Multi-objective feature selection algorithm using Beluga Whale Optimization

The advancement of science and technology has resulted in large datasets with noisy or redundant features that hamper classification. In feature selection, relevant attributes are selected to reduce dimensionality, thereby improving classification accuracy. Multi-objective optimization is crucial in...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Chemometrics and intelligent laboratory systems Ročník 257; s. 105295
Hlavní autoři: Kouhpah Esfahani, Kiana, Mohammad Hasani Zade, Behnam, Mansouri, Najme
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier B.V 15.02.2025
Témata:
ISSN:0169-7439
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The advancement of science and technology has resulted in large datasets with noisy or redundant features that hamper classification. In feature selection, relevant attributes are selected to reduce dimensionality, thereby improving classification accuracy. Multi-objective optimization is crucial in feature selection because it allows simultaneous evaluation of multiple, often conflicting objectives, such as maximizing model accuracy and minimizing the number of features. Traditional single-objective methods might focus solely on accuracy, often leading to models that are complex and computationally expensive. Multi-objective optimization, on the other hand, considers trade-offs between different criteria, identifying a set of optimal solutions (a Pareto front) where no one solution is clearly superior. It is especially useful when analyzing high-dimensional datasets, as it reduces overfitting and enhances model performance by selecting the most informative subset of features. This article introduces and evaluates the performance of the Binary version of Beluga Whale Optimization and the Multi-Objective Beluga Whale Optimization (MOBWO) algorithm in the context of feature selection. Features are encoded as binary matrices to denote their presence or absence, making it easier to stratify datasets. MOBWO emulates the exploration and exploitation patterns of Beluga Whale Optimization (BWO) through continuous search space. Optimal classification accuracy and minimum feature subset size are two conflicting objectives. The MOBWO was compared using 12 datasets from the University of California Irvine (UCI) repository with eleven well-known optimization algorithms, such as Genetic Algorithm (GA), Sine Cosine Algorithm (SCA), Bat Optimization Algorithm (BOA), Differential Evolution (DE), Whale Optimization Algorithm (WOA), Non-dominated Sorting Genetic Algorithm II (NSGA-II), Multi-Objective Particle Swarm Optimization (MOPSO), Multi-Objective Grey Wolf Optimizer (MOGWO), Multi-Objective Grasshopper Optimization Algorithm (MOGOA), Multi-Objective Non-dominated advanced Butterfly Optimization Algorithm (MONSBOA), and Multi-Objective Slime Mould Algorithm (MOSMA). In experiments using Random Forest (RF) as the classifier, different performance metrics were evaluated. The computational results show that the proposed BBWO algorithm achieves an average accuracy rate of 99.06 % across 12 datasets. Additionally, the proposed MOBWO algorithm outperforms existing multi-objective feature selection methods on all 12 datasets based on three metrics: Success Counting (SCC), Inverted Generational Distance (IGD), and Hypervolume indicators (HV). For instance, MOBWO achieves an average HV that is at least 3.54 % higher than all other methods. •A binary variant of the Beluga Whale Optimization algorithm is developed.•The multi-objective version of BWO is proposed based on BWO principles.•Multiple conflicting objectives is addressed to solve feature selection problem.•The comprehensive evaluation ensures the robustness of the proposed method.
AbstractList The advancement of science and technology has resulted in large datasets with noisy or redundant features that hamper classification. In feature selection, relevant attributes are selected to reduce dimensionality, thereby improving classification accuracy. Multi-objective optimization is crucial in feature selection because it allows simultaneous evaluation of multiple, often conflicting objectives, such as maximizing model accuracy and minimizing the number of features. Traditional single-objective methods might focus solely on accuracy, often leading to models that are complex and computationally expensive. Multi-objective optimization, on the other hand, considers trade-offs between different criteria, identifying a set of optimal solutions (a Pareto front) where no one solution is clearly superior. It is especially useful when analyzing high-dimensional datasets, as it reduces overfitting and enhances model performance by selecting the most informative subset of features. This article introduces and evaluates the performance of the Binary version of Beluga Whale Optimization and the Multi-Objective Beluga Whale Optimization (MOBWO) algorithm in the context of feature selection. Features are encoded as binary matrices to denote their presence or absence, making it easier to stratify datasets. MOBWO emulates the exploration and exploitation patterns of Beluga Whale Optimization (BWO) through continuous search space. Optimal classification accuracy and minimum feature subset size are two conflicting objectives. The MOBWO was compared using 12 datasets from the University of California Irvine (UCI) repository with eleven well-known optimization algorithms, such as Genetic Algorithm (GA), Sine Cosine Algorithm (SCA), Bat Optimization Algorithm (BOA), Differential Evolution (DE), Whale Optimization Algorithm (WOA), Non-dominated Sorting Genetic Algorithm II (NSGA-II), Multi-Objective Particle Swarm Optimization (MOPSO), Multi-Objective Grey Wolf Optimizer (MOGWO), Multi-Objective Grasshopper Optimization Algorithm (MOGOA), Multi-Objective Non-dominated advanced Butterfly Optimization Algorithm (MONSBOA), and Multi-Objective Slime Mould Algorithm (MOSMA). In experiments using Random Forest (RF) as the classifier, different performance metrics were evaluated. The computational results show that the proposed BBWO algorithm achieves an average accuracy rate of 99.06 % across 12 datasets. Additionally, the proposed MOBWO algorithm outperforms existing multi-objective feature selection methods on all 12 datasets based on three metrics: Success Counting (SCC), Inverted Generational Distance (IGD), and Hypervolume indicators (HV). For instance, MOBWO achieves an average HV that is at least 3.54 % higher than all other methods. •A binary variant of the Beluga Whale Optimization algorithm is developed.•The multi-objective version of BWO is proposed based on BWO principles.•Multiple conflicting objectives is addressed to solve feature selection problem.•The comprehensive evaluation ensures the robustness of the proposed method.
