Chromium oxide nanoparticles in‐situ immobilized onto nitrogen‐doped carbon plates with boosted catalytic activity toward nitrogen reduction reaction
A chromium oxide‐based nanocomposite (Cr 2 O 3 @NC) is designed and prepared via a simple pyrolysis route with Cr‐based metal organic framework (MOF) as a template. The research results indicate that Cr 2 O 3 nanoparticles have an average size of ~70 nm and are in situ formed and imbedded onto the C...
Saved in:
| Published in: | Canadian journal of chemical engineering Vol. 103; no. 6; pp. 2590 - 2602 |
|---|---|
| Main Authors: | , , , , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Hoboken
Wiley Subscription Services, Inc
01.06.2025
|
| Subjects: | |
| ISSN: | 0008-4034, 1939-019X |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | A chromium oxide‐based nanocomposite (Cr 2 O 3 @NC) is designed and prepared via a simple pyrolysis route with Cr‐based metal organic framework (MOF) as a template. The research results indicate that Cr 2 O 3 nanoparticles have an average size of ~70 nm and are in situ formed and imbedded onto the Cr‐based MOF‐derived 2D N‐doped carbon microplates. When employed as an inexpensive electrocatalyst for nitrogen reduction reaction (NRR) to synthesize ammonia, Cr 2 O 3 @NC demonstrates an improved and stable catalytic activity in comparison with bare Cr 2 O 3 . A large ammonia production rate of 29.42 μg mg −1 cat h −1 under a lower potential of −0.4 V versus reversible hydrogen electrode (RHE) can be acquired with a Faradic efficiency of 9.89% in sodium sulphate solution. Additionally, a satisfactory selectivity can also be achieved without hydrazine byproduct. The greatly promoted catalytic activity of Cr 2 O 3 @NC is regarded to be concerned with its desirable structures such as 2D planar topological structure with expanded active surface area, abundant catalytic sites, and effective combination with conductive carbon. |
|---|---|
| AbstractList | A chromium oxide‐based nanocomposite (Cr 2 O 3 @NC) is designed and prepared via a simple pyrolysis route with Cr‐based metal organic framework (MOF) as a template. The research results indicate that Cr 2 O 3 nanoparticles have an average size of ~70 nm and are in situ formed and imbedded onto the Cr‐based MOF‐derived 2D N‐doped carbon microplates. When employed as an inexpensive electrocatalyst for nitrogen reduction reaction (NRR) to synthesize ammonia, Cr 2 O 3 @NC demonstrates an improved and stable catalytic activity in comparison with bare Cr 2 O 3 . A large ammonia production rate of 29.42 μg mg −1 cat h −1 under a lower potential of −0.4 V versus reversible hydrogen electrode (RHE) can be acquired with a Faradic efficiency of 9.89% in sodium sulphate solution. Additionally, a satisfactory selectivity can also be achieved without hydrazine byproduct. The greatly promoted catalytic activity of Cr 2 O 3 @NC is regarded to be concerned with its desirable structures such as 2D planar topological structure with expanded active surface area, abundant catalytic sites, and effective combination with conductive carbon. A chromium oxide‐based nanocomposite (Cr2O3@NC) is designed