A particle swarm inspired approach for continuous distributed constraint optimization problems

Distributed Constraint Optimization Problems (DCOPs) are a widely studied framework for coordinating interactions in cooperative multi-agent systems. In classical DCOPs, variables owned by agents are assumed to be discrete. However, in many applications, such as target tracking or sleep scheduling i...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Engineering applications of artificial intelligence Ročník 123; s. 106280
Hlavní autori: Choudhury, Moumita, Sarker, Amit, Yaser, Samin, Khan, Md. Maruf Al Alif, Yeoh, William, Khan, Md. Mosaddek
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier Ltd 01.08.2023
Predmet:
ISSN:0952-1976
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Distributed Constraint Optimization Problems (DCOPs) are a widely studied framework for coordinating interactions in cooperative multi-agent systems. In classical DCOPs, variables owned by agents are assumed to be discrete. However, in many applications, such as target tracking or sleep scheduling in sensor networks, continuous-valued variables are more suitable than discrete ones. To better model such applications, researchers have proposed Continuous DCOPs (C-DCOPs), an extension of DCOPs, that can explicitly model problems with continuous variables. The state-of-the-art approaches for solving C-DCOPs experience either onerous memory or computation overhead and are unsuitable for non-differentiable optimization problems. To address this issue, we propose a new C-DCOP algorithm, namely Particle Swarm Optimization Based C-DCOP (PCD), which is inspired by Particle Swarm Optimization (PSO), a well-known centralized population-based approach for solving continuous optimization problems. In recent years, population-based algorithms have gained significant attention in classical DCOPs due to their ability in producing high-quality solutions. Nonetheless, to the best of our knowledge, this class of algorithms has not been utilized to solve C-DCOPs and there has been no work evaluating the potential of PSO in solving classical DCOPs or C-DCOPs. In light of this observation, we adapted PSO, a centralized algorithm, to solve C-DCOPs in a decentralized manner. The resulting PCD algorithm not only produces good-quality solutions but also finds solution without any requirement for derivative calculations. Moreover, we design a crossover operator that can be used by PCD to further improve the quality of solutions found. Finally, we theoretically prove that PCD is an anytime algorithm and empirically evaluate PCD against the state-of-the-art C-DCOP algorithms in a wide variety of benchmarks.
AbstractList Distributed Constraint Optimization Problems (DCOPs) are a widely studied framework for coordinating interactions in cooperative multi-agent systems. In classical DCOPs, variables owned by agents are assumed to be discrete. However, in many applications, such as target tracking or sleep scheduling in sensor networks, continuous-valued variables are more suitable than discrete ones. To better model such applications, researchers have proposed Continuous DCOPs (C-DCOPs), an extension of DCOPs, that can explicitly model problems with continuous variables. The state-of-the-art approaches for solving C-DCOPs experience either onerous memory or computation overhead and are unsuitable for non-differentiable optimization problems. To address this issue, we propose a new C-DCOP algorithm, namely Particle Swarm Optimization Based C-DCOP (PCD), which is inspired by Particle Swarm Optimization (PSO), a well-known centralized population-based approach for solving continuous optimization problems. In recent years, population-based algorithms have gained significant attention in classical DCOPs due to their ability in producing high-quality solutions. Nonetheless, to the best of our knowledge, this class of algorithms has not been utilized to solve C-DCOPs and there has been no work evaluating the potential of PSO in solving classical DCOPs or C-DCOPs. In light of this observation, we adapted PSO, a centralized algorithm, to solve C-DCOPs in a decentralized manner. The resulting PCD algorithm not only produces good-quality solutions but also finds solution without any requirement for derivative calculations. Moreover, we design a crossover operator that can be used by PCD to further improve the quality of solutions found. Finally, we theoretically prove that PCD is an anytime algorithm and empirically evaluate PCD against the state-of-the-art C-DCOP algorithms in a wide variety of benchmarks.
ArticleNumber 106280
Author Khan, Md. Maruf Al Alif
Yeoh, William
Choudhury, Moumita
Yaser, Samin
Sarker, Amit
Khan, Md. Mosaddek
Author_xml – sequence: 1
  givenname: Moumita
  surname: Choudhury
  fullname: Choudhury, Moumita
  email: amchoudhury@cs.umass.edu
  organization: College of Information and Computer Sciences, University of Massachusetts Amherst, Amherst, USA
– sequence: 2
  givenname: Amit
  orcidid: 0000-0001-7883-6594
  surname: Sarker
  fullname: Sarker, Amit
  email: asarker@cics.umass.edu
  organization: College of Information and Computer Sciences, University of Massachusetts Amherst, Amherst, USA
– sequence: 3
  givenname: Samin
  surname: Yaser
  fullname: Yaser, Samin
  email: samin-2017014979@cs.du.ac.bd
  organization: Department of Computer Science and Engineering, University of Dhaka, Science Complex, Dhaka 1000, Bangladesh
– sequence: 4
  givenname: Md. Maruf Al Alif
