Enhancing grid stability with machine learning: A smart predictive approach to residential energy management
This research focuses on enhancing energy efficiency and grid stability in residential buildings by developing and evaluating advanced demand response (DR) strategies, explicitly comparing a Rule-Based model with a Predictive model leveraging machine learning. The Predictive Model utilised a neural...
Gespeichert in:
| Veröffentlicht in: | Energy and buildings Jg. 338; S. 115729 |
|---|---|
| Hauptverfasser: | , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Elsevier B.V
01.07.2025
|
| Schlagworte: | |
| ISSN: | 0378-7788 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | This research focuses on enhancing energy efficiency and grid stability in residential buildings by developing and evaluating advanced demand response (DR) strategies, explicitly comparing a Rule-Based model with a Predictive model leveraging machine learning. The Predictive Model utilised a neural network with ReLU activation functions, optimised using grid search and cross-validation, and incorporated real-time data from smart meters and environmental sensors. Evaluation metrics demonstrated that the Predictive Model outperformed the Rule-Based Model, achieving a 15% reduction in electricity costs, a 20% improvement in energy efficiency, and a 15% reduction in peak load demands while maintaining a high predictive accuracy of 0.95%. However, these benefits came with increased computational complexity and resource requirements. The Rule-Based Model, while more straightforward and less resource-intensive, was less effective in dynamic environments. This study underscores the potential of integrating machine learning with real-time data for optimising residential energy management, offering significant cost savings and contributing to sustainable energy practices. The findings suggest that, despite higher computational demands, the Predictive Model provides superior adaptability and accuracy, making it a valuable tool for future smart grid applications. |
|---|---|
| AbstractList | This research focuses on enhancing energy efficiency and grid stability in residential buildings by developing and evaluating advanced demand response (DR) strategies, explicitly comparing a Rule-Based model with a Predictive model leveraging machine learning. The Predictive Model utilised a neural network with ReLU activation functions, optimised using grid search and cross-validation, and incorporated real-time data from smart meters and environmental sensors. Evaluation metrics demonstrated that the Predictive Model outperformed the Rule-Based Model, achieving a 15% reduction in electricity costs, a 20% improvement in energy efficiency, and a 15% reduction in peak load demands while maintaining a high predictive accuracy of 0.95%. However, these benefits came with increased computational complexity and resource requirements. The Rule-Based Model, while more straightforward and less resource-intensive, was less effective in dynamic environments. This study underscores the potential of integrating machine learning with real-time data for optimising residential energy management, offering significant cost savings and contributing to sustainable energy practices. The findings suggest that, despite higher computational demands, the Predictive Model provides superior adaptability and accuracy, making it a valuable tool for future smart grid applications. |
| ArticleNumber | 115729 |
| Author | Olawumi, Mattew A. Oladapo, B.I. |
| Author_xml | – sequence: 1 givenname: Mattew A. surname: Olawumi fullname: Olawumi, Mattew A. email: olawumisola13@gmail.com organization: School of Engineering and Sustainable Development, De Montfort University, Leicester, United Kingdom – sequence: 2 givenname: B.I. surname: Oladapo fullname: Oladapo, B.I. organization: School of Engineering and Sustainable Development, De Montfort University, Leicester, United Kingdom |
| BookMark | eNqFkM1qwzAQhHVIoUnaRyjoBZxKsmXZvZRQ0h8I9NKexUraJAqObCQ1JW9fh-Te08IwM8x-MzIJfUBCHjhbcMbrx_0Cg_nxnVsIJuSCc6lEOyFTVqqmUKppbskspT1jrJaKT0m3CjsI1oct3UbvaMpgfOfzif76vKMHsDsfkHYIMYymJ7qk6QAx0yGi8zb7I1IYhtiPRpp7GjF5hyF76CgGjNvT2BFgi4dRvCM3G-gS3l_vnHy_rr5e3ov159vHy3JdWCHbXAhWl2AaIVrXluBgA1hJrJxp2kpJB2BKJ00pNsIo1lbQyoqrukEOTpna2HJO5KXXxj6liBs9RD-uPmnO9BmT3usrJn3GpC-YxtzzJYfjuKPHqJP1GOz4aUSbtev9Pw1_1KN6Ww |