and prepared via a simple pyrolysis route with Cr‐based metal organic framework (MOF) as a template. The research results indicate that Cr2O3 nanoparticles have an average size of ~70 nm and are in situ formed and imbedded onto the Cr‐based MOF‐derived 2D N‐doped carbon microplates. When employed as an inexpensive electrocatalyst for nitrogen reduction reaction (NRR) to synthesize ammonia, Cr2O3@NC demonstrates an improved and stable catalytic activity in comparison with bare Cr2O3. A large ammonia production rate of 29.42 μg mg−1cat h−1 under a lower potential of −0.4 V versus reversible hydrogen electrode (RHE) can be acquired with a Faradic efficiency of 9.89% in sodium sulphate solution. Additionally, a satisfactory selectivity can also be achieved without hydrazine byproduct. The greatly promoted catalytic activity of Cr2O3@NC is regarded to be concerned with its desirable structures such as 2D planar topological structure with expanded active surface area, abundant catalytic sites, and effective combination with conductive carbon. |
| Author | Huang, Ziyi Sun, Jinyi Tang, Chenbo Liufu, Hui Ma, Lin Zeng, Xia Wang, Jing Chen, Yajie Li, Hanjia |
| Author_xml | – sequence: 1 givenname: Jing surname: Wang fullname: Wang, Jing organization: Research Laboratory of Physical Chemistry, School of Chemistry and Chemical Engineering Lingnan Normal University Zhanjiang People's Republic of China – sequence: 2 givenname: Chenbo surname: Tang fullname: Tang, Chenbo organization: Research Laboratory of Physical Chemistry, School of Chemistry and Chemical Engineering Lingnan Normal University Zhanjiang People's Republic of China – sequence: 3 givenname: Hui surname: Liufu fullname: Liufu, Hui organization: Research Laboratory of Physical Chemistry, School of Chemistry and Chemical Engineering Lingnan Normal University Zhanjiang People's Republic of China – sequence: 4 givenname: Xia surname: Zeng fullname: Zeng, Xia organization: Research Laboratory of Physical Chemistry, School of Chemistry and Chemical Engineering Lingnan Normal University Zhanjiang People's Republic of China – sequence: 5 givenname: Ziyi surname: Huang fullname: Huang, Ziyi organization: Research Laboratory of Physical Chemistry, School of Chemistry and Chemical Engineering Lingnan Normal University Zhanjiang People's Republic of China – sequence: 6 givenname: Lin surname: Ma fullname: Ma, Lin organization: Research Laboratory of Physical Chemistry, School of Chemistry and Chemical Engineering Lingnan Normal University Zhanjiang People's Republic of China, Guangdong Key Laboratory of Clean Energy and Material Chemistry Lingnan Normal University Zhanjiang People's Republic of China – sequence: 7 givenname: Hanjia surname: Li fullname: Li, Hanjia organization: Research Laboratory of Physical Chemistry, School of Chemistry and Chemical Engineering Lingnan Normal University Zhanjiang People's Republic of China – sequence: 8 givenname: Yajie surname: Chen fullname: Chen, Yajie organization: Research Laboratory of Physical Chemistry, School of Chemistry and Chemical Engineering Lingnan Normal University Zhanjiang People's Republic of China – sequence: 9 givenname: Jinyi surname: Sun fullname: Sun, Jinyi organization: Research Laboratory of Physical Chemistry, School of Chemistry and Chemical Engineering Lingnan Normal University Zhanjiang People's Republic of China |