  surname: Khan
  fullname: Khan, Md. Maruf Al Alif
  email: alif-2017014997@cs.du.ac.bd
  organization: Department of Computer Science and Engineering, University of Dhaka, Science Complex, Dhaka 1000, Bangladesh
– sequence: 5
  givenname: William
  surname: Yeoh
  fullname: Yeoh, William
  email: wyeoh@wustl.edu
  organization: Department of Computer Science and Engineering, Washington University in St. Louis, One Brookings Dr., St. Louis, MO 63130, USA
– sequence: 6
  givenname: Md. Mosaddek
  orcidid: 0000-0002-7871-7111
  surname: Khan
  fullname: Khan, Md. Mosaddek
  email: mosaddek@du.ac.bd
  organization: Department of Computer Science and Engineering, University of Dhaka, Science Complex, Dhaka 1000, Bangladesh
BookMark eNqFkM1OwzAQhH0oEm3hFZBfIMWxm9S5UVX8SZW4wBXLPxvYqrEj2wXB0-OqcOa02tmZ0eqbkYkPHgi5qtmiZnV7vVuAf9PjqHHBGRdFbLlkEzJlXcOrulu152SW0o4xJuSynZLXNR11zGj3QNOnjgNFn0aM4GipiUHbd9qHSG3wGf0hHBJ1mHJEc8jFU-SyaPSZhjHjgN86Y_C0JM0ehnRBznq9T3D5O-fk5e72efNQbZ_uHzfrbWV50-WKc7Ca9aJpJXAtBYBh0NiO85VjjnMB5aYb01jZr2Rvirljpu3MUjvZMyHmpD312hhSitCrMeKg45eqmTqSUTv1R0YdyagTmRK8OQWhfPeBEFWyCN6CKwxsVi7gfxU_BvN3dA
Cites_doi 10.1109/TEVC.2004.826069
10.1609/aaai.v31i1.11125
10.1504/IJWMC.2020.105711
10.3390/math8081355
10.1016/j.eswa.2022.116690
10.24963/ijcai.2020/38
10.1007/s10489-017-0905-4
10.1126/science.286.5439.509
10.1007/s10458-020-09464-9
10.1016/j.procs.2017.11.213
10.1016/j.artint.2017.07.003
10.1016/j.artint.2004.10.004
10.1613/jair.5504
10.1613/jair.2849
10.1016/j.artint.2004.09.003
10.3390/app8122621
10.1016/j.ins.2018.12.086
10.1016/j.artint.2021.103501
10.1007/11600930_71
10.1007/s10458-013-9225-1
10.1016/j.procs.2018.07.036
10.1609/aaai.v32i1.11580
10.1109/TEC.2002.801992
10.1093/comjnl/bxy021
10.1613/jair.1.11400
10.1007/s10898-007-9149-x
ContentType Journal Article
Copyright 2023 Elsevier Ltd
Copyright_xml – notice: 2023 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.engappai.2023.106280
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Computer Science
ExternalDocumentID 10_1016_j_engappai_2023_106280
S0952197623004645
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
29G
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXKI
AAXUO
AAYFN
ABBOA
ABMAC
ABXDB
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFJKZ
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LG9
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
TN5
UHS
WUQ
ZMT
~G-
9DU
AATTM
AAYWO
AAYXX
ABJNI
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
CITATION
EFKBS
EFLBG
~HD
ID FETCH-LOGICAL-c259t-22eca0f3568e2a83eeb0e5c9227d0d223ef35a5b5c8f78fbca090b69b4ad8f033
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000997788700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0952-1976
IngestDate Sat Nov 29 02:18:07 EST 2025
Sat Nov 16 15:56:12 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Population-based algorithms
DCOPs
Distributed problem solving
Multi-agent systems
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c259t-22eca0f3568e2a83eeb0e5c9227d0d223ef35a5b5c8f78fbca090b69b4ad8f033
ORCID 0000-0002-7871-7111
0000-0001-7883-6594
ParticipantIDs crossref_primary_10_1016_j_engappai_2023_106280
elsevier_sciencedirect_doi_10_1016_j_engappai_2023_106280
PublicationCentury 2000
PublicationDate August 2023
2023-08-00
PublicationDateYYYYMMDD 2023-08-01
PublicationDate_xml – month: 08
  year: 2023
  text: August 2023
PublicationDecade 2020
PublicationTitle Engineering applications of artificial intelligence
PublicationYear 2023
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Chen, He, He (b5) 2017; 47
Erdős, Rényi (b13) 1960; 5
Sarker, A., Choudhury, M., Khan, M.M., 2021. A Local Search Based Approach to Solve Continuous DCOPs. In: Proceedings of the 20th International Conference on Autonomous Agents and Multi-Agent Systems. AAMAS, pp. 1127–1135.
Choudhury, Mahmud, Khan (b8) 2020
Mahmud, S., Khan, M.M., Choudhury, M., Tran-Thanh, L., Jennings, N.R., 2020b. Learning Optimal Temperature Region for Solving Mixed Integer Functional DCOPs. In: Proceedings of the 29th International Joint Conference on Artificial Intelligence. IJCAI, pp. 2628–275.
Yedidsion, Zivan (b57) 2016
Zhang, Wang, Xing, Wittenburg (b60) 2005; 161
Eberhart, Kennedy (b11) 1995
Carlisle, Dozier (b4) 2000
Nguyen, Yeoh, Lau, Zivan (b38) 2019; 64
Angeline (b2) 1998
Van den Bergh, Engelbrecht (b50) 2004; 8
Khan, Tran-Thanh, Ramchurn, Jennings (b26) 2018; 61
Chen, Z., Wu, T., Deng, Y., Zhang, C., 2018. An Ant-Based Algorithm to Solve Distributed Constraint Optimization Problems. In: Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence.
van den Bergh, Engelbrecht (b49) 2002
Mahmud, S., Choudhury, M., Khan, M., Tran-Thanh, L., Jennings, N.R., et al., 2020a. AED: An Anytime Evolutionary DCOP Algorithm. In: Proceedings of the 19th International Conference on Autonomous Agents and MultiAgent Systems, 2020.
Khan, Tran-Thanh, Yeoh, Jennings (b27) 2018
Sultanik, E.A., Lass, R.N., Regli, W.C., 2008. DCOPolis: a framework for simulating and deploying distributed constraint reasoning algorithms. In: Proceedings of the 7th International Joint Conference on Autonomous Agents and Multiagent Systems: Demo Papers. pp. 1667–1668.
Van den Bergh, Engelbrecht (b51) 2010; 105
Chen, Liu, He, Yu (b6) 2020; 34
Wei, Li, Jiang, Hu, Hu (b55) 2018; 8
Tassa, Grinshpoun, Yanai (b47) 2021; 297
Voice, T., Stranders, R., Rogers, A., Jennings, N.R., 2010. A Hybrid Continuous Max-Sum Algorithm for Decentralised Coordination. In: Proceedings of the 19th European Conference on Artificial Intelligence. pp. 61–66.
