Enhancing grid stability with machine learning: A smart predictive approach to residential energy management

This research focuses on enhancing energy efficiency and grid stability in residential buildings by developing and evaluating advanced demand response (DR) strategies, explicitly comparing a Rule-Based model with a Predictive model leveraging machine learning. The Predictive Model utilised a neural...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energy and buildings Jg. 338; S. 115729
Hauptverfasser: Olawumi, Mattew A., Oladapo, B.I.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier B.V 01.07.2025
Schlagworte:
ISSN:0378-7788
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract This research focuses on enhancing energy efficiency and grid stability in residential buildings by developing and evaluating advanced demand response (DR) strategies, explicitly comparing a Rule-Based model with a Predictive model leveraging machine learning. The Predictive Model utilised a neural network with ReLU activation functions, optimised using grid search and cross-validation, and incorporated real-time data from smart meters and environmental sensors. Evaluation metrics demonstrated that the Predictive Model outperformed the Rule-Based Model, achieving a 15% reduction in electricity costs, a 20% improvement in energy efficiency, and a 15% reduction in peak load demands while maintaining a high predictive accuracy of 0.95%. However, these benefits came with increased computational complexity and resource requirements. The Rule-Based Model, while more straightforward and less resource-intensive, was less effective in dynamic environments. This study underscores the potential of integrating machine learning with real-time data for optimising residential energy management, offering significant cost savings and contributing to sustainable energy practices. The findings suggest that, despite higher computational demands, the Predictive Model provides superior adaptability and accuracy, making it a valuable tool for future smart grid applications.
AbstractList This research focuses on enhancing energy efficiency and grid stability in residential buildings by developing and evaluating advanced demand response (DR) strategies, explicitly comparing a Rule-Based model with a Predictive model leveraging machine learning. The Predictive Model utilised a neural network with ReLU activation functions, optimised using grid search and cross-validation, and incorporated real-time data from smart meters and environmental sensors. Evaluation metrics demonstrated that the Predictive Model outperformed the Rule-Based Model, achieving a 15% reduction in electricity costs, a 20% improvement in energy efficiency, and a 15% reduction in peak load demands while maintaining a high predictive accuracy of 0.95%. However, these benefits came with increased computational complexity and resource requirements. The Rule-Based Model, while more straightforward and less resource-intensive, was less effective in dynamic environments. This study underscores the potential of integrating machine learning with real-time data for optimising residential energy management, offering significant cost savings and contributing to sustainable energy practices. The findings suggest that, despite higher computational demands, the Predictive Model provides superior adaptability and accuracy, making it a valuable tool for future smart grid applications.
ArticleNumber 115729
Author Olawumi, Mattew A.
Oladapo, B.I.
Author_xml – sequence: 1
  givenname: Mattew A.
  surname: Olawumi
  fullname: Olawumi, Mattew A.
  email: olawumisola13@gmail.com
  organization: School of Engineering and Sustainable Development, De Montfort University, Leicester, United Kingdom
– sequence: 2
  givenname: B.I.
  surname: Oladapo
  fullname: Oladapo, B.I.
  organization: School of Engineering and Sustainable Development, De Montfort University, Leicester, United Kingdom
BookMark eNqFkM1qwzAQhHVIoUnaRyjoBZxKsmXZvZRQ0h8I9NKexUraJAqObCQ1JW9fh-Te08IwM8x-MzIJfUBCHjhbcMbrx_0Cg_nxnVsIJuSCc6lEOyFTVqqmUKppbskspT1jrJaKT0m3CjsI1oct3UbvaMpgfOfzif76vKMHsDsfkHYIMYymJ7qk6QAx0yGi8zb7I1IYhtiPRpp7GjF5hyF76CgGjNvT2BFgi4dRvCM3G-gS3l_vnHy_rr5e3ov159vHy3JdWCHbXAhWl2AaIVrXluBgA1hJrJxp2kpJB2BKJ00pNsIo1lbQyoqrukEOTpna2HJO5KXXxj6liBs9RD-uPmnO9BmT3usrJn3GpC-YxtzzJYfjuKPHqJP1GOz4aUSbtev9Pw1_1KN6Ww
Cites_doi 10.1016/j.energy.2024.133580
10.1016/B978-0-443-15806-3.00001-2
10.1016/B978-0-443-21524-7.00004-9
10.1016/j.asoc.2024.112445
10.1109/JSAC.2019.2951972
10.1109/TPWRS.2022.3155750
10.1109/TIE.2023.3301550
10.2139/ssrn.4716389
10.3390/su16135454
10.1016/j.segan.2025.101628
10.1016/j.scitotenv.2023.165046
10.1016/j.wmb.2024.08.006
10.1016/j.energy.2024.131802
10.1109/TII.2023.3348823
10.1109/JESTIE.2023.3343291
10.1126/sciadv.abj6734
10.1016/j.scs.2024.105510