| Cites_doi | 10.1016/j.energy.2024.133580 10.1016/B978-0-443-15806-3.00001-2 10.1016/B978-0-443-21524-7.00004-9 10.1016/j.asoc.2024.112445 10.1109/JSAC.2019.2951972 10.1109/TPWRS.2022.3155750 10.1109/TIE.2023.3301550 10.2139/ssrn.4716389 10.3390/su16135454 10.1016/j.segan.2025.101628 10.1016/j.scitotenv.2023.165046 10.1016/j.wmb.2024.08.006 10.1016/j.energy.2024.131802 10.1109/TII.2023.3348823 10.1109/JESTIE.2023.3343291 10.1126/sciadv.abj6734 10.1016/j.scs.2024.105510 10.1016/j.egyr.2024.06.065 10.1016/j.enconman.2021.115154 10.3390/polym10050538 10.1126/science.aaa8415 10.1016/j.rser.2022.112128 10.1109/TSG.2024.3446873 10.1016/j.cie.2024.110253 10.1109/TII.2019.2901306 10.1016/j.segan.2023.101004 10.47852/bonviewJDSIS42022111 10.1016/j.segan.2024.101452 10.3390/biomimetics9080490 10.1109/TIE.2024.3453934 10.1109/TIE.2024.3436629 10.1109/TSG.2024.3426997 10.1109/TPEL.2024.3451403 10.1016/j.epsr.2025.111551 10.1016/j.energy.2023.128256 10.3390/su16020698 10.1109/TIE.2022.3229375 |
| ContentType | Journal Article |
| Copyright | 2025 The Author(s) |
| Copyright_xml | – notice: 2025 The Author(s) |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.enbuild.2025.115729 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| ExternalDocumentID | 10_1016_j_enbuild_2025_115729 S0378778825004591 |
| GroupedDBID | --M -~X .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JM 9JN AABNK AAEDT AAEDW AAHCO AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AATTM AAXKI AAXUO AAYWO ABFYP ABJNI ABLST ABMAC ACDAQ ACGFS ACIWK ACRLP ACVFH ADBBV ADCNI ADEZE ADTZH AEBSH AECPX AEIPS AEKER AENEX AEUPX AFJKZ AFPUW AFRAH AFTJW AFXIZ AGCQF AGHFR AGRNS AGUBO AGYEJ AHEUO AHHHB AHIDL AHJVU AIEXJ AIGII AIIUN AIKHN AITUG AKBMS AKIFW AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP AXJTR BELTK BJAXD BKOJK BLECG BLXMC BNPGV CS3 DU5 EBS EFJIC EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JARJE JJJVA KCYFY KOM LY6 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RNS ROL SDF SDG SES SEW SPC SPCBC SSH SSJ SSR SST SSZ T5K ~02 ~G- --K 29G 9DU AAQXK AAYXX ABFNM ABWVN ABXDB ACLOT ACNNM ACRPL ADMUD ADNMO AGQPQ ASPBG AVWKF AZFZN CITATION EFKBS EFLBG EJD FEDTE FGOYB G-2 HVGLF HZ~ R2- RPZ SAC SET WUQ ZMT ZY4 ~HD |
| ID | FETCH-LOGICAL-c259t-2063ab8229d93adafae45e4db89475daab3d5b32f2b7094a9541768e1ad7b6bc3 |
| ISICitedReferencesCount | 1 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001470303400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0378-7788 |
| IngestDate | Sat Nov 29 07:49:01 EST 2025 Sat Jun 07 17:01:04 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Demand response Energy efficiency Grid stability Predictive algorithms Machine learning |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c259t-2063ab8229d93adafae45e4db89475daab3d5b32f2b7094a9541768e1ad7b6bc3 |
| ParticipantIDs | crossref_primary_10_1016_j_enbuild_2025_115729 elsevier_sciencedirect_doi_10_1016_j_enbuild_2025_115729 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-07-01 2025-07-00 |
| PublicationDateYYYYMMDD | 2025-07-01 |
| PublicationDate_xml | – month: 07 year: 2025 text: 2025-07-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | Energy and buildings |
| PublicationYear | 2025 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | A. Balal, Sustainable solar-powered EV charging system design using machine learning, DC fast charging, and an intelligent DMPPT optimization technique Al-Othman (b0165) 2022; 253 Xia, Y., Huang, Y., & Fang, J. (2025). A generalized Nash-in-Nash bargaining solution to allocating energy loss and network usage cost of buildings in peer-to-peer trading market. Sustainable Energy, Grids and Networks, 42, 101628. doi Duan, Zhao, Hu (b0100) 2023; 34 Ma, Yang, Liu (b0170) 2020; 38 Zhang, Yue, Dou, Hancke (b0155) 2023; 38 O. Smith, O. Cattell, E. Farcot, R. D. O'Dea, K. I. Hopcraft, The effect of renewable energy incorporation on power grid stability and resilience Li, Zhou, Zhou, Niu, Deng (b0195) 2025; 72 pp. 105510–105510, 2024, 10.1016/j.scs.2024.105510. Adila El Maghraoui, Hicham El Hadraoui, Younes Ledmaoui, Nabil El Bazi, Nasr Guennouni, A. Chebak, Revolutionising smart grid-ready management systems: a holistic framework for optimal grid reliability Zheng, Liang, Li, Li, Wu (b0050) 2024; 20 2 (2), 65–78, 2024, 10.47852/bonviewjdsis42022111. pp. 69–86, 