Farinelli, Rogers, Jennings (b15) 2014; 28
Maheswaran, Pearce, Tambe (b32) 2004
Nguyen, D.T., Yeoh, W., Lau, H.C., 2012. Stochastic dominance in stochastic DCOPs for risk-sensitive applications. In: Proceedings of the 11th International Conference on Autonomous Agents and Multiagent Systems. Vol. 1. pp. 257–264.
Hendrikx (b20) 2021
Farinelli, Rogers, Petcu, Jennings (b16) 2008
Jia, Chen, Tianlong, Zhang, Yuan, Lin, Yu, Zhang (b23) 2017; PP
Petcu, A., Faltings, B., 2005. A scalable method for multiagent constraint optimization. In: Proceedings of the 19th International Joint Conference on Artificial Intelligence.
van Leeuwen, C.J., Pawelczak, P., 2017. CoCoA: A non-iterative approach to a local search (A) DCOP solver. In: Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence.
Eberhart, Shi (b12) 2000
Wang, Ran, Guan, Fan, Sun, Wang (b54) 2022; 197
Litov, Meisels (b30) 2017; 252
Modi, Shen, Tambe, Yokoo (b36) 2005; 161
Clerc (b9) 1999
Rashik, Rahman, Khan, Mamun-or Rashid, Tran-Thanh, Jennings (b40) 2020
Hsin, Liu (b22) 2004
Karaboga, Basturk (b24) 2007; 39
Yang, Deb (b56) 2009
Zhang, Zhang, Lok, Lyu (b61) 2007; 185
Lovbjerg, Rasmussen, Krink (b31) 2001
Marinakis, Marinaki, Migdalas (b35) 2019; 481
Shi, Eberhart (b43) 1999
Ever (b14) 2017; 120
Tassa, Grinshpoun, Zivan (b48) 2017; 59
Kogan, Tassa, Grinshpoun (b29) 2022
Ghosh, Karmakar, Sharma, Phadikar (b18) 2019
Dewang, Mohanty, Kundu (b10) 2018; 133
Khireddine, Larbi, Sylia, Gueguen, Lamine (b28) 2020; 18
Fitzpatrick, Meetrens (b17) 2003
Stranders, Farinelli, Rogers, Jennings (b44) 2009
Yu, Gao, Wang, Meng (b59) 2020; 8
Yeoh, Felner, Koenig (b58) 2010; 38
Abido (b1) 2002; 17
Barabási, Albert (b3) 1999; 286
Hao, Wang, Wang (b19) 2022
Hoang, K.D., Yeoh, W., Yokoo, M., Rabinovich, Z., 2020. New Algorithms for Continuous Distributed Constraint Optimization Problems. In: Proceedings of the 19th International Conference on Autonomous Agents and MultiAgent Systems. pp. 502–510.
Shi, Eberhart (b42) 1998
Khan, Tran-Thanh, Jennings (b25) 2018
Sultanik, E., Modi, P.J., Regli, W.C., 2007. On Modeling Multiagent Task Scheduling as a Distributed Constraint Optimization Problem. In: Proceedings of the 20th International Joint Conference on Artificial Intelligence. pp. 1531–1536.
10.1016/j.engappai.2023.106280_b53
10.1016/j.engappai.2023.106280_b7
Stranders (10.1016/j.engappai.2023.106280_b44) 2009
Eberhart (10.1016/j.engappai.2023.106280_b11) 1995
Litov (10.1016/j.engappai.2023.106280_b30) 2017; 252
Modi (10.1016/j.engappai.2023.106280_b36) 2005; 161
Farinelli (10.1016/j.engappai.2023.106280_b16) 2008
Shi (10.1016/j.engappai.2023.106280_b43) 1999
Ghosh (10.1016/j.engappai.2023.106280_b18) 2019
Rashik (10.1016/j.engappai.2023.106280_b40) 2020
Chen (10.1016/j.engappai.2023.106280_b6) 2020; 34
Karaboga (10.1016/j.engappai.2023.106280_b24) 2007; 39
Farinelli (10.1016/j.engappai.2023.106280_b15) 2014; 28
Hao (10.1016/j.engappai.2023.106280_b19) 2022
Van den Bergh (10.1016/j.engappai.2023.106280_b51) 2010; 105
10.1016/j.engappai.2023.106280_b21
Clerc (10.1016/j.engappai.2023.106280_b9) 1999
Barabási (10.1016/j.engappai.2023.106280_b3) 1999; 286
Khan (10.1016/j.engappai.2023.106280_b27) 2018
Marinakis (10.1016/j.engappai.2023.106280_b35) 2019; 481
Jia (10.1016/j.engappai.2023.106280_b23) 2017; PP
Eberhart (10.1016/j.engappai.2023.106280_b12) 2000
Chen (10.1016/j.engappai.2023.106280_b5) 2017; 47
van den Bergh (10.1016/j.engappai.2023.106280_b49) 2002
Khan (10.1016/j.engappai.2023.106280_b26) 2018; 61
Van den Bergh (10.1016/j.engappai.2023.106280_b50) 2004; 8
Lovbjerg (10.1016/j.engappai.2023.106280_b31) 2001
Yedidsion (10.1016/j.engappai.2023.106280_b57) 2016
10.1016/j.engappai.2023.106280_b33
Carlisle (10.1016/j.engappai.2023.106280_b4) 2000
10.1016/j.engappai.2023.106280_b34
10.1016/j.engappai.2023.106280_b37
Yang (10.1016/j.engappai.2023.106280_b56) 2009
Khireddine (10.1016/j.engappai.2023.106280_b28) 2020; 18
10.1016/j.engappai.2023.106280_b39
Hsin (10.1016/j.engappai.2023.106280_b22) 2004
Yeoh (10.1016/j.engappai.2023.106280_b58) 2010; 38
Angeline (10.1016/j.engappai.2023.106280_b2) 1998
Maheswaran (10.1016/j.engappai.2023.106280_b32) 2004
Yu (10.1016/j.engappai.2023.106280_b59) 2020; 8
Abido (10.1016/j.engappai.2023.106280_b1) 2002; 17
Tassa (10.1016/j.engappai.2023.106280_b48) 2017; 59
10.1016/j.engappai.2023.106280_b41
Hendrikx (10.1016/j.engappai.2023.106280_b20) 2021
Wei (10.1016/j.engappai.2023.106280_b55) 2018; 8
10.1016/j.engappai.2023.106280_b45
Nguyen (10.1016/j.engappai.2023.106280_b38) 2019; 64
10.1016/j.engappai.2023.106280_b46
Erdős (10.1016/j.engappai.2023.106280_b13) 1960; 5
Tassa (10.1016/j.engappai.2023.106280_b47) 2021; 297
Wang (10.1016/j.engappai.2023.106280_b54) 2022; 197
Shi (10.1016/j.engappai.2023.106280_b42) 1998
Choudhury (10.1016/j.engappai.2023.106280_b8) 2020
Kogan (10.1016/j.engappai.2023.106280_b29) 2022
Zhang (10.1016/j.engappai.2023.106280_b60) 2005; 161
Zhang (10.1016/j.engappai.2023.106280_b61) 2007; 185
Khan (10.1016/j.engappai.2023.106280_b25) 2018
Dewang (10.1016/j.engappai.2023.106280_b10) 2018; 133
Fitzpatrick (10.1016/j.engappai.2023.106280_b17) 2003
Ever (10.1016/j.engappai.2023.106280_b14) 2017; 120
10.1016/j.engappai.2023.106280_b52
References_xml – year: 2003
  ident: b17
  article-title: Distributed Sensor Networks a Multiagent Perspective, Chapter Distributed Coordination Through Anarchic Optimization
– volume: 18
  start-page: 175
  year: 2020
  ident: b28
  article-title: New strategy for resource allocation using PSO-PFS hybrid
  publication-title: Int. J. Wirel. Mob. Comput.
