
  ssIdentifier: ssj0056293
  issn: 1951-6355
  databaseCode: BENPR
  dateStart: 20230201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1951-6401
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0056293
  issn: 1951-6355
  databaseCode: RSV
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JS8QwFH64ghd3cVyGHLxG02TatJ5cmEFQhsFlGLyEpEldwDrY0d_va9riclDQSw9pG8qX17ck770PYE9GHRkaIWmKcRdFoQhpEsmIigyjjUxoo32f7eGF7Pfj0SgZfKb6KrPdmyNJr6mrfrbswI0fi4MiCKToUDQstGw21qFiGmbR5sUla8Pl1bBRwmjVfb_doGSRL21qndr1w0RfDdOHt_ntgNTbnd7SP754GRZrZ5McV9KxAlMuX4V5n_SZFmtwVBGhkSefUOlIzSBxR3RuybiWKVLtfRSHOEoecmrdeHJPqoqXdbjpda9Pz2jNqEBTDHMmVAr0_7IszUzAtbYdaXkSZHEaG1wza3Ag5Jan2gUycpGNjEP3S4vAGiZlFhuxATP5c-42gejQxPgIQ_WIHgJnmqUOQyMeM2cFT1gLWAOnGleNM1RVBM1UCYyqgFEIjPLAKNGCnQZ2Vf9JhRLokyVhwnncgqCB-eP2L1Nu_eGdbVjg5XL5gsMdmJm8vLpdmEvfJg_FSxtmT7r9wWUbps9P9ttlqugVXgfhbdsL4DsXd9I8
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9wwEB5RaNVeoKWtui1QH8rRbGIncYJUQWlBILYrDoC4Gb_SUqkhJVsQf6q_kbGTaAUHOHHo1Y4sK9945ht7HgCfRJaIVHNBDfpdFIUipUUmMspL9DZKrrQKdbaPR2I8zk9OioMZ-Nfnwviwyl4nBkVtz42_Ix9ytM1FWjCWb9R_qO8a5V9X-xYarVjsu-srdNmaz3vfEN9Vxna2D7_u0q6rADVI9SdUcORAZWlKHTOlbCIsK-IyN7nGfVuNAymzzCgXi8xlNtMOKYjisdWREGWuOa77BOYSjtzUPwJvrfWaH6lEKPIb-9b13pB38WTowwxd_asZNnEseELRLFJfKi2h_LY1nFLcO6-ywdjtLPxvv-klzHe0mnxpz8ErmHHVIjwL4a2meQ2bbcs38juEjjrS9cr4QVRlSd2dHtLe8jTrOErOKmpdPflJ2tyeN3D0KNt_C7PVeeXeAVGpzvGTCA0BciEWqcg4dAJZHjnLWRENIOoxlHVbIkS26d6R9LDLFnaJsMsAu-QDWOrRk53OaOQUugHEPf7T6QeWfH__kh_h-e7h95Ec7Y33P8AL5mUwZFQuwezk4q9bhqfmcnLWXKwEkSZw-tjCcQNqFTDT
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9wwEB3xWXEpBVqxFKgPXK117CROOIHoropYrVaCor1Zdmy3VGoakcDvZ-IkQuUAUtWrk1jR88TzJp55A3Ai01gmRkhaYNxF0SgSmqcypcJjtOGFNjrobN_O5HyeLZf5YgUmQy1MyHYfjiS7moZWpalsxpX1vbYtG7vqVz2uo0iKmKKToa3wWEzFKqzHbTZ9G7Rf3w4bMnr4oL0btR3lW__ap3m9MtHfTuqZeb44LA0-aLr9n97-A7zvSSg576xmB1ZcuQubIRm0qPfgrGuQRn6HREtH-s4SP4guLal6WyPdP5H6FEfJXUmtq5qfpKuE-Qjfp5Obi2-077RACwx_GioF8kLvC28irrWNpeV55LMiM7iW1uBAwi0vtItk6lKbGoe0TIvIGialz4z4BGvln9LtA9GJyfAWhtsmMgfONCschkw8Y84KnrMRsAFaVXWCGqorjmaqBUZ1wCgERgVglBjB4bAEqv_CaiWQq-VJznk2gmiA_PnyG1Me_MMzX-Dd4utUzS7nV59hi7crF2oSD2GtuX9wR7BRPDZ39f1xsL4nWDzZlg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Modern+machine+learning+and+particle+physics%3A+an+in-depth+review&rft.jtitle=The+European+physical+journal.+ST%2C+Special+topics&rft.au=Bhattacherjee%2C+Biplob&rft.au=Mukherjee%2C+Swagata&rft.date=2024-11-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=1951-6355&rft.eissn=1951-6401&rft.volume=233&rft.issue=15-16&rft.spage=2421&rft.epage=2424&rft_id=info:doi/10.1140%2Fepjs%2Fs11734-024-01364-3&rft.externalDocID=10_1140_epjs_s11734_024_01364_3
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1951-6355&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1951-6355&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1951-6355&client=summon