2024, 10.1016/b978-0-443-21524-7.00004-9. Dorokhova (b0175) 2021 M. Li, N. Mour, L. Smith, Machine learning based on reinforcement learning for smart grids: predictive analytics in renewable energy management Kaledio (b0130) 2024 Yang, M., Li, X., Fan, F., Wang, B., Su, X.,... Ma, C. (2024). Two-stage day-ahead multi-step prediction of wind power considering time-series information interaction. Energy, 312, 133580. doi Gallegos, Arévalo, Montaleza, Jurado (b0110) 2024; 16 . Hui, Bao, Ding, Meinrenken (b0040) 2025; 16 Jahangiri, Miri, Yi, McPherson (b0120) 2024; 12 Jordan, Mitchell (b0220) 2020; 349 M.A. Olawumi, AI-driven data analysis of quantifying environmental impact and efficiency of shape memory polymers R. Passos de Oliveira Santos, P. Fernanda Rossi, L. Ramos, E. Frollini, Renewable resources and a recycled polymer as raw materials: mats from electrospinning of lignocellulosic biomass and PET solutions M. Khalid, Energy 4.0: AI-enabled digital transformation for sustainable power networks pp. 101452–101452, 2024, 10.1016/j.segan.2024.101452. Singh, Seshu Kumar, Bajaj, Khadse, Zaitsev (b0070) 2024; 14 Shahzad Elżbieta Jasińska (b0025) 2024; 16 Oladapo, Bowoto, Adebiyi, Ikumapayi (b0190) 2023; 894 pp. 3–30, 2024, https://doi.org/10.1016/b978-0-443-15806-3.00001-2. Nuran Cihangir Martin, T. M. Vazquez, S. Liverani, A. Gianelli, Big data integration for the digitalisation and decarbonisation of distribution grids Rong, Hu, Yu, Wang, Cao, Xin (b0010) 2025; 72 Rong, Hu, Wang, Li, Yu, Wang, Cao (b0035) 2024; 39 10 (5), 538, 2018, doi: https://doi.org/10.3390/polym10050538. M. Ali, M. Khalid, Muhammad Majid Gulzar, Transforming the grid: AI, ML, renewable, storage, EVs, and prosumers pp. 110253–110253, 2024, doi: https://doi.org/10.1016/j.cie.2024.110253. Yang, M., Che, R., Yu, X., & Su, X. (2024). Dual NWP wind speed correction based on trend fusion and fluctuation clustering and its application in short-term wind power prediction. Energy, 302, 131802. doi Ma, Yu, Yang, Yang (b0215) 2019; 15 2023. https://hdl.handle.net/2346/97280 (accessed Aug. 22, 2024). M. Khaleel, E. Yaghoubi, E. Yaghoubi, M. Z. Jahromi, The role of mechanical energy storage systems based on artificial intelligence techniques in future sustainable energy systems 8 (9), 2022, doi: https://doi.org/10.1126/sciadv.abj6734. Olawumi (b0210) 2024; 2 Zhao, Zong, Zhou, Yao, Sun, Zhou, Wen (b0080) 2025; 11 Yuqi, An, Lu, Ping, Xiaomei (b0125) 2025; 244 Zhang, Cai, Xie, Zhou, Zheng, Wu, Wen (b0065) 2025; 16 Zhang, Feng, Zhou, Zang, Wang, Shi, Li (b0205) 2023; 70 Aug. 14, 2024. https://doi.org/10.3390/biomimetics9080490. Ahmad, Madonski, Zhang, Huang, Mujeeb (b0005) May 2022; 160 Peng, Liu, Li, Jain, Vinnikov (b0060) 2024; 5 Lin, L., Liu, J., Huang, N., Li, S., & Zhang, Y. (2024). Multiscale spatio-temporal feature fusion based non-intrusive appliance load monitoring for multiple industrial industries. Applied Soft Computing, 167, 112445. doi Sofian, Lim, Munawaroh, Ma, Chew, Show (b0030) 2024 pp. 01-31, 2023, Available: https://ijees.org/index.php/ijees/article/view/65. Alireza Bigdeli, M. Delshad, The evolving landscape of oil and gas chemicals: convergence of artificial intelligence, and chemical enhanced oil recovery in the energy transition towards sustainable energy systems and net-zero emissions Elsisi, Amer, Dababat, Su (b0095) 2023; 281 Zhang, Li, Kong, Zhou, Shi, Zang, Wang (b0185) 2024; 71 Zhao (10.1016/j.enbuild.2025.115729_b0080) 2025; 11 10.1016/j.enbuild.2025.115729_b0115 10.1016/j.enbuild.2025.115729_b0015 Zhang (10.1016/j.enbuild.2025.115729_b0185) 2024; 71 10.1016/j.enbuild.2025.115729_b0055 10.1016/j.enbuild.2025.115729_b0135 Ma (10.1016/j.enbuild.2025.115729_b0170) 2020; 38 Zhang (10.1016/j.enbuild.2025.115729_b0155) 2023; 38 Rong (10.1016/j.enbuild.2025.115729_b0010) 2025; 72 10.1016/j.enbuild.2025.115729_b0090 Olawumi (10.1016/j.enbuild.2025.115729_b0210) 2024; 2 10.1016/j.enbuild.2025.115729_b0150 Jordan (10.1016/j.enbuild.2025.115729_b0220) 2020; 349 Kaledio (10.1016/j.enbuild.2025.115729_b0130) 2024 10.1016/j.enbuild.2025.115729_b0075 Ma (10.1016/j.enbuild.2025.115729_b0215) 2019; 15 Duan (10.1016/j.enbuild.2025.115729_b0100) 2023; 34 Dorokhova (10.1016/j.enbuild.2025.115729_b0175) 2021 Jahangiri (10.1016/j.enbuild.2025.115729_b0120) 2024; 12 Al-Othman (10.1016/j.enbuild.2025.115729_b0165) 2022; 253 