– start-page: 1595
  year: 2018
  end-page: 1603
  ident: b25
  article-title: A generic domain pruning technique for gdl-based dcop algorithms in cooperative multi-agent systems
  publication-title: Proceedings of the17thInternationalConference on AutonomousAgents and Multi-Agent Systems
– volume: 481
  start-page: 311
  year: 2019
  end-page: 329
  ident: b35
  article-title: A multi-adaptive particle swarm optimization for the vehicle routing problem with time windows
  publication-title: Inform. Sci.
– volume: 105
  start-page: 341
  year: 2010
  end-page: 374
  ident: b51
  article-title: A convergence proof for the particle swarm optimiser
  publication-title: Fund. Inform.
– volume: 8
  year: 2018
  ident: b55
  article-title: Hybrid genetic simulated annealing algorithm for improved flow shop scheduling with makespan criterion
  publication-title: Appl. Sci.
– volume: 133
  start-page: 290
  year: 2018
  end-page: 297
  ident: b10
  article-title: A robust path planning for mobile robot using smart particle swarm optimization
  publication-title: Procedia Comput. Sci.
– year: 2022
  ident: b19
  article-title: A Study of Jamming Resource Allocation Based on a Hyperheuristic Framework
– start-page: 601
  year: 2009
  end-page: 608
  ident: b44
  article-title: Decentralised coordination of continuously valued control parameters using the max-sum algorithm
  publication-title: Proceedings of the 8th International Conference on Autonomous Agents and Multiagent Systems. Vol. 1
– start-page: 429
  year: 2000
  end-page: 434
  ident: b4
  article-title: Adapting particle swarm optimization to dynamic environments
  publication-title: International Conference on Artificial Intelligence. Vol. 1
– start-page: 1357
  year: 2016
  end-page: 1358
  ident: b57
  article-title: Applying DCOP_MST to a team of mobile robots with directional sensing abilities: (Extended Abstract)
  publication-title: Proceedings of the 2016 International Conference on Autonomous Agents & Multiagent Systems
– start-page: 1942
  year: 1995
  end-page: 1948
  ident: b11
  article-title: Particle swarm optimization
  publication-title: Proceedings of the IEEE International Conference on Neural Networks. Vol. 4
– start-page: 6
  year: 2002
  ident: b49
  article-title: A new locally convergent particle swarm optimiser
  publication-title: Proceedings of the IEEE International Conference on Systems, Man and Cybernetics. Vol. 3
– reference: Nguyen, D.T., Yeoh, W., Lau, H.C., 2012. Stochastic dominance in stochastic DCOPs for risk-sensitive applications. In: Proceedings of the 11th International Conference on Autonomous Agents and Multiagent Systems. Vol. 1. pp. 257–264.
– volume: 8
  year: 2020
  ident: b59
  article-title: A hybrid particle swarm optimization algorithm enhanced with nonlinear inertial weight and Gaussian mutation for job shop scheduling problems
  publication-title: Mathematics
– reference: Hoang, K.D., Yeoh, W., Yokoo, M., Rabinovich, Z., 2020. New Algorithms for Continuous Distributed Constraint Optimization Problems. In: Proceedings of the 19th International Conference on Autonomous Agents and MultiAgent Systems. pp. 502–510.
– reference: Sultanik, E., Modi, P.J., Regli, W.C., 2007. On Modeling Multiagent Task Scheduling as a Distributed Constraint Optimization Problem. In: Proceedings of the 20th International Joint Conference on Artificial Intelligence. pp. 1531–1536.
– reference: Mahmud, S., Choudhury, M., Khan, M., Tran-Thanh, L., Jennings, N.R., et al., 2020a. AED: An Anytime Evolutionary DCOP Algorithm. In: Proceedings of the 19th International Conference on Autonomous Agents and MultiAgent Systems, 2020.
– volume: 297
  year: 2021
  ident: b47
  article-title: PC-SyncBB: A privacy preserving collusion secure DCOP algorithm
  publication-title: Artificial Intelligence
– reference: Sultanik, E.A., Lass, R.N., Regli, W.C., 2008. DCOPolis: a framework for simulating and deploying distributed constraint reasoning algorithms. In: Proceedings of the 7th International Joint Conference on Autonomous Agents and Multiagent Systems: Demo Papers. pp. 1667–1668.