| BookMark | eNptkD1OxDAQhS0EEstPwwks0SEFbCcxSYlW_ElIFFDQRRPHAa8ST7AdYKk4Ai3X4yQ4C6JAVDPj-d4b622RdYtWE7LH2SFnTByphdKHIs9TsUZmvEzLhPHybp3MGGNFkrE02yRb3i_iKFjGZ-Rj_uCwN2NP8cU0mlqwOIALRnXaU2M_3969CSM1fY-16cyrbijagNSa4PBeT0CDQ3xV4Gq0dOggROWzCQ-0RvRhtQrQLaMnBRXMkwlLGvAZXPPrQp1uxrjDqYNVs0M2Wui83v2p2-Tm7PR2fpFcXZ9fzk-uEiXyMiSSc1lnjZQ1l9AKqRk71lK2umhVyzMo80JEABrOCtaIUuocIJeCg9YpS7fJ_rfr4PBx1D5UCxydjQerVIiiEFwWRaTYN6Uceu90WykTYPplcGC6irNqir-a4q9W8UfJwR_J4EwPbvkf_AVTX49- |
| CitedBy_id | crossref_primary_10_1016_j_inoche_2025_115015 |
| Cites_doi | 10.5004/dwt.2019.24354 10.1016/j.jallcom.2023.169302 10.1016/j.watres.2018.10.036 10.1021/acsami.2c00018 10.1016/j.rser.2014.01.023 10.1039/D0NR00072H 10.1021/acscatal.3c01360 10.1002/9783527830084.ch11 10.1016/j.ijhydene.2016.05.051 10.1002/adfm.202212236 10.1002/smll.202311172 10.1039/C6TA00331A 10.1002/smll.202402406 10.1002/er.7414 10.1039/D0QM01031F 10.1021/acs.jpcc.9b08729 10.1016/j.jcis.2024.05.218 10.1016/j.carbon.2019.08.051 10.1002/eem2.12277 10.1016/j.electacta.2021.138767 10.20964/2022.03.04 10.1021/acs.inorgchem.8b03143 10.1039/D1EE03211A 10.1021/acsami.0c06601 10.1039/C8CC07186A 10.1038/s41929-019-0252-4 10.1016/j.electacta.2021.138723 10.1016/j.jhazmat.2020.122121 10.1016/j.nanoen.2021.106661 10.1021/acsami.2c18878 10.1007/s40820-022-00966-7 10.1038/nmat3696 10.1016/j.jechem.2021.12.026 10.1039/c0jm01027h 10.1016/j.electacta.2020.137350 10.1016/j.joule.2018.04.014 10.1016/j.ccr.2022.214614 10.1002/smtd.201800323 10.1080/00018732.2011.582251 10.1016/j.nanoen.2019.103917 10.1016/j.materresbull.2021.111294 10.1016/j.carbon.2013.07.109 10.1016/j.colsurfa.2018.04.063 10.1021/acscatal.8b02311 10.1016/j.cosust.2014.07.005 10.1016/j.jelechem.2021.115168 10.1016/j.matlet.2022.131808 10.1016/j.mattod.2019.03.002 10.1088/0957-4484/26/37/374003 10.1039/C8CE01234B 10.1039/C9RA07465A 10.1039/D1SE00644D 10.1016/j.ccr.2022.214468 10.1039/D2CY01832B 10.1039/c2cs35086f 10.1016/j.jtice.2019.10.019 10.1021/acs.jpcc.8b08149 10.1016/j.enchem.2019.100013 10.1021/acs.langmuir.1c01706 10.1016/j.chempr.2018.10.010 10.1002/sus2.226 10.1016/j.carbon.2013.03.033 10.1016/j.cjche.2021.11.016 10.1016/j.apcatb.2018.05.041 10.1007/s40242-020-0171-6 |
| ContentType | Journal Article |
| Copyright | 2025 Canadian Society for Chemical Engineering |
| Copyright_xml | – notice: 2025 Canadian Society for Chemical Engineering |
| DBID | AAYXX CITATION 7SR 7U5 8BQ 8FD JG9 L7M |
| DOI | 10.1002/cjce.25532 |
| DatabaseName | CrossRef Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX |
| DatabaseTitleList | CrossRef Materials Research Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1939-019X |
| EndPage | 2602 |
| ExternalDocumentID | 10_1002_cjce_25532 |