ArticleNumber 105295
Author Mohammad Hasani Zade, Behnam
Mansouri, Najme
Kouhpah Esfahani, Kiana
Author_xml – sequence: 1
  givenname: Kiana
  surname: Kouhpah Esfahani
  fullname: Kouhpah Esfahani, Kiana
– sequence: 2
  givenname: Behnam
  surname: Mohammad Hasani Zade
  fullname: Mohammad Hasani Zade, Behnam
– sequence: 3
  givenname: Najme
  surname: Mansouri
  fullname: Mansouri, Najme
  email: n.mansouri@uk.ac.ir
BookMark eNqFkMFOwzAMhnMYEtvgFVBeoKNJk269ARMwxNAuII6Rk7pbqrSZknYSPD2tBmdOln_7_2V_MzJpfYuE3LB0wVKW39YLc8DGO9ALnnIxiJIXckKmw7BIliIrLsksxjode8Gm5PWtd51NvK7RdPaEtELo-oA0ohsV31Jwex9sd2hoH227pw_o-j3QzwM4pLtjZxv7DePmFbmowEW8_q1z8vH0-L7eJNvd88v6fpsYLosuEQBCarmqGMsMmnLJIM8Z50JDroU0AIUs0SylXoHIS55mpWS84iCrDKTGbE7yc64JPsaAlToG20D4UixVIwZVqz8MasSgzhgG493ZiMN1J4tBRWOxNVjaMDyrSm__i_gBNVhvPA
Cites_doi 10.1016/j.compbiomed.2022.105356
10.1109/ACCESS.2019.2906757
10.1016/j.asoc.2024.112121
10.1016/j.asoc.2023.110558
10.1016/j.knosys.2023.111084
10.1016/j.knosys.2021.107638
10.1109/TSMCB.2012.2227469
10.1007/s00366-021-01369-9
10.1016/j.eswa.2023.120455
10.1016/j.asoc.2024.112042
10.1007/s11229-021-03233-1
10.1007/s00158-005-0527-z
10.3390/en16010471
10.1016/j.eswa.2023.120652
10.1016/j.cmpb.2008.01.003
10.1007/s10489-017-1019-8
10.1016/j.knosys.2022.109215
10.1109/ACCESS.2020.3000040
10.1109/TKDE.2019.2959988
10.1016/j.eswa.2021.114737
10.1007/s10710-005-6164-x
10.3390/axioms8030079
10.1007/s11227-020-03378-9
10.1016/j.swevo.2012.09.002
10.1109/ACCESS.2020.3047936
10.1080/03052150210915
10.1023/A:1010933404324
10.1109/TCYB.2020.3015756
10.1016/j.swevo.2024.101760
10.1016/j.knosys.2015.12.022
10.1109/TEVC.2023.3292527
10.1016/j.advengsoft.2016.01.008
10.1016/j.eswa.2019.112824
10.1016/j.kjs.2023.02.009
10.1016/j.ins.2022.12.117
10.1155/2024/6769271
10.1007/BF00058655
10.1016/j.imu.2023.101232
10.1007/s10462-020-09952-0
ContentType Journal Article
Copyright 2024 Elsevier B.V.
Copyright_xml – notice: 2024 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.chemolab.2024.105295
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
ExternalDocumentID 10_1016_j_chemolab_2024_105295
S0169743924002351
GroupedDBID ---
--K
--M
.DC
.~1
0R~
1B1
1RT
1~.
1~5
29B
4.4
457
4G.
53G
5GY
5VS
6J9
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARLI
AAXKI
AAXUO
ABAOU
ABFRF
ABJNI
ABMAC
ACDAQ
ACGFO
ACGFS
ACRLP
ADBBV
ADECG
ADEZE
ADGUI
AEBSH
AEFWE
AEIPS
AEKER
AENEX
AFJKZ
AFKWA
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGVJ
AIKHN
AITUG
AJOXV
AJSZI
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARUGR
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EO8
EO9
EP2
EP3
FDB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SCH
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSK
SSW
SSZ
T5K
UNMZH
YK3
~02
~G-
9DU
AAQXK
AATTM
AAYWO
AAYXX
ABFNM
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEUPX
AFFNX
AFPUW
AGQPQ
AIGII
AIIUN
AJQLL
AKBMS
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EFLBG
EJD
FEDTE
FGOYB
HMU
HVGLF
HZ~
M36
M41
R2-
SCB
WUQ
XPP
~HD
ID FETCH-LOGICAL-c259t-4aa45b58f113cecd71a661224ba6b45caa95dec75b8a46d203d512f2a5f3a5be3
ISICitedReferencesCount 4
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001383855000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0169-7439
IngestDate Sat Nov 29 05:18:49 EST 2025
Sat Feb 01 16:09:37 EST 2025
IsPeerReviewed true
IsScholarly true
Keywords Beluga Whale Optimization
Feature selection
Multi-objective optimization
Random forest
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c259t-4aa45b58f113cecd71a661224ba6b45caa95dec75b8a46d203d512f2a5f3a5be3
ParticipantIDs crossref_primary_10_1016_j_chemolab_2024_105295
elsevier_sciencedirect_doi_10_1016_j_chemolab_2024_105295
PublicationCentury 2000
PublicationDate 2025-02-15
PublicationDateYYYYMMDD 2025-02-15
PublicationDate_xml – month: 02
  year: 2025
  text: 2025-02-15
  day: 15
PublicationDecade 2020
PublicationTitle Chemometrics and intelligent laboratory systems
PublicationYear 2025
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Nasibi, Manita, Korbaa (bib7) 2023; 49
Deng, Li, Wang, Cao, Li (bib10) 2023; 110765
Breiman (bib19) 1996; 24
Premkumar, Jangir, Sowmya, Alhelou, Heidari, Chen (bib43) 2021; 9
Zhao, Lv, Xiao, Ma, Pan (bib28) 2024; 165
mirjalili (bib36) 2016; 96
Nakamura, Pereira, Rodrigues, Costa, Papa, Yang (bib37) 2013
Coello Coello, Reyes Sierra (bib45) 2005; 2972
Wang, Zu, Ji, Li, Lu (bib2) 2023; 37
Wang, Xue, Liang, Zhang (bib30) 2023; 626
Breiman (bib20) 2001; 45
[accessed on January, 2023].