– volume: 252
  start-page: 83
  year: 2017
  end-page: 99
  ident: b30
  article-title: Forward bounding on pseudo-trees for DCOPs and ADCOPs
  publication-title: Artificial Intelligence
– year: 2021
  ident: b20
  article-title: Accelerated Methods for Distributed Optimization
– volume: 197
  start-page: 116690
  year: 2022
  ident: b54
  article-title: Collaborative multicenter vehicle routing problem with time windows and mixed deliveries and pickups
  publication-title: Expert Systems with Applications
– start-page: 639
  year: 2008
  end-page: 646
  ident: b16
  article-title: Decentralised coordination of low-power embedded devices using the max-sum algorithm
  publication-title: Proceedings of the 7th International Conference on Autonomous Agents and Multiagent Systems
– reference: Petcu, A., Faltings, B., 2005. A scalable method for multiagent constraint optimization. In: Proceedings of the 19th International Joint Conference on Artificial Intelligence.
– start-page: 1377
  year: 2020
  end-page: 1746
  ident: b40
  article-title: Speeding up distributed pseudo-tree optimization procedures with cross edge consistency to solve DCOPs
  publication-title: Appl. Intell.
– volume: 185
  start-page: 1026
  year: 2007
  end-page: 1037
  ident: b61
  article-title: A hybrid particle swarm optimization–back-propagation algorithm for feedforward neural network training
  publication-title: Appl. Math. Comput.
– reference: Sarker, A., Choudhury, M., Khan, M.M., 2021. A Local Search Based Approach to Solve Continuous DCOPs. In: Proceedings of the 20th International Conference on Autonomous Agents and Multi-Agent Systems. AAMAS, pp. 1127–1135.
– start-page: 69
  year: 1998
  end-page: 73
  ident: b42
  article-title: A modified particle swarm optimizer
  publication-title: 1998 IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence
– volume: 47
  start-page: 607
  year: 2017
  end-page: 623
  ident: b5
  article-title: An improved DPOP algorithm based on breadth first search pseudo-tree for distributed constraint optimization
  publication-title: Appl. Intell.
– volume: 161
  start-page: 149
  year: 2005
  end-page: 180
  ident: b36
  article-title: ADOPT: Asynchronous distributed constraint optimization with quality guarantees
  publication-title: Artificial Intelligence
– volume: 286
  start-page: 509
  year: 1999
  end-page: 512
  ident: b3
  article-title: Emergence of scaling in random networks
  publication-title: Science
– start-page: 7111
  year: 2020
  end-page: 7118
  ident: b8
  article-title: A particle swarm based algorithm for functional distributed constraint optimization problems
  publication-title: AAAI
– start-page: 261
  year: 2019
  end-page: 269
  ident: b18
  article-title: CS-PSO Based Intrusion Detection System in Cloud Environment: Proceedings of IEMIS 2018, Vol. 1
– volume: 34
  start-page: 41
  year: 2020
  ident: b6
  article-title: A genetic algorithm based framework for local search algorithms for distributed constraint optimization problems
  publication-title: Auton. Agents Multi Agent Syst.
– reference: Chen, Z., Wu, T., Deng, Y., Zhang, C., 2018. An Ant-Based Algorithm to Solve Distributed Constraint Optimization Problems. In: Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence.
– reference: Mahmud, S., Khan, M.M., Choudhury, M., Tran-Thanh, L., Jennings, N.R., 2020b. Learning Optimal Temperature Region for Solving Mixed Integer Functional DCOPs. In: Proceedings of the 29th International Joint Conference on Artificial Intelligence. IJCAI, pp. 2628–275.
– volume: 120
  start-page: 83
  year: 2017
  end-page: 90
  ident: b14
  article-title: Using simplified swarm optimization on path planning for intelligent mobile robot
  publication-title: Procedia Comput. Sci.
– start-page: 84
  year: 1998
  end-page: 89
  ident: b2
  article-title: Using selection to improve particle swarm optimization
  publication-title: 1998 IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence
– volume: 61
  start-page: 1639
  year: 2018
  end-page: 1666
  ident: b26
  article-title: Speeding up GDL-based message passing algorithms for large-scale DCOPs
  publication-title: Comput. J.
– start-page: 469
  year: 2001
  end-page: 476
  ident: b31
  article-title: Hybrid particle swarm optimiser with breeding and subpopulations
  publication-title: Proceedings of the Genetic and Evolutionary Computation Conference. Vol. 2001
– start-page: 1945
  year: 1999
  end-page: 1950
  ident: b43
  article-title: Empirical study of particle swarm optimization
  publication-title: Proceedings of the 1999 Congress on Evolutionary Computation-CEC99. Vol. 3
– volume: 161
  start-page: 55
  year: 2005
  end-page: 87
  ident: b60
  article-title: Distributed stochastic search and distributed breakout: properties, comparison and applications to constraint optimization problems in sensor networks
  publication-title: Artificial Intelligence
– volume: PP
  start-page: 1
  year: 2017
  end-page: 15
  ident: b23
  article-title: A dynamic logistic dispatching system with set-based particle swarm optimization
  publication-title: IEEE Trans. Syst. Man Cybern. Syst.
– volume: 17
  start-page: 406
  year: 2002
  end-page: 413
  ident: b1
  article-title: Optimal design of power-system stabilizers using particle swarm optimization
  publication-title: IEEE Trans. Energy Convers.
– volume: 59
  start-page: 311
  year: 2017
  end-page: 349
  ident: b48
  article-title: Privacy preserving implementation of the Max-Sum algorithm and its variants
  publication-title: J. Artificial Intelligence Res.
– start-page: 433
  year: 2004
  end-page: 442
  ident: b22
  article-title: Network coverage using low duty-cycled sensors: random & coordinated sleep algorithms
  publication-title: Proceedings of the 3rd International Symposium on Information Processing in Sensor Networks
– start-page: 432
  year: 2004
  end-page: 439
  ident: b32
  article-title: Distributed algorithms for DCOP: A graphical-game-based approach
  publication-title: ISCA PDCS
– volume: 64
  start-page: 705
  year: 2019
  end-page: 748
  ident: b38
  article-title: Distributed gibbs: A linear-space sampling-based dcop algorithm
  publication-title: J. Artificial Intelligence Res.
