Chromium oxide nanoparticles in‐situ immobilized onto nitrogen‐doped carbon plates with boosted catalytic activity toward nitrogen reduction reaction

A chromium oxide‐based nanocomposite (Cr 2 O 3 @NC) is designed and prepared via a simple pyrolysis route with Cr‐based metal organic framework (MOF) as a template. The research results indicate that Cr 2 O 3 nanoparticles have an average size of ~70 nm and are in situ formed and imbedded onto the C...

Full description

Saved in:
Bibliographic Details
Published in:Canadian journal of chemical engineering Vol. 103; no. 6; pp. 2590 - 2602
Main Authors: Wang, Jing, Tang, Chenbo, Liufu, Hui, Zeng, Xia, Huang, Ziyi, Ma, Lin, Li, Hanjia, Chen, Yajie, Sun, Jinyi
Format: Journal Article
Language:English
Published: Hoboken Wiley Subscription Services, Inc 01.06.2025
Subjects:
ISSN:0008-4034, 1939-019X
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract A chromium oxide‐based nanocomposite (Cr 2 O 3 @NC) is designed and prepared via a simple pyrolysis route with Cr‐based metal organic framework (MOF) as a template. The research results indicate that Cr 2 O 3 nanoparticles have an average size of ~70 nm and are in situ formed and imbedded onto the Cr‐based MOF‐derived 2D N‐doped carbon microplates. When employed as an inexpensive electrocatalyst for nitrogen reduction reaction (NRR) to synthesize ammonia, Cr 2 O 3 @NC demonstrates an improved and stable catalytic activity in comparison with bare Cr 2 O 3 . A large ammonia production rate of 29.42 μg mg −1 cat h −1 under a lower potential of −0.4 V versus reversible hydrogen electrode (RHE) can be acquired with a Faradic efficiency of 9.89% in sodium sulphate solution. Additionally, a satisfactory selectivity can also be achieved without hydrazine byproduct. The greatly promoted catalytic activity of Cr 2 O 3 @NC is regarded to be concerned with its desirable structures such as 2D planar topological structure with expanded active surface area, abundant catalytic sites, and effective combination with conductive carbon.
AbstractList A chromium oxide‐based nanocomposite (Cr 2 O 3 @NC) is designed and prepared via a simple pyrolysis route with Cr‐based metal organic framework (MOF) as a template. The research results indicate that Cr 2 O 3 nanoparticles have an average size of ~70 nm and are in situ formed and imbedded onto the Cr‐based MOF‐derived 2D N‐doped carbon microplates. When employed as an inexpensive electrocatalyst for nitrogen reduction reaction (NRR) to synthesize ammonia, Cr 2 O 3 @NC demonstrates an improved and stable catalytic activity in comparison with bare Cr 2 O 3 . A large ammonia production rate of 29.42 μg mg −1 cat h −1 under a lower potential of −0.4 V versus reversible hydrogen electrode (RHE) can be acquired with a Faradic efficiency of 9.89% in sodium sulphate solution. Additionally, a satisfactory selectivity can also be achieved without hydrazine byproduct. The greatly promoted catalytic activity of Cr 2 O 3 @NC is regarded to be concerned with its desirable structures such as 2D planar topological structure with expanded active surface area, abundant catalytic sites, and effective combination with conductive carbon.
A chromium oxide‐based nanocomposite (Cr2O3@NC) is designed and prepared via a simple pyrolysis route with Cr‐based metal organic framework (MOF) as a template. The research results indicate that Cr2O3 nanoparticles have an average size of ~70 nm and are in situ formed and imbedded onto the Cr‐based MOF‐derived 2D N‐doped carbon microplates. When employed as an inexpensive electrocatalyst for nitrogen reduction reaction (NRR) to synthesize ammonia, Cr2O3@NC demonstrates an improved and stable catalytic activity in comparison with bare Cr2O3. A large ammonia production rate of 29.42 μg mg−1cat h−1 under a lower potential of −0.4 V versus reversible hydrogen electrode (RHE) can be acquired with a Faradic efficiency of 9.89% in sodium sulphate solution. Additionally, a satisfactory selectivity can also be achieved without hydrazine byproduct. The greatly promoted catalytic activity of Cr2O3@NC is regarded to be concerned with its desirable structures such as 2D planar topological structure with expanded active surface area, abundant catalytic sites, and effective combination with conductive carbon.