Mirjalili, Lewis (bib31) 2013; 9
Olabi, Rezk, Abdelkareem, Awotwe, Maghrabie, Selim, Rahman, Shah, Zaky (bib49) 2023; 16
Al-Tashi, Abdulkadir, Rais, Mirjalili, Alhussian, Ragab, Alqushaibi (bib41) 2020; 8
Too, Abdullah, Saad (bib38) 2019; 8
Sharma, Khodadadi, Saha, Gharehchopogh, Mirjalili (bib42) 2023; 20
Hu, Du, Wang, Wei (bib13) 2022; 235
Abdollahzadeh, Gharehchopogh (bib6) 2022; 38
Hu, Zhang, Gong (bib23) 2021; 51
Coello, Cortes (bib46) 2005; 6
Hoarau, Martin, Dobis, Gall (bib21) 2023; 230
Yan, Wang, Xie (bib14) 2008; 90
Mirjalili, Lewis (bib39) 2016; 95
Mirjalili, Mirjalili, Faris, Aljarah (bib33) 2018; 48
Xue, Zhang, Browne (bib40) 2013; 43
Li, Luo, Zhang, Chen, Zhou (bib26) 2024; 36
Al-Tashi, Abdulkadir, Rais, Mirjalili, Alhussian (bib44) 2019; 7
Ezugwu, Shukla, Nath, Akinyelu, Agushaka, Chiroma, Muhuri (bib4) 2021; 54
Nouri-Moghaddam, Ghazanfari, Fathian (bib47) 2021; 175
Abdel-Basset, El-Shahat, El-henawy, de Albuquerque, Mirjalili (bib12) 2020; 139
Park, Ho (bib9) 2019; 33
Jiao, Nguyen, Xue, Zhang (bib22) 2024; 28
Nassibi, Manita, Korbaa (bib1) 2023; 49
Xue, Zhang (bib24) 2024; 91
Coello Coello, Pulido (bib50) 2005; 30
Mantegna (bib18) 1994; 49
Kanyongo, Ezugvu (bib16) 2023; 38
Sterkenburg, Grünwald (bib5) 2021; 199
Ma, Xu, Ju (bib3) 2023; 229
Hamadni, Won, Alimi, Karray (bib32) 2007
Ismail, Sandell (bib8) 2021; 69
Li, Kang, Li, Pang, Sun, Liang (bib27) 2024; 165
Too, Abdullah (bib35) 2021; 77
Li, Fu, Li, Ding, Lin, Zheng (bib29) 2023; 145
Papasani, Devarakonda (bib15) 2023; 50
Zhong, Li, Meng (bib17) 2022; 251
Hassan, Cotfas, Rezk, Youssef, Shehata, El-Bary (bib48) 2024; 2024
Xue, Zhang, Neri, Gabbouj, Zhang (bib25) 2023; 281
Ray, Liew (bib51) 2002; 34
K. Bache, M. Lichman. UCI Machine Learning Repository [online] Available
Liu, Wei, Heidari, Kuang, Zhang, Gui, Chen, Pan (bib11) 2022; 144
Abdel-Basset (10.1016/j.chemolab.2024.105295_bib12) 2020; 139
Xue (10.1016/j.chemolab.2024.105295_bib25) 2023; 281
Hassan (10.1016/j.chemolab.2024.105295_bib48) 2024; 2024
Sterkenburg (10.1016/j.chemolab.2024.105295_bib5) 2021; 199
Li (10.1016/j.chemolab.2024.105295_bib29) 2023; 145
Mirjalili (10.1016/j.chemolab.2024.105295_bib31) 2013; 9
Hu (10.1016/j.chemolab.2024.105295_bib23) 2021; 51
Wang (10.1016/j.chemolab.2024.105295_bib30) 2023; 626
Breiman (10.1016/j.chemolab.2024.105295_bib19) 1996; 24
Olabi (10.1016/j.chemolab.2024.105295_bib49) 2023; 16
Zhao (10.1016/j.chemolab.2024.105295_bib28) 2024; 165
Li (10.1016/j.chemolab.2024.105295_bib26) 2024; 36
Wang (10.1016/j.chemolab.2024.105295_bib2) 2023; 37
Abdollahzadeh (10.1016/j.chemolab.2024.105295_bib6) 2022; 38
Zhong (10.1016/j.chemolab.2024.105295_bib17) 2022; 251
Mirjalili (10.1016/j.chemolab.2024.105295_bib33) 2018; 48
Coello Coello (10.1016/j.chemolab.2024.105295_bib50) 2005; 30
Mantegna (10.1016/j.chemolab.2024.105295_bib18) 1994; 49
Nasibi (10.1016/j.chemolab.2024.105295_bib7) 2023; 49
Al-Tashi (10.1016/j.chemolab.2024.105295_bib44) 2019; 7
Coello (10.1016/j.chemolab.2024.105295_bib46) 2005; 6
Deng (10.1016/j.chemolab.2024.105295_bib10) 2023; 110765
Breiman (10.1016/j.chemolab.2024.105295_bib20) 2001; 45
Hamadni (10.1016/j.chemolab.2024.105295_bib32) 2007
Too (10.1016/j.chemolab.2024.105295_bib35) 2021; 77
Papasani (10.1016/j.chemolab.2024.105295_bib15) 2023; 50
mirjalili (10.1016/j.chemolab.2024.105295_bib36) 2016; 96
Coello Coello (10.1016/j.chemolab.2024.105295_bib45) 2005; 2972
Kanyongo (10.1016/j.chemolab.2024.105295_bib16) 2023; 38
Premkumar (10.1016/j.chemolab.2024.105295_bib43) 2021; 9
Jiao (10.1016/j.chemolab.2024.105295_bib22) 2024; 28
10.1016/j.chemolab.2024.105295_bib34
Ray (10.1016/j.chemolab.2024.105295_bib51) 2002; 34
Al-Tashi (10.1016/j.chemolab.2024.105295_bib41) 2020; 8
Li (10.1016/j.chemolab.2024.105295_bib27) 2024; 165
Sharma (10.1016/j.chemolab.2024.105295_bib42) 2023; 20
Mirjalili (10.1016/j.chemolab.2024.105295_bib39) 2016; 95
Hoarau (10.1016/j.chemolab.2024.105295_bib21) 2023; 230