– volume: 39
  start-page: 459
  year: 2007
  end-page: 471
  ident: b24
  article-title: A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm
  publication-title: J. Global Optim.
– start-page: 84
  year: 2000
  end-page: 88
  ident: b12
  article-title: Comparing inertia weights and constriction factors in particle swarm optimization
  publication-title: Proceedings of the 2000 Congress on Evolutionary Computation. CEC00. Vol. 1
– start-page: 1951
  year: 1999
  end-page: 1957
  ident: b9
  article-title: The swarm and the queen: towards a deterministic and adaptive particle swarm optimization
  publication-title: Proceedings of the 1999 Congress on Evolutionary Computation-CEC99. Vol. 3
– start-page: 1613
  year: 2018
  end-page: 1621
  ident: b27
  article-title: A near-optimal node-to-agent mapping heuristic for gdl-based dcop algorithms in multi-agent systems
  publication-title: Proceedings of the 17th International Conference on Autonomous Agents and Multi-Agent Systems
– volume: 8
  start-page: 225
  year: 2004
  end-page: 239
  ident: b50
  article-title: A cooperative approach to particle swarm optimization
  publication-title: IEEE Trans. Evol. Comput.
– start-page: 487
  year: 2022
  end-page: 498
  ident: b29
  article-title: Privacy preserving DCOP solving by mediation
  publication-title: Cyber Security, Cryptology, and Machine Learning
– reference: van Leeuwen, C.J., Pawelczak, P., 2017. CoCoA: A non-iterative approach to a local search (A) DCOP solver. In: Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence.
– start-page: 210
  year: 2009
  end-page: 214
  ident: b56
  article-title: Cuckoo search via Lévy flights
  publication-title: 2009 World Congress on Nature & Biologically Inspired Computing
– volume: 38
  start-page: 85
  year: 2010
  end-page: 133
  ident: b58
  article-title: BnB-ADOPT: An asynchronous branch-and-bound DCOP algorithm
  publication-title: J. Artificial Intelligence Res.
– volume: 5
  start-page: 17
  year: 1960
  end-page: 60
  ident: b13
  article-title: On the evolution of random graphs
  publication-title: Publ. Math. Inst. Hung. Acad. Sci
– volume: 28
  start-page: 337
  year: 2014
  end-page: 380
  ident: b15
  article-title: Agent-based decentralised coordination for sensor networks using the max-sum algorithm
  publication-title: Auton. Agents Multi-Agent Syst.
– reference: Voice, T., Stranders, R., Rogers, A., Jennings, N.R., 2010. A Hybrid Continuous Max-Sum Algorithm for Decentralised Coordination. In: Proceedings of the 19th European Conference on Artificial Intelligence. pp. 61–66.
– volume: 5
  start-page: 17
  issue: 1
  year: 1960
  ident: 10.1016/j.engappai.2023.106280_b13
  article-title: On the evolution of random graphs
  publication-title: Publ. Math. Inst. Hung. Acad. Sci
– volume: 8
  start-page: 225
  issue: 3
  year: 2004
  ident: 10.1016/j.engappai.2023.106280_b50
  article-title: A cooperative approach to particle swarm optimization
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2004.826069
– start-page: 1613
  year: 2018
  ident: 10.1016/j.engappai.2023.106280_b27
  article-title: A near-optimal node-to-agent mapping heuristic for gdl-based dcop algorithms in multi-agent systems
– volume: 185
  start-page: 1026
  issue: 2
  year: 2007
  ident: 10.1016/j.engappai.2023.106280_b61
  article-title: A hybrid particle swarm optimization–back-propagation algorithm for feedforward neural network training
  publication-title: Appl. Math. Comput.
– start-page: 1945
  year: 1999
  ident: 10.1016/j.engappai.2023.106280_b43
  article-title: Empirical study of particle swarm optimization
– start-page: 1951
  year: 1999
  ident: 10.1016/j.engappai.2023.106280_b9
  article-title: The swarm and the queen: towards a deterministic and adaptive particle swarm optimization
– year: 2003
  ident: 10.1016/j.engappai.2023.106280_b17
– start-page: 429
  year: 2000
  ident: 10.1016/j.engappai.2023.106280_b4
  article-title: Adapting particle swarm optimization to dynamic environments
– ident: 10.1016/j.engappai.2023.106280_b52
  doi: 10.1609/aaai.v31i1.11125
– volume: 18
  start-page: 175
  year: 2020
  ident: 10.1016/j.engappai.2023.106280_b28
  article-title: New strategy for resource allocation using PSO-PFS hybrid
  publication-title: Int. J. Wirel. Mob. Comput.
  doi: 10.1504/IJWMC.2020.105711
– ident: 10.1016/j.engappai.2023.106280_b53
– volume: 8
  issue: 8
  year: 2020
  ident: 10.1016/j.engappai.2023.106280_b59
  article-title: A hybrid particle swarm optimization algorithm enhanced with nonlinear inertial weight and Gaussian mutation for job shop scheduling problems
  publication-title: Mathematics
  doi: 10.3390/math8081355
– volume: 197
  start-page: 116690
  year: 2022
  ident: 10.1016/j.engappai.2023.106280_b54
  article-title: Collaborative multicenter vehicle routing problem with time windows and mixed deliveries and pickups
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2022.116690
– year: 2021
  ident: 10.1016/j.engappai.2023.106280_b20
– start-page: 601
  year: 2009
  ident: 10.1016/j.engappai.2023.106280_b44
  article-title: Decentralised coordination of continuously valued control parameters using the max-sum algorithm
– year: 2022
  ident: 10.1016/j.engappai.2023.106280_b19
– start-page: 433
  year: 2004
  ident: 10.1016/j.engappai.2023.106280_b22
  article-title: Network coverage using low duty-cycled sensors: random & coordinated sleep algorithms
– ident: 10.1016/j.engappai.2023.106280_b34
  doi: 10.24963/ijcai.2020/38
– volume: 47
  start-page: 607
  issue: 3
  year: 2017
  ident: 10.1016/j.engappai.2023.106280_b5
  article-title: An improved DPOP algorithm based on breadth first search pseudo-tree for distributed constraint optimization
  publication-title: Appl. Intell.