10.1016/j.egyr.2024.06.065
10.1016/j.enconman.2021.115154
10.3390/polym10050538
10.1126/science.aaa8415
10.1016/j.rser.2022.112128
10.1109/TSG.2024.3446873
10.1016/j.cie.2024.110253
10.1109/TII.2019.2901306
10.1016/j.segan.2023.101004
10.47852/bonviewJDSIS42022111
10.1016/j.segan.2024.101452
10.3390/biomimetics9080490
10.1109/TIE.2024.3453934
10.1109/TIE.2024.3436629
10.1109/TSG.2024.3426997
10.1109/TPEL.2024.3451403
10.1016/j.epsr.2025.111551
10.1016/j.energy.2023.128256
10.3390/su16020698
10.1109/TIE.2022.3229375
ContentType Journal Article
Copyright 2025 The Author(s)
Copyright_xml – notice: 2025 The Author(s)
DBID AAYXX
CITATION
DOI 10.1016/j.enbuild.2025.115729
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
ExternalDocumentID 10_1016_j_enbuild_2025_115729
S0378778825004591
GroupedDBID --M
-~X
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AAEDT
AAEDW
AAHCO
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AATTM
AAXKI
AAXUO
AAYWO
ABFYP
ABJNI
ABLST
ABMAC
ACDAQ
ACGFS
ACIWK
ACRLP
ACVFH
ADBBV
ADCNI
ADEZE
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFPUW
AFRAH
AFTJW
AFXIZ
AGCQF
AGHFR
AGRNS
AGUBO
AGYEJ
AHEUO
AHHHB
AHIDL
AHJVU
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AKBMS
AKIFW
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
AXJTR
BELTK
BJAXD
BKOJK
BLECG
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
JJJVA
KCYFY
KOM
LY6
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
SDF
SDG
SES
SEW
SPC
SPCBC
SSH
SSJ
SSR
SST
SSZ
T5K
~02
~G-
--K
29G
9DU
AAQXK
AAYXX
ABFNM
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ADMUD
ADNMO
AGQPQ
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EFLBG
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
RPZ
SAC
SET
WUQ
ZMT
ZY4
~HD
ID FETCH-LOGICAL-c259t-2063ab8229d93adafae45e4db89475daab3d5b32f2b7094a9541768e1ad7b6bc3
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001470303400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0378-7788
IngestDate Sat Nov 29 07:49:01 EST 2025
Sat Jun 07 17:01:04 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Demand response
Energy efficiency
Grid stability
Predictive algorithms
Machine learning
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c259t-2063ab8229d93adafae45e4db89475daab3d5b32f2b7094a9541768e1ad7b6bc3
ParticipantIDs crossref_primary_10_1016_j_enbuild_2025_115729
elsevier_sciencedirect_doi_10_1016_j_enbuild_2025_115729
PublicationCentury 2000
PublicationDate 2025-07-01
2025-07-00
PublicationDateYYYYMMDD 2025-07-01
PublicationDate_xml – month: 07
  year: 2025
  text: 2025-07-01
  day: 01
PublicationDecade 2020
PublicationTitle Energy and buildings
PublicationYear 2025
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References A. Balal, Sustainable solar-powered EV charging system design using machine learning, DC fast charging, and an intelligent DMPPT optimization technique
Al-Othman (b0165) 2022; 253
Xia, Y., Huang, Y., & Fang, J. (2025). A generalized Nash-in-Nash bargaining solution to allocating energy loss and network usage cost of buildings in peer-to-peer trading market. Sustainable Energy, Grids and Networks, 42, 101628. doi
Duan, Zhao, Hu (b0100) 2023; 34
Ma, Yang, Liu (b0170) 2020; 38
Zhang, Yue, Dou, Hancke (b0155) 2023; 38
O. Smith, O. Cattell, E. Farcot, R. D. O'Dea, K. I. Hopcraft, The effect of renewable energy incorporation on power grid stability and resilience
Li, Zhou, Zhou, Niu, Deng (b0195) 2025; 72
pp. 105510–105510, 2024, 10.1016/j.scs.2024.105510.
Adila El Maghraoui, Hicham El Hadraoui, Younes Ledmaoui, Nabil El Bazi, Nasr Guennouni, A. Chebak, Revolutionising smart grid-ready management systems: a holistic framework for optimal grid reliability
Zheng, Liang, Li, Li, Wu (b0050) 2024; 20
2 (2), 65–78, 2024, 10.47852/bonviewjdsis42022111.
pp. 69–86, 2024, 10.1016/b978-0-443-21524-7.00004-9.
Dorokhova (b0175) 2021
M. Li, N. Mour, L. Smith, Machine learning based on reinforcement learning for smart grids: predictive analytics in renewable energy management
Kaledio (b0130) 2024
Yang, M., Li, X., Fan, F., Wang, B., Su, X.,... Ma, C. (2024). Two-stage day-ahead multi-step prediction of wind power considering time-series information interaction. Energy, 312, 133580. doi
Gallegos, Arévalo, Montaleza, Jurado (b0110) 2024; 16
.
Hui, Bao, Ding, Meinrenken (b0040) 2025; 16
Jahangiri, Miri, Yi, McPherson (b0120) 2024; 12
Jordan, Mitchell (b0220) 2020; 349
M.A. Olawumi, AI-driven data analysis of quantifying environmental impact and efficiency of shape memory polymers
R. Passos de Oliveira Santos, P. Fernanda Rossi, L. Ramos, E. Frollini, Renewable resources and a recycled polymer as raw materials: mats from electrospinning of lignocellulosic biomass and PET solutions
M. Khalid, Energy 4.0: AI-enabled digital transformation for sustainable power networks
pp. 101452–101452, 2024, 10.1016/j.segan.2024.101452.