Ma (10.1016/j.chemolab.2024.105295_bib3) 2023; 229
Park (10.1016/j.chemolab.2024.105295_bib9) 2019; 33
Xue (10.1016/j.chemolab.2024.105295_bib24) 2024; 91
Ismail (10.1016/j.chemolab.2024.105295_bib8) 2021; 69
Nouri-Moghaddam (10.1016/j.chemolab.2024.105295_bib47) 2021; 175
Yan (10.1016/j.chemolab.2024.105295_bib14) 2008; 90
Hu (10.1016/j.chemolab.2024.105295_bib13) 2022; 235
Ezugwu (10.1016/j.chemolab.2024.105295_bib4) 2021; 54
Xue (10.1016/j.chemolab.2024.105295_bib40) 2013; 43
Liu (10.1016/j.chemolab.2024.105295_bib11) 2022; 144
Too (10.1016/j.chemolab.2024.105295_bib38) 2019; 8
Nakamura (10.1016/j.chemolab.2024.105295_bib37) 2013
Nassibi (10.1016/j.chemolab.2024.105295_bib1) 2023; 49
References_xml – volume: 38
  start-page: 1845
  year: 2022
  end-page: 1863
  ident: bib6
  article-title: A multi-objective optimization algorithm for feature selection problems
  publication-title: Eng. Comput.
– volume: 77
  start-page: 2844
  year: 2021
  end-page: 2874
  ident: bib35
  article-title: A new and fast rival genetic algorithm for feature selection
  publication-title: J. Supercomput.
– volume: 9
  start-page: 1
  year: 2013
  end-page: 14
  ident: bib31
  article-title: S-shaped versus V-shaped transfer functions for binary Particle Swarm Optimization
  publication-title: Swarm Evol. Comput.
– volume: 48
  start-page: 805
  year: 2018
  end-page: 820
  ident: bib33
  article-title: Grasshopper optimization algorithm for multi-objective optimization problems
  publication-title: Appl. Intell.
– volume: 251
  year: 2022
  ident: bib17
  article-title: Beluga whale optimization: a novel nature-inspired metaheuristic algorithm
  publication-title: Knowl. Base Syst.
– volume: 91
  year: 2024
  ident: bib24
  article-title: A novel importance-guided particle swarm optimization based on MLP for solving large-scale feature selection problems
  publication-title: Swarm Evol. Comput.
– volume: 8
  start-page: 106247
  year: 2020
  end-page: 106263
  ident: bib41
  article-title: Binary multi-objective Grey Wolf Optimizer for feature selection in classification
  publication-title: IEEE Access
– volume: 165
  year: 2024
  ident: bib27
  article-title: Single-objective and multi-objective mixed-variable grey wolf optimizer for joint feature selection and classifier parameter tuning
  publication-title: Appl. Soft Comput.
– volume: 49
  start-page: 4677
  year: 1994
  end-page: 4683
  ident: bib18
  article-title: Fast, accurate algorithm for numerical simulation of Lévy stable stochastic processes
  publication-title: Phys. Rev.
– volume: 6
  start-page: 163
  year: 2005
  end-page: 190
  ident: bib46
  article-title: Solving multiobjective optimization problems using an artificial immune system
  publication-title: Genet. Program. Evolvable Mach.
– volume: 50
  start-page: 53
  year: 2023
  end-page: 64
  ident: bib15
  article-title: A novel feature selection algorithm using decomposition based multi-objective guided honey badger algorithm (MO-GHBA) and NSGA-III
  publication-title: Kuwait J. Sci.
– volume: 144
  year: 2022
  ident: bib11
  article-title: Chaotic simulated annealing multi-verse optimization enhanced kernel extreme learning machine for medical diagnosis
  publication-title: Comput. Biol. Med.
– volume: 2024
  year: 2024
  ident: bib48
  article-title: Ideal parameter estimation of photocatalysis process to boost amoxicillin degradation efficiency using marine predators optimization algorithm
  publication-title: Int. J. Photoenergy
– volume: 110765
  year: 2023
  ident: bib10
  article-title: A feature-thresholds guided genetic algorithm based on a multi-objective feature scoring method for high-dimensional feature selection
  publication-title: Appl. Soft Comput.
– volume: 45
  start-page: 5
  year: 2001
  end-page: 32
  ident: bib20
  article-title: Random forests
  publication-title: Mach. Learn.