  doi: 10.1007/s10489-017-0905-4
– start-page: 1595
  year: 2018
  ident: 10.1016/j.engappai.2023.106280_b25
  article-title: A generic domain pruning technique for gdl-based dcop algorithms in cooperative multi-agent systems
– volume: 286
  start-page: 509
  issue: 5439
  year: 1999
  ident: 10.1016/j.engappai.2023.106280_b3
  article-title: Emergence of scaling in random networks
  publication-title: Science
  doi: 10.1126/science.286.5439.509
– start-page: 432
  year: 2004
  ident: 10.1016/j.engappai.2023.106280_b32
  article-title: Distributed algorithms for DCOP: A graphical-game-based approach
– start-page: 487
  year: 2022
  ident: 10.1016/j.engappai.2023.106280_b29
  article-title: Privacy preserving DCOP solving by mediation
– start-page: 7111
  year: 2020
  ident: 10.1016/j.engappai.2023.106280_b8
  article-title: A particle swarm based algorithm for functional distributed constraint optimization problems
– start-page: 1942
  year: 1995
  ident: 10.1016/j.engappai.2023.106280_b11
  article-title: Particle swarm optimization
– start-page: 69
  year: 1998
  ident: 10.1016/j.engappai.2023.106280_b42
  article-title: A modified particle swarm optimizer
– ident: 10.1016/j.engappai.2023.106280_b33
– start-page: 1377
  year: 2020
  ident: 10.1016/j.engappai.2023.106280_b40
  article-title: Speeding up distributed pseudo-tree optimization procedures with cross edge consistency to solve DCOPs
  publication-title: Appl. Intell.
– volume: 34
  start-page: 41
  issue: 2
  year: 2020
  ident: 10.1016/j.engappai.2023.106280_b6
  article-title: A genetic algorithm based framework for local search algorithms for distributed constraint optimization problems
  publication-title: Auton. Agents Multi Agent Syst.
  doi: 10.1007/s10458-020-09464-9
– ident: 10.1016/j.engappai.2023.106280_b37
– volume: 120
  start-page: 83
  year: 2017
  ident: 10.1016/j.engappai.2023.106280_b14
  article-title: Using simplified swarm optimization on path planning for intelligent mobile robot
  publication-title: Procedia Comput. Sci.
  doi: 10.1016/j.procs.2017.11.213
– volume: 252
  start-page: 83
  year: 2017
  ident: 10.1016/j.engappai.2023.106280_b30
  article-title: Forward bounding on pseudo-trees for DCOPs and ADCOPs
  publication-title: Artificial Intelligence
  doi: 10.1016/j.artint.2017.07.003
– start-page: 1357
  year: 2016
  ident: 10.1016/j.engappai.2023.106280_b57
  article-title: Applying DCOP_MST to a team of mobile robots with directional sensing abilities: (Extended Abstract)
– ident: 10.1016/j.engappai.2023.106280_b45
– volume: 161
  start-page: 55
  issue: 1–2
  year: 2005
  ident: 10.1016/j.engappai.2023.106280_b60
  article-title: Distributed stochastic search and distributed breakout: properties, comparison and applications to constraint optimization problems in sensor networks
  publication-title: Artificial Intelligence
  doi: 10.1016/j.artint.2004.10.004
– volume: 105
  start-page: 341
  issue: 4
  year: 2010
  ident: 10.1016/j.engappai.2023.106280_b51
  article-title: A convergence proof for the particle swarm optimiser
  publication-title: Fund. Inform.
– ident: 10.1016/j.engappai.2023.106280_b41
– volume: 59
  start-page: 311
  year: 2017
  ident: 10.1016/j.engappai.2023.106280_b48
  article-title: Privacy preserving implementation of the Max-Sum algorithm and its variants
  publication-title: J. Artificial Intelligence Res.
  doi: 10.1613/jair.5504
– start-page: 84
  year: 2000
  ident: 10.1016/j.engappai.2023.106280_b12
  article-title: Comparing inertia weights and constriction factors in particle swarm optimization
– volume: 38
  start-page: 85
  year: 2010
  ident: 10.1016/j.engappai.2023.106280_b58
  article-title: BnB-ADOPT: An asynchronous branch-and-bound DCOP algorithm
  publication-title: J. Artificial Intelligence Res.
  doi: 10.1613/jair.2849
– volume: 161
  start-page: 149
  issue: 1–2
  year: 2005
  ident: 10.1016/j.engappai.2023.106280_b36
  article-title: ADOPT: Asynchronous distributed constraint optimization with quality guarantees
  publication-title: Artificial Intelligence
  doi: 10.1016/j.artint.2004.09.003
– volume: 8
  issue: 12
  year: 2018
  ident: 10.1016/j.engappai.2023.106280_b55
  article-title: Hybrid genetic simulated annealing algorithm for improved flow shop scheduling with makespan criterion
  publication-title: Appl. Sci.
