SlimDL: Deploying ultra-light deep learning model on sweeping robots

Advanced object detection methods have yielded impressive progress in recent years. However, the computational constraints of edge mobile devices present significant deployment challenges for state-of-the-art algorithms. We propose a deep learning deployment framework with two stages: model adaptati...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Engineering applications of artificial intelligence Ročník 149; s. 110415
Hlavní autoři: Sun, Xudong, Wang, Yu, Liu, Zhanglin, Gao, Shaoxuan, He, Wenbo, Tong, Chao
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Ltd 01.06.2025
Témata:
ISSN:0952-1976
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Advanced object detection methods have yielded impressive progress in recent years. However, the computational constraints of edge mobile devices present significant deployment challenges for state-of-the-art algorithms. We propose a deep learning deployment framework with two stages: model adaptation and compression. Our method enhance “You Only Look Once version 5” (YOLOv5) with lightweight modules, which improves detection performance while reducing computational load. Additionally, we present a pruning algorithm, employing adaptive batch normalization and iterative pruning. Our evaluation on “Microsoft Common Objects in Context” (MSCOCO) dataset and custom SweepRobot datasets demonstrates that our method consistently outperforms state-of-the-art approaches. On the SweepRobot dataset, our method doubled YOLOv5’s detection speed on the sweeping robot from 15.69 frames per second (FPS) to 30.77 FPS, maintaining 97.3% performance at 20% of the computational cost. Even on Graphics Processing Unit equipped devices, our method achieved 1.8% and 2.8% higher Average Precision compared to direct scaling and pruning with the original pruning algorithm.
ISSN:0952-1976
DOI:10.1016/j.engappai.2025.110415