Singh, Seshu Kumar, Bajaj, Khadse, Zaitsev (b0070) 2024; 14
Shahzad Elżbieta Jasińska (b0025) 2024; 16
Oladapo, Bowoto, Adebiyi, Ikumapayi (b0190) 2023; 894
pp. 3–30, 2024, https://doi.org/10.1016/b978-0-443-15806-3.00001-2.
Nuran Cihangir Martin, T. M. Vazquez, S. Liverani, A. Gianelli, Big data integration for the digitalisation and decarbonisation of distribution grids
Rong, Hu, Yu, Wang, Cao, Xin (b0010) 2025; 72
Rong, Hu, Wang, Li, Yu, Wang, Cao (b0035) 2024; 39
10 (5), 538, 2018, doi: https://doi.org/10.3390/polym10050538.
M. Ali, M. Khalid, Muhammad Majid Gulzar, Transforming the grid: AI, ML, renewable, storage, EVs, and prosumers
pp. 110253–110253, 2024, doi: https://doi.org/10.1016/j.cie.2024.110253.
Yang, M., Che, R., Yu, X., & Su, X. (2024). Dual NWP wind speed correction based on trend fusion and fluctuation clustering and its application in short-term wind power prediction. Energy, 302, 131802. doi
Ma, Yu, Yang, Yang (b0215) 2019; 15
2023. https://hdl.handle.net/2346/97280 (accessed Aug. 22, 2024).
M. Khaleel, E. Yaghoubi, E. Yaghoubi, M. Z. Jahromi, The role of mechanical energy storage systems based on artificial intelligence techniques in future sustainable energy systems
8 (9), 2022, doi: https://doi.org/10.1126/sciadv.abj6734.
Olawumi (b0210) 2024; 2
Zhao, Zong, Zhou, Yao, Sun, Zhou, Wen (b0080) 2025; 11
Yuqi, An, Lu, Ping, Xiaomei (b0125) 2025; 244
Zhang, Cai, Xie, Zhou, Zheng, Wu, Wen (b0065) 2025; 16
Zhang, Feng, Zhou, Zang, Wang, Shi, Li (b0205) 2023; 70
Aug. 14, 2024. https://doi.org/10.3390/biomimetics9080490.
Ahmad, Madonski, Zhang, Huang, Mujeeb (b0005) May 2022; 160
Peng, Liu, Li, Jain, Vinnikov (b0060) 2024; 5
Lin, L., Liu, J., Huang, N., Li, S., & Zhang, Y. (2024). Multiscale spatio-temporal feature fusion based non-intrusive appliance load monitoring for multiple industrial industries. Applied Soft Computing, 167, 112445. doi
Sofian, Lim, Munawaroh, Ma, Chew, Show (b0030) 2024
pp. 01-31, 2023, Available: https://ijees.org/index.php/ijees/article/view/65.
Alireza Bigdeli, M. Delshad, The evolving landscape of oil and gas chemicals: convergence of artificial intelligence, and chemical enhanced oil recovery in the energy transition towards sustainable energy systems and net-zero emissions
Elsisi, Amer, Dababat, Su (b0095) 2023; 281
Zhang, Li, Kong, Zhou, Shi, Zang, Wang (b0185) 2024; 71
Zhao (10.1016/j.enbuild.2025.115729_b0080) 2025; 11
10.1016/j.enbuild.2025.115729_b0115
10.1016/j.enbuild.2025.115729_b0015
Zhang (10.1016/j.enbuild.2025.115729_b0185) 2024; 71
10.1016/j.enbuild.2025.115729_b0055
10.1016/j.enbuild.2025.115729_b0135
Ma (10.1016/j.enbuild.2025.115729_b0170) 2020; 38
Zhang (10.1016/j.enbuild.2025.115729_b0155) 2023; 38
Rong (10.1016/j.enbuild.2025.115729_b0010) 2025; 72
10.1016/j.enbuild.2025.115729_b0090
Olawumi (10.1016/j.enbuild.2025.115729_b0210) 2024; 2
10.1016/j.enbuild.2025.115729_b0150
Jordan (10.1016/j.enbuild.2025.115729_b0220) 2020; 349
Kaledio (10.1016/j.enbuild.2025.115729_b0130) 2024
10.1016/j.enbuild.2025.115729_b0075
Ma (10.1016/j.enbuild.2025.115729_b0215) 2019; 15
Duan (10.1016/j.enbuild.2025.115729_b0100) 2023; 34
Dorokhova (10.1016/j.enbuild.2025.115729_b0175) 2021
Jahangiri (10.1016/j.enbuild.2025.115729_b0120) 2024; 12
Al-Othman (10.1016/j.enbuild.2025.115729_b0165) 2022; 253
10.1016/j.enbuild.2025.115729_b0105
10.1016/j.enbuild.2025.115729_b0045
Zhang (10.1016/j.enbuild.2025.115729_b0065) 2025; 16
Sofian (10.1016/j.enbuild.2025.115729_b0030) 2024
Zheng (10.1016/j.enbuild.2025.115729_b0050) 2024; 20
Gallegos (10.1016/j.enbuild.2025.115729_b0110) 2024; 16
10.1016/j.enbuild.2025.115729_b0145