  doi: 10.3390/app8122621
– start-page: 469
  year: 2001
  ident: 10.1016/j.engappai.2023.106280_b31
  article-title: Hybrid particle swarm optimiser with breeding and subpopulations
– volume: 481
  start-page: 311
  year: 2019
  ident: 10.1016/j.engappai.2023.106280_b35
  article-title: A multi-adaptive particle swarm optimization for the vehicle routing problem with time windows
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2018.12.086
– start-page: 6
  year: 2002
  ident: 10.1016/j.engappai.2023.106280_b49
  article-title: A new locally convergent particle swarm optimiser
– start-page: 84
  year: 1998
  ident: 10.1016/j.engappai.2023.106280_b2
  article-title: Using selection to improve particle swarm optimization
– volume: 297
  year: 2021
  ident: 10.1016/j.engappai.2023.106280_b47
  article-title: PC-SyncBB: A privacy preserving collusion secure DCOP algorithm
  publication-title: Artificial Intelligence
  doi: 10.1016/j.artint.2021.103501
– ident: 10.1016/j.engappai.2023.106280_b21
– ident: 10.1016/j.engappai.2023.106280_b46
– start-page: 210
  year: 2009
  ident: 10.1016/j.engappai.2023.106280_b56
  article-title: Cuckoo search via Lévy flights
– start-page: 261
  year: 2019
  ident: 10.1016/j.engappai.2023.106280_b18
– ident: 10.1016/j.engappai.2023.106280_b39
  doi: 10.1007/11600930_71
– volume: 28
  start-page: 337
  issue: 3
  year: 2014
  ident: 10.1016/j.engappai.2023.106280_b15
  article-title: Agent-based decentralised coordination for sensor networks using the max-sum algorithm
  publication-title: Auton. Agents Multi-Agent Syst.
  doi: 10.1007/s10458-013-9225-1
– volume: 133
  start-page: 290
  year: 2018
  ident: 10.1016/j.engappai.2023.106280_b10
  article-title: A robust path planning for mobile robot using smart particle swarm optimization
  publication-title: Procedia Comput. Sci.
  doi: 10.1016/j.procs.2018.07.036
– ident: 10.1016/j.engappai.2023.106280_b7
  doi: 10.1609/aaai.v32i1.11580
– volume: 17
  start-page: 406
  issue: 3
  year: 2002
  ident: 10.1016/j.engappai.2023.106280_b1
  article-title: Optimal design of power-system stabilizers using particle swarm optimization
  publication-title: IEEE Trans. Energy Convers.
  doi: 10.1109/TEC.2002.801992
– volume: PP
  start-page: 1
  year: 2017
  ident: 10.1016/j.engappai.2023.106280_b23
  article-title: A dynamic logistic dispatching system with set-based particle swarm optimization
  publication-title: IEEE Trans. Syst. Man Cybern. Syst.
– volume: 61
  start-page: 1639
  issue: 11
  year: 2018
  ident: 10.1016/j.engappai.2023.106280_b26
  article-title: Speeding up GDL-based message passing algorithms for large-scale DCOPs
  publication-title: Comput. J.
  doi: 10.1093/comjnl/bxy021
– start-page: 639
  year: 2008
  ident: 10.1016/j.engappai.2023.106280_b16
  article-title: Decentralised coordination of low-power embedded devices using the max-sum algorithm
– volume: 64
  start-page: 705
  year: 2019
  ident: 10.1016/j.engappai.2023.106280_b38
  article-title: Distributed gibbs: A linear-space sampling-based dcop algorithm
  publication-title: J. Artificial Intelligence Res.
  doi: 10.1613/jair.1.11400
– volume: 39
  start-page: 459
  issue: 3
  year: 2007
  ident: 10.1016/j.engappai.2023.106280_b24
  article-title: A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm
  publication-title: J. Global Optim.
  doi: 10.1007/s10898-007-9149-x
SSID ssj0003846
Score 2.3824503
Snippet Distributed Constraint Optimization Problems (DCOPs) are a widely studied framework for coordinating interactions in cooperative multi-agent systems. In...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 106280
SubjectTerms DCOPs
Distributed problem solving
Multi-agent systems
Population-based algorithms
Title A particle swarm inspired approach for continuous distributed constraint optimization problems
URI https://dx.doi.org/10.1016/j.engappai.2023.106280
Volume 123
WOSCitedRecordID wos000997788700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 0952-1976
  databaseCode: AIEXJ
  dateStart: 19950201
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0003846
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfKxsNegAET40t-4K1KCXY-7McKDbFJm5C2SX0i8ldYpjWt2mbsb-Cv5hzbSWCTAE28RNW1cVrfr-fz-Xd3CL2T4LMSAf-0XNAsSmRCI1FSElGT5VzEiZZctc0m8pMTNpvxL6PRj5ALc32V1zW7ueHL_6pqkIGybersP6i7GxQE8BqUDldQO1z_SvHT8dJLx-vvYjW3dPNlZWnmoX54Sy20HPWqbiwDVtviubbvlbEpbrakrKgsQwCsydynaY5945n1L5H8vpbheHgQ3nILVi0JqW0JMqj62bMJFo2-8Gf4x4tmXm269eHUMoZcj20Qd2YJllvXI0zMq546cOECuMd6YtOOGnCrAXJXVTmMZhDacel8iC2k2fScJherJNEH7hrFdGbb5SnfWgJcNOJyYupv8NNFNbGPAXFGXMuo38prn9rB7diEumPeB2ib5CkHI789PTyYHXXrOmUu7St8mUG--d1Pu9vVGbgvZ0_QI7_vwFOHjF00MvVT9NjvQbC38GsQhTYfQfYMfZ3igCjcIgoHROGAKAyIwj2i8ABRuEcUHiIKB0Q9R-efDs4-fo58W45IwV55ExFilIhLmmbMEMGoMTI2qeKE5DrW4G4aeE-kMlWszFkp4cM8lhmXidCsjCndQ1v1ojYvEGaJjLUWQilCEykZZ7C_1yUrlRBgRdJ99D7MYLF01VeKQEu8LMKcF3bOCzfn-4iHiS68D-l8wwLw8Yd7X97j3ldop4fza7S1WTXmDXqorjfVevXWQ-kngaeixQ
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+particle+swarm+inspired+approach+for+continuous+distributed+constraint+optimization+problems&rft.jtitle=Engineering+applications+of+artificial+intelligence&rft.au=Choudhury%2C+Moumita&rft.au=Sarker%2C+Amit&rft.au=Yaser%2C+Samin&rft.au=Khan%2C+Md.+Maruf+Al+Alif&rft.date=2023-08-01&rft.pub=Elsevier+Ltd&rft.issn=0952-1976&rft.volume=123&rft_id=info:doi/10.1016%2Fj.engappai.2023.106280&rft.externalDocID=S0952197623004645
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0952-1976&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0952-1976&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0952-1976&client=summon