Author Huang, Ziyi
Sun, Jinyi
Tang, Chenbo
Liufu, Hui
Ma, Lin
Zeng, Xia
Wang, Jing
Chen, Yajie
Li, Hanjia
Author_xml – sequence: 1
  givenname: Jing
  surname: Wang
  fullname: Wang, Jing
  organization: Research Laboratory of Physical Chemistry, School of Chemistry and Chemical Engineering Lingnan Normal University Zhanjiang People's Republic of China
– sequence: 2
  givenname: Chenbo
  surname: Tang
  fullname: Tang, Chenbo
  organization: Research Laboratory of Physical Chemistry, School of Chemistry and Chemical Engineering Lingnan Normal University Zhanjiang People's Republic of China
– sequence: 3
  givenname: Hui
  surname: Liufu
  fullname: Liufu, Hui
  organization: Research Laboratory of Physical Chemistry, School of Chemistry and Chemical Engineering Lingnan Normal University Zhanjiang People's Republic of China
– sequence: 4
  givenname: Xia
  surname: Zeng
  fullname: Zeng, Xia
  organization: Research Laboratory of Physical Chemistry, School of Chemistry and Chemical Engineering Lingnan Normal University Zhanjiang People's Republic of China
– sequence: 5
  givenname: Ziyi
  surname: Huang
  fullname: Huang, Ziyi
  organization: Research Laboratory of Physical Chemistry, School of Chemistry and Chemical Engineering Lingnan Normal University Zhanjiang People's Republic of China
– sequence: 6
  givenname: Lin
  surname: Ma
  fullname: Ma, Lin
  organization: Research Laboratory of Physical Chemistry, School of Chemistry and Chemical Engineering Lingnan Normal University Zhanjiang People's Republic of China, Guangdong Key Laboratory of Clean Energy and Material Chemistry Lingnan Normal University Zhanjiang People's Republic of China
– sequence: 7
  givenname: Hanjia
  surname: Li
  fullname: Li, Hanjia
  organization: Research Laboratory of Physical Chemistry, School of Chemistry and Chemical Engineering Lingnan Normal University Zhanjiang People's Republic of China
– sequence: 8
  givenname: Yajie
  surname: Chen
  fullname: Chen, Yajie
  organization: Research Laboratory of Physical Chemistry, School of Chemistry and Chemical Engineering Lingnan Normal University Zhanjiang People's Republic of China
– sequence: 9
  givenname: Jinyi
  surname: Sun
  fullname: Sun, Jinyi
  organization: Research Laboratory of Physical Chemistry, School of Chemistry and Chemical Engineering Lingnan Normal University Zhanjiang People's Republic of China
BookMark eNptkD1OxDAQhS0EEstPwwks0SEFbCcxSYlW_ElIFFDQRRPHAa8ST7AdYKk4Ai3X4yQ4C6JAVDPj-d4b622RdYtWE7LH2SFnTByphdKHIs9TsUZmvEzLhPHybp3MGGNFkrE02yRb3i_iKFjGZ-Rj_uCwN2NP8cU0mlqwOIALRnXaU2M_3969CSM1fY-16cyrbijagNSa4PBeT0CDQ3xV4Gq0dOggROWzCQ-0RvRhtQrQLaMnBRXMkwlLGvAZXPPrQp1uxrjDqYNVs0M2Wui83v2p2-Tm7PR2fpFcXZ9fzk-uEiXyMiSSc1lnjZQ1l9AKqRk71lK2umhVyzMo80JEABrOCtaIUuocIJeCg9YpS7fJ_rfr4PBx1D5UCxydjQerVIiiEFwWRaTYN6Uceu90WykTYPplcGC6irNqir-a4q9W8UfJwR_J4EwPbvkf_AVTX49-