| GroupedDBID | -~X .3N .DC .GA .Y3 05W 0R~ 123 1L6 1OB 1OC 29B 31~ 33P 3SF 3WU 4.4 50Y 50Z 52M 52O 52T 52U 52W 6J9 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8WZ 930 A03 A6W AAESR AAEVG AAHQN AAIKC AAMMB AAMNL AAMNW AANHP AANLZ AAONW AASGY AAXRX AAYCA AAYXX AAZKR ABCUV ABEFU ABJIA ABJNI ABPVW ACAHQ ACBWZ ACCZN ACGFO ACGFS ACIWK ACNCT ACPOU ACRPL ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADMLS ADNMO ADOZA ADXAS ADZMN AEFGJ AEGXH AEIGN AEIMD AENEX AEUYR AEYWJ AFBPY AFFNX AFFPM AFGKR AFWVQ AFZJQ AGHNM AGQPQ AGXDD AGYGG AHBTC AI. AIAGR AIDQK AIDYY AIQQE AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BLYAC BMNLL BMXJE BNHUX BROTX BRXPI CITATION CS3 D-E D-F DCZOG DPXWK DRFUL DRSTM DU5 EBS EJD F00 F01 F04 F21 FEDTE G-S G.N GODZA H.T H.X HBH HF~ HGLYW HVGLF HZ~ H~9 IAO ICQ ISN ITC JPC LATKE LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 NDZJH NF~ NNB O66 O8X O9- OIG P2P P2W P2X P4D PALCI Q.N QB0 QRW R.K RIWAO RJQFR ROL RX1 SAMSI SUPJJ TAE TN5 TUS UB1 V2E VH1 W8V W99 WBFHL WBKPD WIH WIK WOHZO WXSBR WYISQ XV2 ZY4 ZZTAW ~02 ~IA ~WT 7SR 7U5 8BQ 8FD ALUQN JG9 L7M |
| ID | FETCH-LOGICAL-c259t-6116b4d66b16af26e007e66fe8fcf14a95826b4ad1080d296e5aa5621aee303 |
| ISICitedReferencesCount | 3 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001341354500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0008-4034 |
| IngestDate | Sat Aug 23 12:55:39 EDT 2025 Sat Nov 29 07:54:52 EST 2025 Tue Nov 18 22:25:54 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c259t-6116b4d66b16af26e007e66fe8fcf14a95826b4ad1080d296e5aa5621aee303 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 3228821688 |
| PQPubID | 2045184 |
| PageCount | 13 |
| ParticipantIDs | proquest_journals_3228821688 crossref_citationtrail_10_1002_cjce_25532 crossref_primary_10_1002_cjce_25532 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-06-00 20250601 |
| PublicationDateYYYYMMDD | 2025-06-01 |
| PublicationDate_xml | – month: 06 year: 2025 text: 2025-06-00 |
| PublicationDecade | 2020 |
| PublicationPlace | Hoboken |
| PublicationPlace_xml | – name: Hoboken |
| PublicationTitle | Canadian journal of chemical engineering |
| PublicationYear | 2025 |
| Publisher | Wiley Subscription Services, Inc |
| Publisher_xml | – name: Wiley Subscription Services, Inc |
| References | e_1_2_8_28_1 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_3_1 e_1_2_8_5_1 e_1_2_8_7_1 e_1_2_8_9_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_66_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_64_1 e_1_2_8_62_1 e_1_2_8_41_1 e_1_2_8_60_1 e_1_2_8_17_1 e_1_2_8_19_1 Watt G. W. (e_1_2_8_52_1) 2006; 1952 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_59_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_57_1 e_1_2_8_32_1 e_1_2_8_55_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_53_1 e_1_2_8_51_1 e_1_2_8_30_1 e_1_2_8_29_1 e_1_2_8_25_1 e_1_2_8_46_1 e_1_2_8_27_1 e_1_2_8_48_1 e_1_2_8_2_1 e_1_2_8_4_1 e_1_2_8_6_1 e_1_2_8_8_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_67_1 e_1_2_8_23_1 e_1_2_8_44_1 e_1_2_8_65_1 e_1_2_8_63_1 e_1_2_8_40_1 e_1_2_8_61_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_37_1 e_1_2_8_58_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_56_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_54_1 e_1_2_8_50_1 |