10.1016/j.enbuild.2025.115729_b0200
Oladapo (10.1016/j.enbuild.2025.115729_b0190) 2023; 894
Singh (10.1016/j.enbuild.2025.115729_b0070) 2024; 14
Zhang (10.1016/j.enbuild.2025.115729_b0205) 2023; 70
Li (10.1016/j.enbuild.2025.115729_b0195) 2025; 72
Rong (10.1016/j.enbuild.2025.115729_b0035) 2024; 39
Shahzad Elżbieta Jasińska (10.1016/j.enbuild.2025.115729_b0025) 2024; 16
Elsisi (10.1016/j.enbuild.2025.115729_b0095) 2023; 281
Hui (10.1016/j.enbuild.2025.115729_b0040) 2025; 16
Peng (10.1016/j.enbuild.2025.115729_b0060) 2024; 5
10.1016/j.enbuild.2025.115729_b0085
10.1016/j.enbuild.2025.115729_b0140
Ahmad (10.1016/j.enbuild.2025.115729_b0005) 2022; 160
10.1016/j.enbuild.2025.115729_b0020
10.1016/j.enbuild.2025.115729_b0180
10.1016/j.enbuild.2025.115729_b0160
Yuqi (10.1016/j.enbuild.2025.115729_b0125) 2025; 244
References_xml – reference: , pp. 69–86, 2024, 10.1016/b978-0-443-21524-7.00004-9.
– volume: 16
  start-page: 463
  year: 2025
  end-page: 477
  ident: b0040
  article-title: Incorporating Multi-Energy Industrial Parks Into Power System Operations: A High-Dimensional Flexible Region Method
  publication-title: IEEE Transactions on Smart Grid
– volume: 16
  start-page: 194
  year: 2025
  end-page: 208
  ident: b0065
  article-title: Supply Resilience Constrained Scheduling of MEGs for Distribution System Restoration: A Stochastic Model and FW-PH Algorithm
  publication-title: IEEE Transactions on Smart Grid
– volume: 894
  year: 2023
  ident: b0190
  article-title: Net zero on 3D printing filament recycling: a sustainable analysis
– reference: , 2 (2), 65–78, 2024, 10.47852/bonviewjdsis42022111.
– volume: 38
  start-page: 48
  year: 2020
  end-page: 60
  ident: b0170
  article-title: Relaying-Assisted Communications for Demand Response in Smart Grid: Cost Modeling, Game Strategies, and Algorithms
  publication-title: IEEE Journal on Selected Areas in Communications
– reference: M. Ali, M. Khalid, Muhammad Majid Gulzar, Transforming the grid: AI, ML, renewable, storage, EVs, and prosumers,
– reference: Yang, M., Che, R., Yu, X., & Su, X. (2024). Dual NWP wind speed correction based on trend fusion and fluctuation clustering and its application in short-term wind power prediction. Energy, 302, 131802. doi:
– reference: Nuran Cihangir Martin, T. M. Vazquez, S. Liverani, A. Gianelli, Big data integration for the digitalisation and decarbonisation of distribution grids,
– reference: , pp. 110253–110253, 2024, doi: https://doi.org/10.1016/j.cie.2024.110253.
– volume: 71
  start-page: 6568
  year: 2024
  end-page: 6578
  ident: b0185
  article-title: A Novel Multiple-Medium-AC-Port Power Electronic Transformer
  publication-title: IEEE Transactions on Industrial Electronics
– volume: 38
  start-page: 488
  year: 2023
  end-page: 498
  ident: b0155
  article-title: PBI Based Multi-Objective Optimization via Deep Reinforcement Elite Learning Strategy for Micro-Grid Dispatch With Frequency Dynamics
  publication-title: IEEE Transactions on Power Systems
– volume: 244
  start-page: 111551
  year: 2025
  ident: b0125
  article-title: Short-term load forecasting based on temporal importance analysis and feature extraction
  publication-title: Electric Power Systems Research
– reference: , Aug. 14, 2024. https://doi.org/10.3390/biomimetics9080490.
– volume: 72
  start-page: 2644
  year: 2025
  end-page: 2654
  ident: b0010
  article-title: Virtual External Perturbance-Based Impedance Measurement of Grid-Connected Converter
  publication-title: IEEE Transactions on Industrial Electronics
– reference: , pp. 01-31, 2023, Available: https://ijees.org/index.php/ijees/article/view/65.