– volume: 69
  start-page: 424
  year: 2021
  end-page: 428
  ident: bib8
  article-title: A low-complexity endurance modulation for flash memory
  publication-title: IEEE Trans. Circ. Syst. II: Express Briefs
– volume: 8
  start-page: 79
  year: 2019
  ident: bib38
  article-title: Hybrid binary particle swarm optimization differential evolution-based feature selection for EMG signals classification
  publication-title: Axioms
– reference: . [accessed on January, 2023].
– volume: 30
  start-page: 388
  year: 2005
  end-page: 403
  ident: bib50
  article-title: Multiobjective structural optimization using a microgenetic algorithm
  publication-title: Struct. Multidiscip. Optim.
– volume: 7
  start-page: 39496
  year: 2019
  end-page: 39508
  ident: bib44
  article-title: Binary optimization using hybrid Grey Wolf Optimization for feature selection
  publication-title: IEEE Access
– volume: 145
  year: 2023
  ident: bib29
  article-title: Multi-objective binary grey wolf optimization for feature selection based on guided mutation strategy
  publication-title: Appl. Soft Comput.
– volume: 54
  start-page: 4237
  year: 2021
  end-page: 4316
  ident: bib4
  article-title: Metaheuristics: a comprehensive overview and classification along with bibliometric analysis
  publication-title: Artif. Intell. Rev.
– volume: 229
  year: 2023
  ident: bib3
  article-title: Class-specific feature selection via maximal dynamic correlation change and minimal redundancy
  publication-title: Expert Syst. Appl.
– volume: 165
  year: 2024
  ident: bib28
  article-title: Hierarchical learning multi-objective firefly algorithm for high-dimensional feature selection
  publication-title: Appl. Soft Comput.
– volume: 96
  start-page: 120
  year: 2016
  end-page: 133
  ident: bib36
  article-title: SCA: a Sine Cosine Algorithm for solving optimization problems
  publication-title: Knowl. Base Syst.
– volume: 199
  start-page: 9979
  year: 2021
  end-page: 10015
  ident: bib5
  article-title: The no-free-lunch theorems of supervised learning
  publication-title: Synthese
– volume: 2972
  start-page: 688
  year: 2005
  end-page: 697
  ident: bib45
  article-title: A study of the parallelization of a coevolutionary multi-objective evolutionary algorithm
  publication-title: Adv. Artif. Intell. Berlin
– volume: 43
  start-page: 1656
  year: 2013
  end-page: 1671
  ident: bib40
  article-title: Particle Swarm Optimization for feature selection in classification: a multi-objective approach
  publication-title: IEEE Trans. Cybern.
– volume: 175
  year: 2021
  ident: bib47
  article-title: A novel multi-objective forest optimization algorithm for wrapper feature selection
  publication-title: Expert Syst. Appl.
– volume: 281
  year: 2023
  ident: bib25
  article-title: An external attention-based feature ranker for large-scale feature selection
  publication-title: Knowl. Base Syst.
– volume: 49
  year: 2023
  ident: bib7
  article-title: Advances in nature-inspired metaheuristic optimization for feature selection problem: a comprehensive survey
  publication-title: Comput. Sci. Rev.
– volume: 28
  start-page: 1156
  year: 2024
  end-page: 1176
  ident: bib22
  article-title: A survey on evolutionary multiobjective feature selection in classification: approaches, applications, and challenges
  publication-title: IEEE Trans. Evol. Comput.
– volume: 235
  year: 2022
  ident: bib13
  article-title: An enhanced black widow optimization algorithm for feature selection
  publication-title: Knowl. Base Syst.
– volume: 38
  year: 2023
  ident: bib16
  article-title: Feature selection and importance of predictors of non-communicable diseases medication adherence from machine learning research perspectives
  publication-title: Inform. Med. Unlocked
– start-page: 240
  year: 2007
  end-page: 247
  ident: bib32
  article-title: Multi-objective Feature Selection with NSGA II, Adaptive and Natural Computing Algorithms Berlin
– volume: 49
  year: 2023
  ident: bib1
  article-title: Advances in nature-inspired metaheuristic optimization for feature selection problem: a comprehensive survey
  publication-title: Comput. Sci. Rev.
– year: 2013
  ident: bib37
  article-title: Binary Bat algorithm for feature selection
  publication-title: Swarm Intelligence and Bio-Inspired Computation
– reference: K. Bache, M. Lichman. UCI Machine Learning Repository [online] Available:
– volume: 20
  start-page: 819
  year: 2023
  end-page: 843
  ident: bib42
  article-title: Non-dominated sorting advanced butterfly optimization algorithm for multi-objective problems
  publication-title: JBE
– volume: 9
  start-page: 3229
  year: 2021
  end-page: 3248
  ident: bib43
  article-title: MOSMA: multi-objective slime mould algorithm based on elitist non-dominated sorting
  publication-title: IEEE Access
– volume: 16
  start-page: 471
  year: 2023
  ident: bib49
  article-title: Optimal parameter identification of perovskite solar cells using modified bald eagle search optimization algorithm
  publication-title: Energies
– volume: 37
  year: 2023
  ident: bib2
  article-title: MIC-SHAP: an ensemble feature selection method for materials machine learning
  publication-title: Mater. Today Commun.
– volume: 51
  start-page: 874
  year: 2021
  end-page: 888
  ident: bib23
  article-title: Multiobjective particle swarm optimization for feature selection with fuzzy cost
  publication-title: IEEE Trans. Cybern.
– volume: 33
  start-page: 2995
  year: 2019
  end-page: 3006
  ident: bib9
  article-title: Tackling overfitting in boosting for noisy healthcare data
  publication-title: IEEE Trans. Knowl. Data Eng.