CitedBy_id crossref_primary_10_1016_j_inoche_2025_115015
Cites_doi 10.5004/dwt.2019.24354
10.1016/j.jallcom.2023.169302
10.1016/j.watres.2018.10.036
10.1021/acsami.2c00018
10.1016/j.rser.2014.01.023
10.1039/D0NR00072H
10.1021/acscatal.3c01360
10.1002/9783527830084.ch11
10.1016/j.ijhydene.2016.05.051
10.1002/adfm.202212236
10.1002/smll.202311172
10.1039/C6TA00331A
10.1002/smll.202402406
10.1002/er.7414
10.1039/D0QM01031F
10.1021/acs.jpcc.9b08729
10.1016/j.jcis.2024.05.218
10.1016/j.carbon.2019.08.051
10.1002/eem2.12277
10.1016/j.electacta.2021.138767
10.20964/2022.03.04
10.1021/acs.inorgchem.8b03143
10.1039/D1EE03211A
10.1021/acsami.0c06601
10.1039/C8CC07186A
10.1038/s41929-019-0252-4
10.1016/j.electacta.2021.138723
10.1016/j.jhazmat.2020.122121
10.1016/j.nanoen.2021.106661
10.1021/acsami.2c18878
10.1007/s40820-022-00966-7
10.1038/nmat3696
10.1016/j.jechem.2021.12.026
10.1039/c0jm01027h
10.1016/j.electacta.2020.137350
10.1016/j.joule.2018.04.014
10.1016/j.ccr.2022.214614
10.1002/smtd.201800323
10.1080/00018732.2011.582251
10.1016/j.nanoen.2019.103917
10.1016/j.materresbull.2021.111294
10.1016/j.carbon.2013.07.109
10.1016/j.colsurfa.2018.04.063
10.1021/acscatal.8b02311
10.1016/j.cosust.2014.07.005
10.1016/j.jelechem.2021.115168
10.1016/j.matlet.2022.131808
10.1016/j.mattod.2019.03.002
10.1088/0957-4484/26/37/374003
10.1039/C8CE01234B
10.1039/C9RA07465A
10.1039/D1SE00644D
10.1016/j.ccr.2022.214468
10.1039/D2CY01832B
10.1039/c2cs35086f
10.1016/j.jtice.2019.10.019
10.1021/acs.jpcc.8b08149
10.1016/j.enchem.2019.100013
10.1021/acs.langmuir.1c01706
10.1016/j.chempr.2018.10.010
10.1002/sus2.226
10.1016/j.carbon.2013.03.033
10.1016/j.cjche.2021.11.016
10.1016/j.apcatb.2018.05.041
10.1007/s40242-020-0171-6
ContentType Journal Article
Copyright 2025 Canadian Society for Chemical Engineering
Copyright_xml – notice: 2025 Canadian Society for Chemical Engineering
DBID AAYXX
CITATION
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1002/cjce.25532
DatabaseName CrossRef
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList CrossRef
Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1939-019X
EndPage 2602
ExternalDocumentID 10_1002_cjce_25532
GroupedDBID -~X
.3N
.DC
.GA
.Y3
05W
0R~
123
1L6
1OB
1OC
29B
31~
33P
3SF
3WU
4.4
50Y
50Z
52M
52O
52T
52U
52W
6J9
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8WZ
930
A03
A6W
AAESR
AAEVG
AAHQN
AAIKC
AAMMB
AAMNL
AAMNW
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAYXX
AAZKR
ABCUV
ABEFU
ABJIA
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCZN
ACGFO
ACGFS
ACIWK
ACNCT
ACPOU
ACRPL
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADMLS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEGXH
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFNX
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AI.