10.1016/j.enbuild.2025.115729_b0105 10.1016/j.enbuild.2025.115729_b0045 Zhang (10.1016/j.enbuild.2025.115729_b0065) 2025; 16 Sofian (10.1016/j.enbuild.2025.115729_b0030) 2024 Zheng (10.1016/j.enbuild.2025.115729_b0050) 2024; 20 Gallegos (10.1016/j.enbuild.2025.115729_b0110) 2024; 16 10.1016/j.enbuild.2025.115729_b0145 10.1016/j.enbuild.2025.115729_b0200 Oladapo (10.1016/j.enbuild.2025.115729_b0190) 2023; 894 Singh (10.1016/j.enbuild.2025.115729_b0070) 2024; 14 Zhang (10.1016/j.enbuild.2025.115729_b0205) 2023; 70 Li (10.1016/j.enbuild.2025.115729_b0195) 2025; 72 Rong (10.1016/j.enbuild.2025.115729_b0035) 2024; 39 Shahzad Elżbieta Jasińska (10.1016/j.enbuild.2025.115729_b0025) 2024; 16 Elsisi (10.1016/j.enbuild.2025.115729_b0095) 2023; 281 Hui (10.1016/j.enbuild.2025.115729_b0040) 2025; 16 Peng (10.1016/j.enbuild.2025.115729_b0060) 2024; 5 10.1016/j.enbuild.2025.115729_b0085 10.1016/j.enbuild.2025.115729_b0140 Ahmad (10.1016/j.enbuild.2025.115729_b0005) 2022; 160 10.1016/j.enbuild.2025.115729_b0020 10.1016/j.enbuild.2025.115729_b0180 10.1016/j.enbuild.2025.115729_b0160 Yuqi (10.1016/j.enbuild.2025.115729_b0125) 2025; 244 |
| References_xml | – reference: , pp. 69–86, 2024, 10.1016/b978-0-443-21524-7.00004-9. – volume: 16 start-page: 463 year: 2025 end-page: 477 ident: b0040 article-title: Incorporating Multi-Energy Industrial Parks Into Power System Operations: A High-Dimensional Flexible Region Method publication-title: IEEE Transactions on Smart Grid – volume: 16 start-page: 194 year: 2025 end-page: 208 ident: b0065 article-title: Supply Resilience Constrained Scheduling of MEGs for Distribution System Restoration: A Stochastic Model and FW-PH Algorithm publication-title: IEEE Transactions on Smart Grid – volume: 894 year: 2023 ident: b0190 article-title: Net zero on 3D printing filament recycling: a sustainable analysis – reference: , 2 (2), 65–78, 2024, 10.47852/bonviewjdsis42022111. – volume: 38 start-page: 48 year: 2020 end-page: 60 ident: b0170 article-title: Relaying-Assisted Communications for Demand Response in Smart Grid: Cost Modeling, Game Strategies, and Algorithms publication-title: IEEE Journal on Selected Areas in Communications – reference: M. Ali, M. Khalid, Muhammad Majid Gulzar, Transforming the grid: AI, ML, renewable, storage, EVs, and prosumers, – reference: Yang, M., Che, R., Yu, X., & Su, X. (2024). Dual NWP wind speed correction based on trend fusion and fluctuation clustering and its application in short-term wind power prediction. Energy, 302, 131802. doi: – reference: Nuran Cihangir Martin, T. M. Vazquez, S. Liverani, A. Gianelli, Big data integration for the digitalisation and decarbonisation of distribution grids, – reference: , pp. 110253–110253, 2024, doi: https://doi.org/10.1016/j.cie.2024.110253. – volume: 71 start-page: 6568 year: 2024 end-page: 6578 ident: b0185 article-title: A Novel Multiple-Medium-AC-Port Power Electronic Transformer publication-title: IEEE Transactions on Industrial Electronics – volume: 38 start-page: 488 year: 2023 end-page: 498 ident: b0155 article-title: PBI Based Multi-Objective Optimization via Deep Reinforcement Elite Learning Strategy for Micro-Grid Dispatch With Frequency Dynamics publication-title: IEEE Transactions on Power Systems – volume: 244 start-page: 111551 year: 2025 ident: b0125 article-title: Short-term load forecasting based on temporal importance analysis and feature extraction publication-title: Electric Power Systems Research – reference: , Aug. 14, 2024. https://doi.org/10.3390/biomimetics9080490. – volume: 72 start-page: 2644 year: 2025 end-page: 2654 ident: b0010 article-title: Virtual External Perturbance-Based Impedance Measurement of Grid-Connected Converter publication-title: IEEE Transactions on Industrial Electronics – reference: , pp. 01-31, 2023, Available: https://ijees.org/index.php/ijees/article/view/65. – volume: 70 start-page: 10811 year: 2023 end-page: 10821 ident: b0205 article-title: Series-Shunt Multiport Soft Normally Open Points publication-title: IEEE Transactions on Industrial Electronics – reference: Alireza Bigdeli, M. Delshad, The evolving landscape of oil and gas chemicals: convergence of artificial intelligence, and chemical enhanced oil recovery in the energy transition towards sustainable energy systems and net-zero emissions, – reference: M. Khaleel, E. Yaghoubi, E. Yaghoubi, M. Z. Jahromi, The