– volume: 90
  start-page: 275
  year: 2008
  end-page: 284
  ident: bib14
  article-title: The application of mutual information-based feature selection and fuzzy LS-SVM-based classifier in motion classification
  publication-title: Comput. Methods Progr. Biomed.
– volume: 230
  year: 2023
  ident: bib21
  article-title: Evidential random forests
  publication-title: Expert Syst. Appl.
– volume: 36
  year: 2024
  ident: bib26
  article-title: IMOABC: an efficient multi-objective filter–wrapper hybrid approach for high-dimensional feature selection
  publication-title: J. King Saud Univ. Comput. Inf. Sci.
– volume: 34
  start-page: 141
  year: 2002
  end-page: 153
  ident: bib51
  article-title: A swarm metaphor for multiobjective design optimization
  publication-title: Eng. Optim.
– volume: 139
  year: 2020
  ident: bib12
  article-title: A new fusion of grey wolf optimizer algorithm with a twophase mutation for feature selection
  publication-title: Expert Syst. Appl.
– volume: 95
  start-page: 51
  year: 2016
  end-page: 67
  ident: bib39
  article-title: The whale optimization algorithm
  publication-title: Adv. Eng. Software
– volume: 24
  start-page: 123
  year: 1996
  end-page: 140
  ident: bib19
  article-title: Bagging predictors
  publication-title: Mach. Learn.
– volume: 626
  start-page: 586
  year: 2023
  end-page: 606
  ident: bib30
  article-title: Feature selection using diversity-based multi-objective binary differential evolution
  publication-title: Inf. Sci.
– volume: 144
  year: 2022
  ident: 10.1016/j.chemolab.2024.105295_bib11
  article-title: Chaotic simulated annealing multi-verse optimization enhanced kernel extreme learning machine for medical diagnosis
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2022.105356
– volume: 7
  start-page: 39496
  year: 2019
  ident: 10.1016/j.chemolab.2024.105295_bib44
  article-title: Binary optimization using hybrid Grey Wolf Optimization for feature selection
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2906757
– volume: 165
  year: 2024
  ident: 10.1016/j.chemolab.2024.105295_bib27
  article-title: Single-objective and multi-objective mixed-variable grey wolf optimizer for joint feature selection and classifier parameter tuning
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2024.112121
– volume: 145
  year: 2023
  ident: 10.1016/j.chemolab.2024.105295_bib29
  article-title: Multi-objective binary grey wolf optimization for feature selection based on guided mutation strategy
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2023.110558
– volume: 281
  year: 2023
  ident: 10.1016/j.chemolab.2024.105295_bib25
  article-title: An external attention-based feature ranker for large-scale feature selection
  publication-title: Knowl. Base Syst.
  doi: 10.1016/j.knosys.2023.111084
– year: 2013
  ident: 10.1016/j.chemolab.2024.105295_bib37
  article-title: Binary Bat algorithm for feature selection
– volume: 235
  year: 2022
  ident: 10.1016/j.chemolab.2024.105295_bib13
  article-title: An enhanced black widow optimization algorithm for feature selection
  publication-title: Knowl. Base Syst.
  doi: 10.1016/j.knosys.2021.107638
– volume: 43
  start-page: 1656
  year: 2013
  ident: 10.1016/j.chemolab.2024.105295_bib40
  article-title: Particle Swarm Optimization for feature selection in classification: a multi-objective approach
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TSMCB.2012.2227469
– volume: 38
  start-page: 1845
  year: 2022
  ident: 10.1016/j.chemolab.2024.105295_bib6
  article-title: A multi-objective optimization algorithm for feature selection problems
  publication-title: Eng. Comput.
  doi: 10.1007/s00366-021-01369-9
– volume: 229
  year: 2023
  ident: 10.1016/j.chemolab.2024.105295_bib3
  article-title: Class-specific feature selection via maximal dynamic correlation change and minimal redundancy
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2023.120455
– volume: 36
  year: 2024
  ident: 10.1016/j.chemolab.2024.105295_bib26
  article-title: IMOABC: an efficient multi-objective filter–wrapper hybrid approach for high-dimensional feature selection
  publication-title: J. King Saud Univ. Comput. Inf. Sci.
– volume: 165
  year: 2024
  ident: 10.1016/j.chemolab.2024.105295_bib28
  article-title: Hierarchical learning multi-objective firefly algorithm for high-dimensional feature selection
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2024.112042
– volume: 199
  start-page: 9979
  year: 2021
  ident: 10.1016/j.chemolab.2024.105295_bib5
  article-title: The no-free-lunch theorems of supervised learning
  publication-title: Synthese
  doi: 10.1007/s11229-021-03233-1
– volume: 30
  start-page: 388
  year: 2005
  ident: 10.1016/j.chemolab.2024.105295_bib50
  article-title: Multiobjective structural optimization using a microgenetic algorithm
  publication-title: Struct. Multidiscip. Optim.
  doi: 10.1007/s00158-005-0527-z
– volume: 16
  start-page: 471
  year: 2023
  ident: 10.1016/j.chemolab.2024.105295_bib49
  article-title: Optimal parameter identification of perovskite solar cells using modified bald eagle search optimization algorithm
  publication-title: Energies
  doi: 10.3390/en16010471
– volume: 230
  year: 2023
  ident: 10.1016/j.chemolab.2024.105295_bib21
  article-title: Evidential random forests
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2023.120652
– volume: 90
  start-page: 275
  year: 2008
  ident: 10.1016/j.chemolab.2024.105295_bib14
  article-title: The application of mutual information-based feature selection and fuzzy LS-SVM-based classifier in motion classification
  publication-title: Comput. Methods Progr. Biomed.