AIAGR
AIDQK
AIDYY
AIQQE
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BLYAC
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
CITATION
CS3
D-E
D-F
DCZOG
DPXWK
DRFUL
DRSTM
DU5
EBS
EJD
F00
F01
F04
F21
FEDTE
G-S
G.N
GODZA
H.T
H.X
HBH
HF~
HGLYW
HVGLF
HZ~
H~9
IAO
ICQ
ISN
ITC
JPC
LATKE
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
NDZJH
NF~
NNB
O66
O8X
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
Q.N
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
TAE
TN5
TUS
UB1
V2E
VH1
W8V
W99
WBFHL
WBKPD
WIH
WIK
WOHZO
WXSBR
WYISQ
XV2
ZY4
ZZTAW
~02
~IA
~WT
7SR
7U5
8BQ
8FD
ALUQN
JG9
L7M
ID FETCH-LOGICAL-c259t-6116b4d66b16af26e007e66fe8fcf14a95826b4ad1080d296e5aa5621aee303
ISICitedReferencesCount 3
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001341354500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0008-4034
IngestDate Sat Aug 23 12:55:39 EDT 2025
Sat Nov 29 07:54:52 EST 2025
Tue Nov 18 22:25:54 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c259t-6116b4d66b16af26e007e66fe8fcf14a95826b4ad1080d296e5aa5621aee303
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 3228821688
PQPubID 2045184
PageCount 13
ParticipantIDs proquest_journals_3228821688
crossref_citationtrail_10_1002_cjce_25532
crossref_primary_10_1002_cjce_25532
PublicationCentury 2000
PublicationDate 2025-06-00
20250601
PublicationDateYYYYMMDD 2025-06-01
PublicationDate_xml – month: 06
  year: 2025
  text: 2025-06-00
PublicationDecade 2020
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Canadian journal of chemical engineering
PublicationYear 2025
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_3_1
e_1_2_8_5_1
e_1_2_8_7_1
e_1_2_8_9_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_66_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_64_1
e_1_2_8_62_1
e_1_2_8_41_1
e_1_2_8_60_1
e_1_2_8_17_1
e_1_2_8_19_1
Watt G. W. (e_1_2_8_52_1) 2006; 1952
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_59_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_57_1
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_51_1
e_1_2_8_30_1
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_48_1
e_1_2_8_2_1
e_1_2_8_4_1
e_1_2_8_6_1
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_67_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_65_1
e_1_2_8_63_1
e_1_2_8_40_1
e_1_2_8_61_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_58_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_56_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_54_1
e_1_2_8_50_1
References_xml – ident: e_1_2_8_44_1
  doi: 10.5004/dwt.2019.24354
– ident: e_1_2_8_48_1
  doi: 10.1016/j.jallcom.2023.169302
– ident: e_1_2_8_6_1
  doi: 10.1016/j.watres.2018.10.036
– ident: e_1_2_8_40_1
  doi: 10.1021/acsami.2c00018
– ident: e_1_2_8_2_1
  doi: 10.1016/j.rser.2014.01.023
– ident: e_1_2_8_22_1
  doi: 10.1039/D0NR00072H
– ident: e_1_2_8_29_1
  doi: 10.1021/acscatal.3c01360
– ident: e_1_2_8_10_1
  doi: 10.1002/9783527830084.ch11
– ident: e_1_2_8_37_1
  doi: 10.1016/j.ijhydene.2016.05.051
– ident: e_1_2_8_15_1
  doi: 10.1002/adfm.202212236
– ident: e_1_2_8_59_1
  doi: 10.1002/smll.202311172
– ident: e_1_2_8_60_1
  doi: 10.1039/C6TA00331A
– ident: e_1_2_8_27_1
  doi: 10.1002/smll.202402406
– ident: e_1_2_8_30_1
  doi: 10.1002/er.7414
– ident: e_1_2_8_45_1
  doi: 10.1039/D0QM01031F
– ident: e_1_2_8_21_1
  doi: 10.1021/acs.jpcc.9b08729
– ident: e_1_2_8_28_1
  doi: 10.1016/j.jcis.2024.05.218
– ident: e_1_2_8_41_1
  doi: 10.1016/j.carbon.2019.08.051
– ident: e_1_2_8_23_1
  doi: 10.1002/eem2.12277
– ident: e_1_2_8_47_1
  doi: 10.1016/j.electacta.2021.138767
– ident: e_1_2_8_34_1
  doi: 10.20964/2022.03.04
– ident: e_1_2_8_39_1
  doi: 10.1021/acs.inorgchem.8b03143
– ident: e_1_2_8_18_1
  doi: 10.1039/D1EE03211A
– ident: e_1_2_8_43_1
  doi: 10.1021/acsami.0c06601
– ident: e_1_2_8_36_1
  doi: 10.1039/C8CC07186A
– ident: e_1_2_8_7_1
  doi: 10.1038/s41929-019-0252-4
– ident: e_1_2_8_55_1
  doi: 10.1016/j.electacta.2021.138723
– ident: e_1_2_8_50_1
  doi: 10.1016/j.jhazmat.2020.122121
– volume: 1952
  start-page: 24
  year: 2006
  ident: e_1_2_8_52_1
  publication-title: Anal. Chem.