– volume: 70
  start-page: 10811
  year: 2023
  end-page: 10821
  ident: b0205
  article-title: Series-Shunt Multiport Soft Normally Open Points
  publication-title: IEEE Transactions on Industrial Electronics
– reference: Alireza Bigdeli, M. Delshad, The evolving landscape of oil and gas chemicals: convergence of artificial intelligence, and chemical enhanced oil recovery in the energy transition towards sustainable energy systems and net-zero emissions,
– reference: M. Khaleel, E. Yaghoubi, E. Yaghoubi, M. Z. Jahromi, The role of mechanical energy storage systems based on artificial intelligence techniques in future sustainable energy systems,
– reference: Adila El Maghraoui, Hicham El Hadraoui, Younes Ledmaoui, Nabil El Bazi, Nasr Guennouni, A. Chebak, Revolutionising smart grid-ready management systems: a holistic framework for optimal grid reliability,
– volume: 34
  start-page: 101004
  year: 2023
  ident: b0100
  article-title: An initialization-free distributed algorithm for dynamic economic dispatch problems in microgrid: Modeling, optimization and analysis
  publication-title: Sustainable Energy, Grids and Networks
– reference: M. Li, N. Mour, L. Smith, Machine learning based on reinforcement learning for smart grids: predictive analytics in renewable energy management,
– volume: 72
  start-page: 3768
  year: 2025
  end-page: 3777
  ident: b0195
  article-title: A Reduced Current Ripple Overmodulation Strategy for Indirect Matrix Converter
  publication-title: IEEE Transactions on Industrial Electronics
– year: 2024
  ident: b0030
  article-title: Machine learning and the renewable energy revolution: exploring solar and wind energy solutions for a sustainable future including innovations in energy storage
– volume: 2
  start-page: 266
  year: 2024
  end-page: 274
  ident: b0210
  article-title: Revolutionising waste management with the impact of Long Short-Term Memory networks on recycling rate predictions
– reference: , pp. 105510–105510, 2024, 10.1016/j.scs.2024.105510.
– reference: O. Smith, O. Cattell, E. Farcot, R. D. O'Dea, K. I. Hopcraft, The effect of renewable energy incorporation on power grid stability and resilience,
– volume: 11
  start-page: 65
  year: 2025
  end-page: 77
  ident: b0080
  article-title: Frequency-Voltage Active Support Strategy for Hybrid Wind Farms Based on Grid-Following and Grid-Forming Hierarchical Subgroup Control
  publication-title: CSEE Journal of Power and Energy Systems
– reference: A. Balal, Sustainable solar-powered EV charging system design using machine learning, DC fast charging, and an intelligent DMPPT optimization technique,
– volume: 5
  start-page: 8
  year: 2024
  end-page: 26
  ident: b0060
  article-title: Envisioning the future renewable and resilient energy grids—a power grid revolution enabled by renewables, energy storage, and energy electronics
– volume: 281
  year: 2023
  ident: b0095
  article-title: A comprehensive review of machine learning and IoT solutions for demand side energy management, conservation, and resilient operation
  publication-title: Energy
– volume: 39
  start-page: 15457
  year: 2024
  end-page: 15461
  ident: b0035
  article-title: Asymmetric Sampling Disturbance-Based Universal Impedance Measurement Method for Converters
  publication-title: IEEE Transactions on Power Electronics
– reference: , 10 (5), 538, 2018, doi: https://doi.org/10.3390/polym10050538.
– reference: , 8 (9), 2022, doi: https://doi.org/10.1126/sciadv.abj6734.
– reference: M.A. Olawumi, AI-driven data analysis of quantifying environmental impact and efficiency of shape memory polymers,
– reference: , pp. 101452–101452, 2024, 10.1016/j.segan.2024.101452.
– reference: , 2023. https://hdl.handle.net/2346/97280 (accessed Aug. 22, 2024).
– reference: M. Khalid, Energy 4.0: AI-enabled digital transformation for sustainable power networks,
– year: 2021
  ident: b0175
  article-title: The digitalisation of energy systems: towards higher energy efficiency
– year: 2024
  ident: b0130
  article-title: Machine learning applications in electric power systems: enhancing efficiency, reliability, and sustainability
  publication-title: SSRN Electr. J.
– reference: R. Passos de Oliveira Santos, P. Fernanda Rossi, L. Ramos, E. Frollini, Renewable resources and a recycled polymer as raw materials: mats from electrospinning of lignocellulosic biomass and PET solutions,
– volume: 349
  start-page: 255
  year: 2020
  end-page: 260
  ident: b0220
  article-title: Machine learning: trends, perspectives, and prospects
– volume: 16
  start-page: 5454
  year: 2024
  ident: b0025
  article-title: Renewable revolution: a review of strategic flexibility in future power systems
  publication-title: Sustainability
– volume: 15
  start-page: 4742
  year: 2019
  end-page: 4752
  ident: b0215
  article-title: Demand-Side Energy Management Considering Price Oscillations for Residential Building Heating and Ventilation Systems
  publication-title: IEEE Transactions on Industrial Informatics
– reference: Yang, M., Li, X., Fan, F., Wang, B., Su, X.,... Ma, C. (2024). Two-stage day-ahead multi-step prediction of wind power considering time-series information interaction. Energy, 312, 133580. doi:
– volume: 12
  start-page: 942
  year: 2024
  end-page: 954
  ident: b0120
  article-title: Machine learning-based uncertainty analysis in power system planning: insights and pathways for decarbonisation
  publication-title: Energy Reports
– reference: .