  doi: 10.1016/j.cmpb.2008.01.003
– volume: 48
  start-page: 805
  year: 2018
  ident: 10.1016/j.chemolab.2024.105295_bib33
  article-title: Grasshopper optimization algorithm for multi-objective optimization problems
  publication-title: Appl. Intell.
  doi: 10.1007/s10489-017-1019-8
– volume: 251
  year: 2022
  ident: 10.1016/j.chemolab.2024.105295_bib17
  article-title: Beluga whale optimization: a novel nature-inspired metaheuristic algorithm
  publication-title: Knowl. Base Syst.
  doi: 10.1016/j.knosys.2022.109215
– volume: 8
  start-page: 106247
  year: 2020
  ident: 10.1016/j.chemolab.2024.105295_bib41
  article-title: Binary multi-objective Grey Wolf Optimizer for feature selection in classification
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3000040
– volume: 49
  start-page: 4677
  year: 1994
  ident: 10.1016/j.chemolab.2024.105295_bib18
  article-title: Fast, accurate algorithm for numerical simulation of Lévy stable stochastic processes
  publication-title: Phys. Rev.
– ident: 10.1016/j.chemolab.2024.105295_bib34
– volume: 33
  start-page: 2995
  year: 2019
  ident: 10.1016/j.chemolab.2024.105295_bib9
  article-title: Tackling overfitting in boosting for noisy healthcare data
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2019.2959988
– volume: 175
  year: 2021
  ident: 10.1016/j.chemolab.2024.105295_bib47
  article-title: A novel multi-objective forest optimization algorithm for wrapper feature selection
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2021.114737
– volume: 20
  start-page: 819
  year: 2023
  ident: 10.1016/j.chemolab.2024.105295_bib42
  article-title: Non-dominated sorting advanced butterfly optimization algorithm for multi-objective problems
  publication-title: JBE
– volume: 49
  year: 2023
  ident: 10.1016/j.chemolab.2024.105295_bib1
  article-title: Advances in nature-inspired metaheuristic optimization for feature selection problem: a comprehensive survey
  publication-title: Comput. Sci. Rev.
– volume: 6
  start-page: 163
  year: 2005
  ident: 10.1016/j.chemolab.2024.105295_bib46
  article-title: Solving multiobjective optimization problems using an artificial immune system
  publication-title: Genet. Program. Evolvable Mach.
  doi: 10.1007/s10710-005-6164-x
– volume: 37
  year: 2023
  ident: 10.1016/j.chemolab.2024.105295_bib2
  article-title: MIC-SHAP: an ensemble feature selection method for materials machine learning
  publication-title: Mater. Today Commun.
– start-page: 240
  year: 2007
  ident: 10.1016/j.chemolab.2024.105295_bib32
– volume: 8
  start-page: 79
  year: 2019
  ident: 10.1016/j.chemolab.2024.105295_bib38
  article-title: Hybrid binary particle swarm optimization differential evolution-based feature selection for EMG signals classification
  publication-title: Axioms
  doi: 10.3390/axioms8030079
– volume: 77
  start-page: 2844
  year: 2021
  ident: 10.1016/j.chemolab.2024.105295_bib35
  article-title: A new and fast rival genetic algorithm for feature selection
  publication-title: J. Supercomput.
  doi: 10.1007/s11227-020-03378-9
– volume: 9
  start-page: 1
  year: 2013
  ident: 10.1016/j.chemolab.2024.105295_bib31
  article-title: S-shaped versus V-shaped transfer functions for binary Particle Swarm Optimization
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2012.09.002
– volume: 9
  start-page: 3229
  year: 2021
  ident: 10.1016/j.chemolab.2024.105295_bib43
  article-title: MOSMA: multi-objective slime mould algorithm based on elitist non-dominated sorting
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3047936
– volume: 49
  year: 2023
  ident: 10.1016/j.chemolab.2024.105295_bib7
  article-title: Advances in nature-inspired metaheuristic optimization for feature selection problem: a comprehensive survey
  publication-title: Comput. Sci. Rev.
– volume: 34
  start-page: 141
  year: 2002
  ident: 10.1016/j.chemolab.2024.105295_bib51
  article-title: A swarm metaphor for multiobjective design optimization
  publication-title: Eng. Optim.
  doi: 10.1080/03052150210915
– volume: 45
  start-page: 5
  year: 2001
  ident: 10.1016/j.chemolab.2024.105295_bib20
  article-title: Random forests
  publication-title: Mach. Learn.
  doi: 10.1023/A:1010933404324
– volume: 69
  start-page: 424
  year: 2021
  ident: 10.1016/j.chemolab.2024.105295_bib8
  article-title: A low-complexity endurance modulation for flash memory
  publication-title: IEEE Trans. Circ. Syst. II: Express Briefs
– volume: 51
  start-page: 874
  year: 2021
  ident: 10.1016/j.chemolab.2024.105295_bib23
  article-title: Multiobjective particle swarm optimization for feature selection with fuzzy cost
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2020.3015756
– volume: 91
  year: 2024
  ident: 10.1016/j.chemolab.2024.105295_bib24
  article-title: A novel importance-guided particle swarm optimization based on MLP for solving large-scale feature selection problems
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2024.101760
– volume: 96
  start-page: 120
  year: 2016
  ident: 10.1016/j.chemolab.2024.105295_bib36
  article-title: SCA: a Sine Cosine Algorithm for solving optimization problems
  publication-title: Knowl. Base Syst.