role of mechanical energy storage systems based on artificial intelligence techniques in future sustainable energy systems, – reference: Adila El Maghraoui, Hicham El Hadraoui, Younes Ledmaoui, Nabil El Bazi, Nasr Guennouni, A. Chebak, Revolutionising smart grid-ready management systems: a holistic framework for optimal grid reliability, – volume: 34 start-page: 101004 year: 2023 ident: b0100 article-title: An initialization-free distributed algorithm for dynamic economic dispatch problems in microgrid: Modeling, optimization and analysis publication-title: Sustainable Energy, Grids and Networks – reference: M. Li, N. Mour, L. Smith, Machine learning based on reinforcement learning for smart grids: predictive analytics in renewable energy management, – volume: 72 start-page: 3768 year: 2025 end-page: 3777 ident: b0195 article-title: A Reduced Current Ripple Overmodulation Strategy for Indirect Matrix Converter publication-title: IEEE Transactions on Industrial Electronics – year: 2024 ident: b0030 article-title: Machine learning and the renewable energy revolution: exploring solar and wind energy solutions for a sustainable future including innovations in energy storage – volume: 2 start-page: 266 year: 2024 end-page: 274 ident: b0210 article-title: Revolutionising waste management with the impact of Long Short-Term Memory networks on recycling rate predictions – reference: , pp. 105510–105510, 2024, 10.1016/j.scs.2024.105510. – reference: O. Smith, O. Cattell, E. Farcot, R. D. O'Dea, K. I. Hopcraft, The effect of renewable energy incorporation on power grid stability and resilience, – volume: 11 start-page: 65 year: 2025 end-page: 77 ident: b0080 article-title: Frequency-Voltage Active Support Strategy for Hybrid Wind Farms Based on Grid-Following and Grid-Forming Hierarchical Subgroup Control publication-title: CSEE Journal of Power and Energy Systems – reference: A. Balal, Sustainable solar-powered EV charging system design using machine learning, DC fast charging, and an intelligent DMPPT optimization technique, – volume: 5 start-page: 8 year: 2024 end-page: 26 ident: b0060 article-title: Envisioning the future renewable and resilient energy grids—a power grid revolution enabled by renewables, energy storage, and energy electronics – volume: 281 year: 2023 ident: b0095 article-title: A comprehensive review of machine learning and IoT solutions for demand side energy management, conservation, and resilient operation publication-title: Energy – volume: 39 start-page: 15457 year: 2024 end-page: 15461 ident: b0035 article-title: Asymmetric Sampling Disturbance-Based Universal Impedance Measurement Method for Converters publication-title: IEEE Transactions on Power Electronics – reference: , 10 (5), 538, 2018, doi: https://doi.org/10.3390/polym10050538. – reference: , 8 (9), 2022, doi: https://doi.org/10.1126/sciadv.abj6734. – reference: M.A. Olawumi, AI-driven data analysis of quantifying environmental impact and efficiency of shape memory polymers, – reference: , pp. 101452–101452, 2024, 10.1016/j.segan.2024.101452. – reference: , 2023. https://hdl.handle.net/2346/97280 (accessed Aug. 22, 2024). – reference: M. Khalid, Energy 4.0: AI-enabled digital transformation for sustainable power networks, – year: 2021 ident: b0175 article-title: The digitalisation of energy systems: towards higher energy efficiency – year: 2024 ident: b0130 article-title: Machine learning applications in electric power systems: enhancing efficiency, reliability, and sustainability publication-title: SSRN Electr. J. – reference: R. Passos de Oliveira Santos, P. Fernanda Rossi, L. Ramos, E. Frollini, Renewable resources and a recycled polymer as raw materials: mats from electrospinning of lignocellulosic biomass and PET solutions, – volume: 349 start-page: 255 year: 2020 end-page: 260 ident: b0220 article-title: Machine learning: trends, perspectives, and prospects – volume: 16 start-page: 5454 year: 2024 ident: b0025 article-title: Renewable revolution: a review of strategic flexibility in future power systems publication-title: Sustainability – volume: 15 start-page: 4742 year: 2019 end-page: 4752 ident: b0215 article-title: Demand-Side Energy Management Considering Price Oscillations for Residential Building Heating and Ventilation Systems publication-title: IEEE Transactions on Industrial Informatics – reference: Yang, M., Li, X., Fan, F., Wang, B., Su, X.,... Ma, C. (2024). Two-stage day-ahead multi-step prediction of wind power considering time-series information interaction. Energy, 312, 133580. doi: – volume: 12 start-page: 942 year: 2024 end-page: 954 ident: b0120 article-title: Machine learning-based uncertainty analysis in power system planning: insights and pathways for decarbonisation publication-title: Energy Reports – reference: . – volume: 14 year: 2024 ident: b0070 article-title: Machine learning-based energy management and power forecasting in grid-connected microgrids with multiple distributed energy sources – volume: 20 start-page: 6582 year: 2024 end-page: 6590 ident: b0050 article-title: Multi-Agent Reinforcement Learning With Privacy Preservation for Continuous Double Auction-Based P2P Energy Trading publication-title: IEEE Transactions on Industrial Informatics – volume: 16 start-page: 698 year: 2024 ident: b0110 article-title: Sustainable electrification—advances and challenges in electrical-distribution networks: a review – reference: Xia, Y., Huang, Y., & Fang, J. (2025). A generalized Nash-in-Nash bargaining solution to allocating energy loss and network usage cost of buildings in peer-to-peer trading market. Sustainable Energy, Grids and Networks, 42, 101628. doi: – reference: Lin, L., Liu, J., Huang, N., Li, S., & Zhang, Y. (2024). Multiscale spatio-temporal feature fusion based non-intrusive appliance load monitoring for multiple industrial industries. Applied Soft Computing, 167, 112445. doi: – reference: , pp. 3–30, 2024, https://doi.org/10.1016/b978-0-443-15806-3.00001-2. – volume: 253 year: 2022 ident: b0165 article-title: Artificial intelligence and numerical models in hybrid renewable energy systems with fuel cells: advances and prospects – volume: 160 year: May 2022 ident: b0005 article-title: Data-driven probabilistic machine learning in sustainable smart energy/smart energy systems: key developments, challenges, and future research opportunities in the context of smart grid paradigm – ident: 10.1016/j.enbuild.2025.115729_b0140 doi: 10.1016/j.energy.2024.133580 – ident: 10.1016/j.enbuild.2025.115729_b0045 doi: 10.1016/B978-0-443-15806-3.00001-2 – ident: 10.1016/j.enbuild.2025.115729_b0105 doi: 10.1016/B978-0-443-21524-7.00004-9 – ident: 10.1016/j.enbuild.2025.115729_b0115 doi: 10.1016/j.asoc.2024.112445 – volume: 38 start-page: 48 issue: 1 year: 2020 ident: 10.1016/j.enbuild.2025.115729_b0170 article-title: Relaying-Assisted Communications for Demand Response in Smart Grid: Cost Modeling, Game Strategies, and Algorithms publication-title: IEEE Journal on Selected Areas in Communications doi: 10.1109/JSAC.2019.2951972 – volume: 14 issue: 1 year: 2024 ident: 10.1016/j.enbuild.2025.115729_b0070 article-title: Machine learning-based energy management and power forecasting in grid-connected microgrids with multiple distributed energy sources publication-title: Sci. Rep. – year: 2021 ident: 10.1016/j.enbuild.2025.115729_b0175 article-title: The digitalisation of energy systems: towards higher energy efficiency publication-title: Epfl.ch – volume: 38 start-page: 488 issue: 1 year: 2023 ident: 10.1016/j.enbuild.2025.115729_b0155 article-title: PBI Based Multi-Objective Optimization via Deep Reinforcement Elite Learning Strategy for Micro-Grid Dispatch With Frequency Dynamics publication-title: IEEE Transactions on Power Systems doi: 10.1109/TPWRS.2022.3155750 – volume: 71 start-page: 6568 issue: 7 year: 2024 ident: 10.1016/j.enbuild.2025.115729_b0185 article-title: A Novel Multiple-Medium-AC-Port Power Electronic Transformer publication-title: IEEE Transactions on Industrial Electronics doi: 10.1109/TIE.2023.3301550 – year: 2024 ident: 10.1016/j.enbuild.2025.115729_b0030 article-title: Machine learning and the renewable energy revolution: exploring solar and wind energy solutions for a sustainable future including innovations in energy storage publication-title: Sustain. Dev. – year: 2024 ident: 10.1016/j.enbuild.2025.115729_b0130 article-title: Machine learning applications in electric power systems: enhancing efficiency, reliability, and sustainability publication-title: SSRN Electr. J. doi: 10.2139/ssrn.4716389 – volume: 16 start-page: 5454 issue: 13 year: 2024 ident: 10.1016/j.enbuild.2025.115729_b0025 article-title: Renewable revolution: a review of strategic