| References_xml | – ident: e_1_2_8_44_1 doi: 10.5004/dwt.2019.24354 – ident: e_1_2_8_48_1 doi: 10.1016/j.jallcom.2023.169302 – ident: e_1_2_8_6_1 doi: 10.1016/j.watres.2018.10.036 – ident: e_1_2_8_40_1 doi: 10.1021/acsami.2c00018 – ident: e_1_2_8_2_1 doi: 10.1016/j.rser.2014.01.023 – ident: e_1_2_8_22_1 doi: 10.1039/D0NR00072H – ident: e_1_2_8_29_1 doi: 10.1021/acscatal.3c01360 – ident: e_1_2_8_10_1 doi: 10.1002/9783527830084.ch11 – ident: e_1_2_8_37_1 doi: 10.1016/j.ijhydene.2016.05.051 – ident: e_1_2_8_15_1 doi: 10.1002/adfm.202212236 – ident: e_1_2_8_59_1 doi: 10.1002/smll.202311172 – ident: e_1_2_8_60_1 doi: 10.1039/C6TA00331A – ident: e_1_2_8_27_1 doi: 10.1002/smll.202402406 – ident: e_1_2_8_30_1 doi: 10.1002/er.7414 – ident: e_1_2_8_45_1 doi: 10.1039/D0QM01031F – ident: e_1_2_8_21_1 doi: 10.1021/acs.jpcc.9b08729 – ident: e_1_2_8_28_1 doi: 10.1016/j.jcis.2024.05.218 – ident: e_1_2_8_41_1 doi: 10.1016/j.carbon.2019.08.051 – ident: e_1_2_8_23_1 doi: 10.1002/eem2.12277 – ident: e_1_2_8_47_1 doi: 10.1016/j.electacta.2021.138767 – ident: e_1_2_8_34_1 doi: 10.20964/2022.03.04 – ident: e_1_2_8_39_1 doi: 10.1021/acs.inorgchem.8b03143 – ident: e_1_2_8_18_1 doi: 10.1039/D1EE03211A – ident: e_1_2_8_43_1 doi: 10.1021/acsami.0c06601 – ident: e_1_2_8_36_1 doi: 10.1039/C8CC07186A – ident: e_1_2_8_7_1 doi: 10.1038/s41929-019-0252-4 – ident: e_1_2_8_55_1 doi: 10.1016/j.electacta.2021.138723 – ident: e_1_2_8_50_1 doi: 10.1016/j.jhazmat.2020.122121 – volume: 1952 start-page: 24 year: 2006 ident: e_1_2_8_52_1 publication-title: Anal. Chem. – ident: e_1_2_8_24_1 doi: 10.1016/j.nanoen.2021.106661 – ident: e_1_2_8_42_1 doi: 10.1021/acsami.2c18878 – ident: e_1_2_8_14_1 doi: 10.1007/s40820-022-00966-7 – ident: e_1_2_8_51_1 doi: 10.1038/nmat3696 – ident: e_1_2_8_13_1 doi: 10.1016/j.jechem.2021.12.026 – ident: e_1_2_8_53_1 doi: 10.1039/c0jm01027h – ident: e_1_2_8_54_1 doi: 10.1016/j.electacta.2020.137350 – ident: e_1_2_8_5_1 doi: 10.1016/j.joule.2018.04.014 – ident: e_1_2_8_19_1 doi: 10.1016/j.ccr.2022.214614 – ident: e_1_2_8_63_1 doi: 10.1002/smtd.201800323 – ident: e_1_2_8_56_1 doi: 10.1080/00018732.2011.582251 – ident: e_1_2_8_11_1 doi: 10.1016/j.nanoen.2019.103917 – ident: e_1_2_8_25_1 doi: 10.1016/j.materresbull.2021.111294 – ident: e_1_2_8_61_1 doi: 10.1016/j.carbon.2013.07.109 – ident: e_1_2_8_66_1 doi: 10.1016/j.colsurfa.2018.04.063 – ident: e_1_2_8_35_1 doi: 10.1021/acscatal.8b02311 – ident: e_1_2_8_3_1 doi: 10.1016/j.cosust.2014.07.005 – ident: e_1_2_8_46_1 doi: 10.1016/j.jelechem.2021.115168 – ident: e_1_2_8_26_1 doi: 10.1016/j.matlet.2022.131808 – ident: e_1_2_8_12_1 doi: 10.1016/j.mattod.2019.03.002 – ident: e_1_2_8_62_1 doi: 10.1088/0957-4484/26/37/374003 – ident: e_1_2_8_49_1 doi: 10.1039/C8CE01234B – ident: e_1_2_8_58_1 doi: 10.1039/C9RA07465A – ident: e_1_2_8_67_1 doi: 10.1039/D1SE00644D – ident: e_1_2_8_17_1 doi: 10.1016/j.ccr.2022.214468 – ident: e_1_2_8_33_1 doi: 10.1039/D2CY01832B – ident: e_1_2_8_64_1 doi: 10.1039/c2cs35086f – ident: e_1_2_8_65_1 doi: 10.1016/j.jtice.2019.10.019 – ident: e_1_2_8_20_1 doi: 10.1021/acs.jpcc.8b08149 – ident: e_1_2_8_8_1 doi: 10.1016/j.enchem.2019.100013 – ident: e_1_2_8_32_1 doi: 10.1021/acs.langmuir.1c01706 – ident: e_1_2_8_4_1 doi: 10.1016/j.chempr.2018.10.010 – ident: e_1_2_8_31_1 doi: 10.1002/sus2.226 – ident: e_1_2_8_57_1 doi: 10.1016/j.carbon.2013.03.033 – ident: e_1_2_8_38_1 doi: 10.1016/j.cjche.2021.11.016 – ident: e_1_2_8_9_1 doi: 10.1016/j.apcatb.2018.05.041 – ident: e_1_2_8_16_1 doi: 10.1007/s40242-020-0171-6 |