– volume: 14
  year: 2024
  ident: b0070
  article-title: Machine learning-based energy management and power forecasting in grid-connected microgrids with multiple distributed energy sources
– volume: 20
  start-page: 6582
  year: 2024
  end-page: 6590
  ident: b0050
  article-title: Multi-Agent Reinforcement Learning With Privacy Preservation for Continuous Double Auction-Based P2P Energy Trading
  publication-title: IEEE Transactions on Industrial Informatics
– volume: 16
  start-page: 698
  year: 2024
  ident: b0110
  article-title: Sustainable electrification—advances and challenges in electrical-distribution networks: a review
– reference: Xia, Y., Huang, Y., & Fang, J. (2025). A generalized Nash-in-Nash bargaining solution to allocating energy loss and network usage cost of buildings in peer-to-peer trading market. Sustainable Energy, Grids and Networks, 42, 101628. doi:
– reference: Lin, L., Liu, J., Huang, N., Li, S., & Zhang, Y. (2024). Multiscale spatio-temporal feature fusion based non-intrusive appliance load monitoring for multiple industrial industries. Applied Soft Computing, 167, 112445. doi:
– reference: , pp. 3–30, 2024, https://doi.org/10.1016/b978-0-443-15806-3.00001-2.
– volume: 253
  year: 2022
  ident: b0165
  article-title: Artificial intelligence and numerical models in hybrid renewable energy systems with fuel cells: advances and prospects
– volume: 160
  year: May 2022
  ident: b0005
  article-title: Data-driven probabilistic machine learning in sustainable smart energy/smart energy systems: key developments, challenges, and future research opportunities in the context of smart grid paradigm
– ident: 10.1016/j.enbuild.2025.115729_b0140
  doi: 10.1016/j.energy.2024.133580
– ident: 10.1016/j.enbuild.2025.115729_b0045
  doi: 10.1016/B978-0-443-15806-3.00001-2
– ident: 10.1016/j.enbuild.2025.115729_b0105
  doi: 10.1016/B978-0-443-21524-7.00004-9
– ident: 10.1016/j.enbuild.2025.115729_b0115
  doi: 10.1016/j.asoc.2024.112445
– volume: 38
  start-page: 48
  issue: 1
  year: 2020
  ident: 10.1016/j.enbuild.2025.115729_b0170
  article-title: Relaying-Assisted Communications for Demand Response in Smart Grid: Cost Modeling, Game Strategies, and Algorithms
  publication-title: IEEE Journal on Selected Areas in Communications
  doi: 10.1109/JSAC.2019.2951972
– volume: 14
  issue: 1
  year: 2024
  ident: 10.1016/j.enbuild.2025.115729_b0070
  article-title: Machine learning-based energy management and power forecasting in grid-connected microgrids with multiple distributed energy sources
  publication-title: Sci. Rep.
– year: 2021
  ident: 10.1016/j.enbuild.2025.115729_b0175
  article-title: The digitalisation of energy systems: towards higher energy efficiency
  publication-title: Epfl.ch
– volume: 38
  start-page: 488
  issue: 1
  year: 2023
  ident: 10.1016/j.enbuild.2025.115729_b0155
  article-title: PBI Based Multi-Objective Optimization via Deep Reinforcement Elite Learning Strategy for Micro-Grid Dispatch With Frequency Dynamics
  publication-title: IEEE Transactions on Power Systems
  doi: 10.1109/TPWRS.2022.3155750
– volume: 71
  start-page: 6568
  issue: 7
  year: 2024
  ident: 10.1016/j.enbuild.2025.115729_b0185
  article-title: A Novel Multiple-Medium-AC-Port Power Electronic Transformer
  publication-title: IEEE Transactions on Industrial Electronics
  doi: 10.1109/TIE.2023.3301550
– year: 2024
  ident: 10.1016/j.enbuild.2025.115729_b0030
  article-title: Machine learning and the renewable energy revolution: exploring solar and wind energy solutions for a sustainable future including innovations in energy storage
  publication-title: Sustain. Dev.
– year: 2024
  ident: 10.1016/j.enbuild.2025.115729_b0130
  article-title: Machine learning applications in electric power systems: enhancing efficiency, reliability, and sustainability
  publication-title: SSRN Electr. J.