flexibility in future power systems publication-title: Sustainability doi: 10.3390/su16135454 – ident: 10.1016/j.enbuild.2025.115729_b0075 doi: 10.1016/j.segan.2025.101628 – ident: 10.1016/j.enbuild.2025.115729_b0145 – volume: 894 year: 2023 ident: 10.1016/j.enbuild.2025.115729_b0190 article-title: Net zero on 3D printing filament recycling: a sustainable analysis publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2023.165046 – volume: 2 start-page: 266 issue: 3 year: 2024 ident: 10.1016/j.enbuild.2025.115729_b0210 article-title: Revolutionising waste management with the impact of Long Short-Term Memory networks on recycling rate predictions publication-title: Waste Management Bulletin doi: 10.1016/j.wmb.2024.08.006 – ident: 10.1016/j.enbuild.2025.115729_b0135 doi: 10.1016/j.energy.2024.131802 – volume: 20 start-page: 6582 issue: 4 year: 2024 ident: 10.1016/j.enbuild.2025.115729_b0050 article-title: Multi-Agent Reinforcement Learning With Privacy Preservation for Continuous Double Auction-Based P2P Energy Trading publication-title: IEEE Transactions on Industrial Informatics doi: 10.1109/TII.2023.3348823 – volume: 11 start-page: 65 issue: 1 year: 2025 ident: 10.1016/j.enbuild.2025.115729_b0080 article-title: Frequency-Voltage Active Support Strategy for Hybrid Wind Farms Based on Grid-Following and Grid-Forming Hierarchical Subgroup Control publication-title: CSEE Journal of Power and Energy Systems – volume: 5 start-page: 8 issue: 1 year: 2024 ident: 10.1016/j.enbuild.2025.115729_b0060 article-title: Envisioning the future renewable and resilient energy grids—a power grid revolution enabled by renewables, energy storage, and energy electronics publication-title: IEEE J. Emerg. Selected Topics Ind. Electr. doi: 10.1109/JESTIE.2023.3343291 – ident: 10.1016/j.enbuild.2025.115729_b0180 doi: 10.1126/sciadv.abj6734 – ident: 10.1016/j.enbuild.2025.115729_b0055 doi: 10.1016/j.scs.2024.105510 – volume: 12 start-page: 942 year: 2024 ident: 10.1016/j.enbuild.2025.115729_b0120 article-title: Machine learning-based uncertainty analysis in power system planning: insights and pathways for decarbonisation publication-title: Energy Reports doi: 10.1016/j.egyr.2024.06.065 – volume: 253 year: 2022 ident: 10.1016/j.enbuild.2025.115729_b0165 article-title: Artificial intelligence and numerical models in hybrid renewable energy systems with fuel cells: advances and prospects publication-title: Energ. Conver. Manage. doi: 10.1016/j.enconman.2021.115154 – ident: 10.1016/j.enbuild.2025.115729_b0200 doi: 10.3390/polym10050538 – volume: 349 start-page: 255 issue: 6245 year: 2020 ident: 10.1016/j.enbuild.2025.115729_b0220 article-title: Machine learning: trends, perspectives, and prospects publication-title: Science doi: 10.1126/science.aaa8415 – volume: 160 year: 2022 ident: 10.1016/j.enbuild.2025.115729_b0005 article-title: Data-driven probabilistic machine learning in sustainable smart energy/smart energy systems: key developments, challenges, and future research opportunities in the context of smart grid paradigm publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2022.112128 – volume: 16 start-page: 194 issue: 1 year: 2025 ident: 10.1016/j.enbuild.2025.115729_b0065 article-title: Supply Resilience Constrained Scheduling of MEGs for Distribution System Restoration: A Stochastic Model and FW-PH Algorithm publication-title: IEEE Transactions on Smart Grid doi: 10.1109/TSG.2024.3446873 – ident: 10.1016/j.enbuild.2025.115729_b0160 doi: 10.1016/j.cie.2024.110253 – volume: 15 start-page: 4742 issue: 8 year: 2019 ident: 10.1016/j.enbuild.2025.115729_b0215 article-title: Demand-Side Energy Management Considering Price Oscillations for Residential Building Heating and Ventilation Systems publication-title: IEEE Transactions on Industrial Informatics doi: 10.1109/TII.2019.2901306 – volume: 34 start-page: 101004 year: 2023 ident: 10.1016/j.enbuild.2025.115729_b0100 article-title: An initialization-free distributed algorithm for dynamic economic dispatch problems in microgrid: Modeling, optimization and analysis publication-title: Sustainable Energy, Grids and Networks doi: 10.1016/j.segan.2023.101004 – ident: 10.1016/j.enbuild.2025.115729_b0085 doi: 10.47852/bonviewJDSIS42022111 – ident: 10.1016/j.enbuild.2025.115729_b0020 doi: 10.1016/j.segan.2024.101452 – ident: 10.1016/j.enbuild.2025.115729_b0015 doi: 