– ident: e_1_2_8_24_1
  doi: 10.1016/j.nanoen.2021.106661
– ident: e_1_2_8_42_1
  doi: 10.1021/acsami.2c18878
– ident: e_1_2_8_14_1
  doi: 10.1007/s40820-022-00966-7
– ident: e_1_2_8_51_1
  doi: 10.1038/nmat3696
– ident: e_1_2_8_13_1
  doi: 10.1016/j.jechem.2021.12.026
– ident: e_1_2_8_53_1
  doi: 10.1039/c0jm01027h
– ident: e_1_2_8_54_1
  doi: 10.1016/j.electacta.2020.137350
– ident: e_1_2_8_5_1
  doi: 10.1016/j.joule.2018.04.014
– ident: e_1_2_8_19_1
  doi: 10.1016/j.ccr.2022.214614
– ident: e_1_2_8_63_1
  doi: 10.1002/smtd.201800323
– ident: e_1_2_8_56_1
  doi: 10.1080/00018732.2011.582251
– ident: e_1_2_8_11_1
  doi: 10.1016/j.nanoen.2019.103917
– ident: e_1_2_8_25_1
  doi: 10.1016/j.materresbull.2021.111294
– ident: e_1_2_8_61_1
  doi: 10.1016/j.carbon.2013.07.109
– ident: e_1_2_8_66_1
  doi: 10.1016/j.colsurfa.2018.04.063
– ident: e_1_2_8_35_1
  doi: 10.1021/acscatal.8b02311
– ident: e_1_2_8_3_1
  doi: 10.1016/j.cosust.2014.07.005
– ident: e_1_2_8_46_1
  doi: 10.1016/j.jelechem.2021.115168
– ident: e_1_2_8_26_1
  doi: 10.1016/j.matlet.2022.131808
– ident: e_1_2_8_12_1
  doi: 10.1016/j.mattod.2019.03.002
– ident: e_1_2_8_62_1
  doi: 10.1088/0957-4484/26/37/374003
– ident: e_1_2_8_49_1
  doi: 10.1039/C8CE01234B
– ident: e_1_2_8_58_1
  doi: 10.1039/C9RA07465A
– ident: e_1_2_8_67_1
  doi: 10.1039/D1SE00644D
– ident: e_1_2_8_17_1
  doi: 10.1016/j.ccr.2022.214468
– ident: e_1_2_8_33_1
  doi: 10.1039/D2CY01832B
– ident: e_1_2_8_64_1
  doi: 10.1039/c2cs35086f
– ident: e_1_2_8_65_1
  doi: 10.1016/j.jtice.2019.10.019
– ident: e_1_2_8_20_1
  doi: 10.1021/acs.jpcc.8b08149
– ident: e_1_2_8_8_1
  doi: 10.1016/j.enchem.2019.100013
– ident: e_1_2_8_32_1
  doi: 10.1021/acs.langmuir.1c01706
– ident: e_1_2_8_4_1
  doi: 10.1016/j.chempr.2018.10.010
– ident: e_1_2_8_31_1
  doi: 10.1002/sus2.226
– ident: e_1_2_8_57_1
  doi: 10.1016/j.carbon.2013.03.033
– ident: e_1_2_8_38_1
  doi: 10.1016/j.cjche.2021.11.016
– ident: e_1_2_8_9_1
  doi: 10.1016/j.apcatb.2018.05.041
– ident: e_1_2_8_16_1
  doi: 10.1007/s40242-020-0171-6
SSID ssj0002041
Score 2.4160376
Snippet A chromium oxide‐based nanocomposite (Cr 2 O 3 @NC) is designed and prepared via a simple pyrolysis route with Cr‐based metal organic framework (MOF) as a...