  doi: 10.2139/ssrn.4716389
– volume: 16
  start-page: 5454
  issue: 13
  year: 2024
  ident: 10.1016/j.enbuild.2025.115729_b0025
  article-title: Renewable revolution: a review of strategic flexibility in future power systems
  publication-title: Sustainability
  doi: 10.3390/su16135454
– ident: 10.1016/j.enbuild.2025.115729_b0075
  doi: 10.1016/j.segan.2025.101628
– ident: 10.1016/j.enbuild.2025.115729_b0145
– volume: 894
  year: 2023
  ident: 10.1016/j.enbuild.2025.115729_b0190
  article-title: Net zero on 3D printing filament recycling: a sustainable analysis
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2023.165046
– volume: 2
  start-page: 266
  issue: 3
  year: 2024
  ident: 10.1016/j.enbuild.2025.115729_b0210
  article-title: Revolutionising waste management with the impact of Long Short-Term Memory networks on recycling rate predictions
  publication-title: Waste Management Bulletin
  doi: 10.1016/j.wmb.2024.08.006
– ident: 10.1016/j.enbuild.2025.115729_b0135
  doi: 10.1016/j.energy.2024.131802
– volume: 20
  start-page: 6582
  issue: 4
  year: 2024
  ident: 10.1016/j.enbuild.2025.115729_b0050
  article-title: Multi-Agent Reinforcement Learning With Privacy Preservation for Continuous Double Auction-Based P2P Energy Trading
  publication-title: IEEE Transactions on Industrial Informatics
  doi: 10.1109/TII.2023.3348823
– volume: 11
  start-page: 65
  issue: 1
  year: 2025
  ident: 10.1016/j.enbuild.2025.115729_b0080
  article-title: Frequency-Voltage Active Support Strategy for Hybrid Wind Farms Based on Grid-Following and Grid-Forming Hierarchical Subgroup Control
  publication-title: CSEE Journal of Power and Energy Systems
– volume: 5
  start-page: 8
  issue: 1
  year: 2024
  ident: 10.1016/j.enbuild.2025.115729_b0060
  article-title: Envisioning the future renewable and resilient energy grids—a power grid revolution enabled by renewables, energy storage, and energy electronics
  publication-title: IEEE J. Emerg. Selected Topics Ind. Electr.
  doi: 10.1109/JESTIE.2023.3343291
– ident: 10.1016/j.enbuild.2025.115729_b0180
  doi: 10.1126/sciadv.abj6734
– ident: 10.1016/j.enbuild.2025.115729_b0055
  doi: 10.1016/j.scs.2024.105510
– volume: 12
  start-page: 942
  year: 2024
  ident: 10.1016/j.enbuild.2025.115729_b0120
  article-title: Machine learning-based uncertainty analysis in power system planning: insights and pathways for decarbonisation
  publication-title: Energy Reports
  doi: 10.1016/j.egyr.2024.06.065
– volume: 253
  year: 2022
  ident: 10.1016/j.enbuild.2025.115729_b0165
  article-title: Artificial intelligence and numerical models in hybrid renewable energy systems with fuel cells: advances and prospects
  publication-title: Energ. Conver. Manage.
  doi: 10.1016/j.enconman.2021.115154
– ident: 10.1016/j.enbuild.2025.115729_b0200
  doi: 10.3390/polym10050538
– volume: 349
  start-page: 255
  issue: 6245
  year: 2020
  ident: 10.1016/j.enbuild.2025.115729_b0220
  article-title: Machine learning: trends, perspectives, and prospects
  publication-title: Science
  doi: 10.1126/science.aaa8415
– volume: 160
  year: 2022
  ident: 10.1016/j.enbuild.2025.115729_b0005
  article-title: Data-driven probabilistic machine learning in sustainable smart energy/smart energy systems: key developments, challenges, and future research opportunities in the context of smart grid paradigm
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2022.112128
– volume: 16
  start-page: 194
  issue: 1
  year: 2025
  ident: 10.1016/j.enbuild.2025.115729_b0065
  article-title: Supply Resilience Constrained Scheduling of MEGs for Distribution System Restoration: A Stochastic Model and FW-PH Algorithm
  publication-title: IEEE Transactions on Smart Grid
  doi: 10.1109/TSG.2024.3446873
– ident: 10.1016/j.enbuild.2025.115729_b0160
  doi: 10.1016/j.cie.2024.110253
– volume: 15
  start-page: 4742
  issue: 8
  year: 2019
  ident: 10.1016/j.enbuild.2025.115729_b0215
  article-title: Demand-Side Energy Management Considering Price Oscillations for Residential Building Heating and Ventilation Systems
  publication-title: IEEE Transactions on Industrial Informatics
  doi: 10.1109/TII.2019.2901306
– volume: 34
  start-page: 101004
  year: 2023
  ident: 10.1016/j.enbuild.2025.115729_b0100
  article-title: An initialization-free distributed algorithm for dynamic economic dispatch problems in microgrid: Modeling, optimization and analysis
  publication-title: Sustainable Energy, Grids and Networks
  doi: 10.1016/j.segan.2023.101004
– ident: 10.1016/j.enbuild.2025.115729_b0085
  doi: 10.47852/bonviewJDSIS42022111
– ident: 10.1016/j.enbuild.2025.115729_b0020
  doi: 10.1016/j.segan.2024.101452