| SSID | ssj0002041 |
| Score | 2.4160376 |
| Snippet | A chromium oxide‐based nanocomposite (Cr 2 O 3 @NC) is designed and prepared via a simple pyrolysis route with Cr‐based metal organic framework (MOF) as a... A chromium oxide‐based nanocomposite (Cr2O3@NC) is designed and prepared via a simple pyrolysis route with Cr‐based metal organic framework (MOF) as a... |
| SourceID | proquest crossref |
| SourceType | Aggregation Database Enrichment Source Index Database |
| StartPage | 2590 |
| SubjectTerms | Ammonia Carbon Catalytic activity Chemical reduction Chemical synthesis Chromium oxides Electrocatalysts Hydrazines Metal-organic frameworks Nanocomposites Nanoparticles Nitrogen Pyrolysis Sodium sulfate |
| Title | Chromium oxide nanoparticles in‐situ immobilized onto nitrogen‐doped carbon plates with boosted catalytic activity toward nitrogen reduction reaction |
| URI | https://www.proquest.com/docview/3228821688 |
| Volume | 103 |
| WOSCitedRecordID | wos001341354500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1939-019X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002041 issn: 0008-4034 databaseCode: DRFUL dateStart: 19970101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nj9MwELW2uxzggPgUCwuyBEJCUWCTJk5yRMuuOFQFQZB6ixzbkYy6SWmbVeHET-DK3-OXMP6Ik6AVWg5cosoZuWnn2X4zmrxB6FnM4ynhoRK65bEfRSH1M8IqWPHplDIODFvoF4VnyXyeLhbZ-73JpHsX5mKZ1HW622Wr_-pqGANnq1dn_8HdblIYgM_gdLiC2-F6Jccrudtz2Z57zU5y4dW0hrjYlr95snbVDRu5bT0Jz6XKY78B71RKBh6s8HUDczsz3qzgHqPrEnCyWipqapK3QM9VqtTTCaCvWveV2VYUW12L6-by1kofVgMNKCpzUPhTIGGgYsE6HQPR6yX2uX9bRTwYy-3YiapYa1yVkWyrVh-urXQZcmEsF5IOMx5h3FdmXXFfHW34KYTINl8qzB6fTVWJmO7g2x8Cx9MB2kdbemz6mVp6APFfeOnRY6Rs2WcmXkKYZpO2I33v-bvi7NNsVuSni_z56ouvWp-pEgHbB2aCDsIkzuB0OXjzAQwdoQiPI9v40fwWp7Ibvuq_bsyrxrRCc6X8Frppgxz82qDuNtoT9R10YyB9eRf97GCKNUzxCKZY1r--_1AAxQOAYgVQ3IEKDDQ0sYEmNtDECprYQhM7aOIOmthA082CHTRxB8176OPZaX7y1rdtQnwGvtn6JAhIGXFCyoDQKiQCaK8gpBJpxaogolkMIXQZUa7KaXkIu09MKdD-gAoBBO4-2q-bWjxAmPMkJSwDzlZWkSiTVEC0wKc0SzMGLDs6RC-6v7hgVkFfNXJZFkb7OyyUOwrtjkP01NmujG7MpVZHnacKu8Y2BRyxEPYGJE0f_v32I3S9Xx5HaH-7bsVjdI1dbOVm_cSi6DfDq83c |
| linkProvider | Wiley-Blackwell |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Chromium+oxide+nanoparticles+in%E2%80%90situ+immobilized+onto+nitrogen%E2%80%90doped+carbon+plates+with+boosted+catalytic+activity+toward+nitrogen+reduction+reaction&rft.jtitle=Canadian+journal+of+chemical+engineering&rft.au=Wang%2C+Jing&rft.au=Tang%2C+Chenbo&rft.au=Liufu%2C+Hui&rft.au=Zeng%2C+Xia&rft.date=2025-06-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0008-4034&rft.eissn=1939-019X&rft.volume=103&rft.issue=6&rft.spage=2590&rft.epage=2602&rft_id=info:doi/10.1002%2Fcjce.25532&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0008-4034&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0008-4034&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0008-4034&client=summon |