A chromium oxide‐based nanocomposite (Cr2O3@NC) is designed and prepared via a simple pyrolysis route with Cr‐based metal organic framework (MOF) as a...
SourceID proquest
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
StartPage 2590
SubjectTerms Ammonia
Carbon
Catalytic activity
Chemical reduction
Chemical synthesis
Chromium oxides
Electrocatalysts
Hydrazines
Metal-organic frameworks
Nanocomposites
Nanoparticles
Nitrogen
Pyrolysis
Sodium sulfate
Title Chromium oxide nanoparticles in‐situ immobilized onto nitrogen‐doped carbon plates with boosted catalytic activity toward nitrogen reduction reaction
URI https://www.proquest.com/docview/3228821688
Volume 103
WOSCitedRecordID wos001341354500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1939-019X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002041
  issn: 0008-4034
  databaseCode: DRFUL
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nj9MwELW2uxzggPgUCwuyBEJCUWCTJk5yRMuuOFQFQZB6ixzbkYy6SWmbVeHET-DK3-OXMP6Ik6AVWg5cosoZuWnn2X4zmrxB6FnM4ynhoRK65bEfRSH1M8IqWPHplDIODFvoF4VnyXyeLhbZ-73JpHsX5mKZ1HW622Wr_-pqGANnq1dn_8HdblIYgM_gdLiC2-F6Jccrudtz2Z57zU5y4dW0hrjYlr95snbVDRu5bT0Jz6XKY78B71RKBh6s8HUDczsz3qzgHqPrEnCyWipqapK3QM9VqtTTCaCvWveV2VYUW12L6-by1kofVgMNKCpzUPhTIGGgYsE6HQPR6yX2uX9bRTwYy-3YiapYa1yVkWyrVh-urXQZcmEsF5IOMx5h3FdmXXFfHW34KYTINl8qzB6fTVWJmO7g2x8Cx9MB2kdbemz6mVp6APFfeOnRY6Rs2WcmXkKYZpO2I33v-bvi7NNsVuSni_z56ouvWp-pEgHbB2aCDsIkzuB0OXjzAQwdoQiPI9v40fwWp7Ibvuq_bsyrxrRCc6X8Frppgxz82qDuNtoT9R10YyB9eRf97GCKNUzxCKZY1r--_1AAxQOAYgVQ3IEKDDQ0sYEmNtDECprYQhM7aOIOmthA082CHTRxB8176OPZaX7y1rdtQnwGvtn6JAhIGXFCyoDQKiQCaK8gpBJpxaogolkMIXQZUa7KaXkIu09MKdD-gAoBBO4-2q-bWjxAmPMkJSwDzlZWkSiTVEC0wKc0SzMGLDs6RC-6v7hgVkFfNXJZFkb7OyyUOwrtjkP01NmujG7MpVZHnacKu8Y2BRyxEPYGJE0f_v32I3S9Xx5HaH-7bsVjdI1dbOVm_cSi6DfDq83c
linkProvider Wiley-Blackwell
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Chromium+oxide+nanoparticles+in%E2%80%90situ+immobilized+onto+nitrogen%E2%80%90doped+carbon+plates+with+boosted+catalytic+activity+toward+nitrogen+reduction+reaction&rft.jtitle=Canadian+journal+of+chemical+engineering&rft.au=Wang%2C+Jing&rft.au=Tang%2C+Chenbo&rft.au=Liufu%2C+Hui&rft.au=Zeng%2C+Xia&rft.date=2025-06-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0008-4034&rft.eissn=1939-019X&rft.volume=103&rft.issue=6&rft.spage=2590&rft.epage=2602&rft_id=info:doi/10.1002%2Fcjce.25532&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0008-4034&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0008-4034&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0008-4034&client=summon