  doi: 10.1016/j.knosys.2015.12.022
– volume: 28
  start-page: 1156
  year: 2024
  ident: 10.1016/j.chemolab.2024.105295_bib22
  article-title: A survey on evolutionary multiobjective feature selection in classification: approaches, applications, and challenges
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2023.3292527
– volume: 95
  start-page: 51
  year: 2016
  ident: 10.1016/j.chemolab.2024.105295_bib39
  article-title: The whale optimization algorithm
  publication-title: Adv. Eng. Software
  doi: 10.1016/j.advengsoft.2016.01.008
– volume: 139
  year: 2020
  ident: 10.1016/j.chemolab.2024.105295_bib12
  article-title: A new fusion of grey wolf optimizer algorithm with a twophase mutation for feature selection
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2019.112824
– volume: 50
  start-page: 53
  year: 2023
  ident: 10.1016/j.chemolab.2024.105295_bib15
  article-title: A novel feature selection algorithm using decomposition based multi-objective guided honey badger algorithm (MO-GHBA) and NSGA-III
  publication-title: Kuwait J. Sci.
  doi: 10.1016/j.kjs.2023.02.009
– volume: 626
  start-page: 586
  year: 2023
  ident: 10.1016/j.chemolab.2024.105295_bib30
  article-title: Feature selection using diversity-based multi-objective binary differential evolution
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2022.12.117
– volume: 2024
  year: 2024
  ident: 10.1016/j.chemolab.2024.105295_bib48
  article-title: Ideal parameter estimation of photocatalysis process to boost amoxicillin degradation efficiency using marine predators optimization algorithm
  publication-title: Int. J. Photoenergy
  doi: 10.1155/2024/6769271
– volume: 110765
  year: 2023
  ident: 10.1016/j.chemolab.2024.105295_bib10
  article-title: A feature-thresholds guided genetic algorithm based on a multi-objective feature scoring method for high-dimensional feature selection
  publication-title: Appl. Soft Comput.
– volume: 24
  start-page: 123
  year: 1996
  ident: 10.1016/j.chemolab.2024.105295_bib19
  article-title: Bagging predictors
  publication-title: Mach. Learn.
  doi: 10.1007/BF00058655
– volume: 38
  year: 2023
  ident: 10.1016/j.chemolab.2024.105295_bib16
  article-title: Feature selection and importance of predictors of non-communicable diseases medication adherence from machine learning research perspectives
  publication-title: Inform. Med. Unlocked
  doi: 10.1016/j.imu.2023.101232
– volume: 2972
  start-page: 688
  year: 2005
  ident: 10.1016/j.chemolab.2024.105295_bib45
  article-title: A study of the parallelization of a coevolutionary multi-objective evolutionary algorithm
  publication-title: Adv. Artif. Intell. Berlin
– volume: 54
  start-page: 4237
  year: 2021
  ident: 10.1016/j.chemolab.2024.105295_bib4
  article-title: Metaheuristics: a comprehensive overview and classification along with bibliometric analysis
  publication-title: Artif. Intell. Rev.
  doi: 10.1007/s10462-020-09952-0
SSID ssj0016941
Score 2.461189
Snippet The advancement of science and technology has resulted in large datasets with noisy or redundant features that hamper classification. In feature selection,...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 105295
SubjectTerms Beluga Whale Optimization
Feature selection
Multi-objective optimization
Random forest
Title Multi-objective feature selection algorithm using Beluga Whale Optimization
URI https://dx.doi.org/10.1016/j.chemolab.2024.105295
Volume 257
WOSCitedRecordID wos001383855000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 0169-7439
  databaseCode: AIEXJ
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0016941
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3da9swEBcjHWwvY5-s3Qd-2JvwlshWbD22JaNbWTdYx8JezMmW6oTaDrFT-uf39BHXtIVtjL2Y4GAlvvuhO530-x0h7wx9Ewpz5klLGcZJMQ5FwUQohFRJzkFPU7DNJpKTk3Q-F9_8kaDWthNI6jq9vBSr_-pqvIfONtTZv3B3PyjewM_odLyi2_H6R463lNqwkUs3lVGtrHYnbW3HG3v6-PysWS-6sqIbWyk4UOebM6A_SwwW9CvOIZUnZw4zV6Ms0FSm_5aXdV70Yp4d9VAy-_XtQALdUmo25QpKOms1lK5_FD1GSPbR4EtTQlVBQY-gxe_pLy8EfKDKGqrrgnltthkWLiAsvcKCr1Ywy_52fE1XQrtFo3FVzakIzcpoOC0zJ1x9a4p31Ybl-9y8Nr4ervFZbNoVM9et84Z89nczuBnbHJZlkWHb77CEi3REdvY_zeaf-z0nQ-l1SvDuzwz45Hf_2t2pzCA9OX1MHvl1RbDv8PCE3FP1U_LgcNvO7xk5voGLwOMi6HER9LgILC4Ch4vA4iIY4uI5-fFxdnp4FPpOGmGOy9sujAFiLnmqJ5MoV3mRTADzMszeJExlzHMAwQuVJ1ymEE8LNo4KTAQ1A64j4FJFL8iobmr1kgS6YDkoBXGk0ngcRVJLjUEBF848Aoyvu-TD1ijZygmmZNuThMtsa8bMmDFzZtwlYmu7zKd9Lp3L0OW_eXbvH559RR5eI_Q1GXXrjXpD7ucX3aJdv_XouALY5oWn
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-objective+feature+selection+algorithm+using+Beluga+Whale+Optimization&rft.jtitle=Chemometrics+and+intelligent+laboratory+systems&rft.au=Kouhpah+Esfahani%2C+Kiana&rft.au=Mohammad+Hasani+Zade%2C+Behnam&rft.au=Mansouri%2C+Najme&rft.date=2025-02-15&rft.pub=Elsevier+B.V&rft.issn=0169-7439&rft.volume=257&rft_id=info:doi/10.1016%2Fj.chemolab.2024.105295&rft.externalDocID=S0169743924002351
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0169-7439&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0169-7439&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0169-7439&client=summon