– ident: 10.1016/j.enbuild.2025.115729_b0015
  doi: 10.3390/biomimetics9080490
– volume: 72
  start-page: 3768
  issue: 4
  year: 2025
  ident: 10.1016/j.enbuild.2025.115729_b0195
  article-title: A Reduced Current Ripple Overmodulation Strategy for Indirect Matrix Converter
  publication-title: IEEE Transactions on Industrial Electronics
  doi: 10.1109/TIE.2024.3453934
– volume: 72
  start-page: 2644
  issue: 3
  year: 2025
  ident: 10.1016/j.enbuild.2025.115729_b0010
  article-title: Virtual External Perturbance-Based Impedance Measurement of Grid-Connected Converter
  publication-title: IEEE Transactions on Industrial Electronics
  doi: 10.1109/TIE.2024.3436629
– ident: 10.1016/j.enbuild.2025.115729_b0150
– volume: 16
  start-page: 463
  issue: 1
  year: 2025
  ident: 10.1016/j.enbuild.2025.115729_b0040
  article-title: Incorporating Multi-Energy Industrial Parks Into Power System Operations: A High-Dimensional Flexible Region Method
  publication-title: IEEE Transactions on Smart Grid
  doi: 10.1109/TSG.2024.3426997
– volume: 39
  start-page: 15457
  issue: 12
  year: 2024
  ident: 10.1016/j.enbuild.2025.115729_b0035
  article-title: Asymmetric Sampling Disturbance-Based Universal Impedance Measurement Method for Converters
  publication-title: IEEE Transactions on Power Electronics
  doi: 10.1109/TPEL.2024.3451403
– volume: 244
  start-page: 111551
  year: 2025
  ident: 10.1016/j.enbuild.2025.115729_b0125
  article-title: Short-term load forecasting based on temporal importance analysis and feature extraction
  publication-title: Electric Power Systems Research
  doi: 10.1016/j.epsr.2025.111551
– ident: 10.1016/j.enbuild.2025.115729_b0090
  doi: 10.3390/biomimetics9080490
– volume: 281
  year: 2023
  ident: 10.1016/j.enbuild.2025.115729_b0095
  article-title: A comprehensive review of machine learning and IoT solutions for demand side energy management, conservation, and resilient operation
  publication-title: Energy
  doi: 10.1016/j.energy.2023.128256
– volume: 16
  start-page: 698
  issue: 2
  year: 2024
  ident: 10.1016/j.enbuild.2025.115729_b0110
  article-title: Sustainable electrification—advances and challenges in electrical-distribution networks: a review
  publication-title: Sustainability
  doi: 10.3390/su16020698
– volume: 70
  start-page: 10811
  issue: 11
  year: 2023
  ident: 10.1016/j.enbuild.2025.115729_b0205
  article-title: Series-Shunt Multiport Soft Normally Open Points
  publication-title: IEEE Transactions on Industrial Electronics
  doi: 10.1109/TIE.2022.3229375
SSID ssj0006571
Score 2.4688554
Snippet This research focuses on enhancing energy efficiency and grid stability in residential buildings by developing and evaluating advanced demand response (DR)...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 115729
SubjectTerms Demand response
Energy efficiency
Grid stability
Machine learning
Predictive algorithms
Title Enhancing grid stability with machine learning: A smart predictive approach to residential energy management
URI https://dx.doi.org/10.1016/j.enbuild.2025.115729
Volume 338
WOSCitedRecordID wos001470303400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 0378-7788
  databaseCode: AIEXJ
  dateStart: 19950301
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0006571
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtZ1RT9swEMetCXiAh2ljINjG5AfeULM2cWJnbwUVAUJs0gD1LbJjtwuioWrDYN9-d7aTBoEmQNpLVCWKE_lnO3dX3_8I2e2ynlIiYZ1RT-HfjEJ3ZMISnHjwtWRJ19j8istTfnYmhsP0h6-2ObflBHhZivv7dPpfUcM5gI2psy_A3TQKJ-A3QIcjYIfjs8APyl-ooVGO98azQmOswO5__eNCrhO7edLU1SLGLjN9PoGGUC9AF3b9a6TG0TQFh7yw6bxA07hUwcnDTTN1ZN9dxFC88tW2G4v9-7W8u50ULj2oqszdXj9oXdNyamO2-8Fx0A5EhHGzadVHxx5lyLisLPBSOXel--oVN3KCLo9WbxdIuApQ9QHeMsCnBKgG5IMiD4Wxf2Lb2DRYcWCYooTBcsjjFNa25f7xYHjSfJGT2DrezbssMrm-Pvmwp22Ult1x_o689Q4D7TvQ78kbU66TtZaM5Ady3SCniJw2yCkipx45rZF_o31qgdMFcFoDp9UNbQGnDjhdAN8gF4eD84Ojjq-i0cnBta1gbiSRVKjrr9MIcI6kYbFhWomU8VhLqSIdqygchYqDry_TmPXABzU9qblKVB5tkqXypjRbhEYilMpwxXIF01gaIcDcy7uC64iHZiS2SVD3WzZ1YilZvYvwKvMdnWFHZ66jt4moezfzFp-z5DIYEv--9ePrb_1EVhfj9zNZqma3Zoes5L-rYj774gfPX7wDgI4
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhancing+grid+stability+with+machine+learning%3A+A+smart+predictive+approach+to+residential+energy+management&rft.jtitle=Energy+and+buildings&rft.au=Olawumi%2C+Mattew+A.&rft.au=Oladapo%2C+B.I.&rft.date=2025-07-01&rft.pub=Elsevier+B.V&rft.issn=0378-7788&rft.volume=338&rft_id=info:doi/10.1016%2Fj.enbuild.2025.115729&rft.externalDocID=S0378778825004591
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-7788&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-7788&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-7788&client=summon