10.3390/biomimetics9080490 – volume: 72 start-page: 3768 issue: 4 year: 2025 ident: 10.1016/j.enbuild.2025.115729_b0195 article-title: A Reduced Current Ripple Overmodulation Strategy for Indirect Matrix Converter publication-title: IEEE Transactions on Industrial Electronics doi: 10.1109/TIE.2024.3453934 – volume: 72 start-page: 2644 issue: 3 year: 2025 ident: 10.1016/j.enbuild.2025.115729_b0010 article-title: Virtual External Perturbance-Based Impedance Measurement of Grid-Connected Converter publication-title: IEEE Transactions on Industrial Electronics doi: 10.1109/TIE.2024.3436629 – ident: 10.1016/j.enbuild.2025.115729_b0150 – volume: 16 start-page: 463 issue: 1 year: 2025 ident: 10.1016/j.enbuild.2025.115729_b0040 article-title: Incorporating Multi-Energy Industrial Parks Into Power System Operations: A High-Dimensional Flexible Region Method publication-title: IEEE Transactions on Smart Grid doi: 10.1109/TSG.2024.3426997 – volume: 39 start-page: 15457 issue: 12 year: 2024 ident: 10.1016/j.enbuild.2025.115729_b0035 article-title: Asymmetric Sampling Disturbance-Based Universal Impedance Measurement Method for Converters publication-title: IEEE Transactions on Power Electronics doi: 10.1109/TPEL.2024.3451403 – volume: 244 start-page: 111551 year: 2025 ident: 10.1016/j.enbuild.2025.115729_b0125 article-title: Short-term load forecasting based on temporal importance analysis and feature extraction publication-title: Electric Power Systems Research doi: 10.1016/j.epsr.2025.111551 – ident: 10.1016/j.enbuild.2025.115729_b0090 doi: 10.3390/biomimetics9080490 – volume: 281 year: 2023 ident: 10.1016/j.enbuild.2025.115729_b0095 article-title: A comprehensive review of machine learning and IoT solutions for demand side energy management, conservation, and resilient operation publication-title: Energy doi: 10.1016/j.energy.2023.128256 – volume: 16 start-page: 698 issue: 2 year: 2024 ident: 10.1016/j.enbuild.2025.115729_b0110 article-title: Sustainable electrification—advances and challenges in electrical-distribution networks: a review publication-title: Sustainability doi: 10.3390/su16020698 – volume: 70 start-page: 10811 issue: 11 year: 2023 ident: 10.1016/j.enbuild.2025.115729_b0205 article-title: Series-Shunt Multiport Soft Normally Open Points publication-title: IEEE Transactions on Industrial Electronics doi: 10.1109/TIE.2022.3229375 |
| SSID | ssj0006571 |
| Score | 2.4688554 |
| Snippet | This research focuses on enhancing energy efficiency and grid stability in residential buildings by developing and evaluating advanced demand response (DR)... |
| SourceID | crossref elsevier |
| SourceType | Index Database Publisher |
| StartPage | 115729 |
| SubjectTerms | Demand response Energy efficiency Grid stability Machine learning Predictive algorithms |
| Title | Enhancing grid stability with machine learning: A smart predictive approach to residential energy management |
| URI | https://dx.doi.org/10.1016/j.enbuild.2025.115729 |
| Volume | 338 |
| WOSCitedRecordID | wos001470303400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 issn: 0378-7788 databaseCode: AIEXJ dateStart: 19950301 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: false ssIdentifier: ssj0006571 providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtZ1RT9swEMetCXiAh2ljINjG5AfeULM2cWJnbwUVAUJs0gD1LbJjtwuioWrDYN9-d7aTBoEmQNpLVCWKE_lnO3dX3_8I2e2ynlIiYZ1RT-HfjEJ3ZMISnHjwtWRJ19j8istTfnYmhsP0h6-2ObflBHhZivv7dPpfUcM5gI2psy_A3TQKJ-A3QIcjYIfjs8APyl-ooVGO98azQmOswO5__eNCrhO7edLU1SLGLjN9PoGGUC9AF3b9a6TG0TQFh7yw6bxA07hUwcnDTTN1ZN9dxFC88tW2G4v9-7W8u50ULj2oqszdXj9oXdNyamO2-8Fx0A5EhHGzadVHxx5lyLisLPBSOXel--oVN3KCLo9WbxdIuApQ9QHeMsCnBKgG5IMiD4Wxf2Lb2DRYcWCYooTBcsjjFNa25f7xYHjSfJGT2DrezbssMrm-Pvmwp22Ult1x_o689Q4D7TvQ78kbU66TtZaM5Ady3SCniJw2yCkipx45rZF_o31qgdMFcFoDp9UNbQGnDjhdAN8gF4eD84Ojjq-i0cnBta1gbiSRVKjrr9MIcI6kYbFhWomU8VhLqSIdqygchYqDry_TmPXABzU9qblKVB5tkqXypjRbhEYilMpwxXIF01gaIcDcy7uC64iHZiS2SVD3WzZ1YilZvYvwKvMdnWFHZ66jt4moezfzFp-z5DIYEv--9ePrb_1EVhfj9zNZqma3Zoes5L-rYj774gfPX7wDgI4 |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhancing+grid+stability+with+machine+learning%3A+A+smart+predictive+approach+to+residential+energy+management&rft.jtitle=Energy+and+buildings&rft.au=Olawumi%2C+Mattew+A.&rft.au=Oladapo%2C+B.I.&rft.date=2025-07-01&rft.pub=Elsevier+B.V&rft.issn=0378-7788&rft.volume=338&rft_id=info:doi/10.1016%2Fj.enbuild.2025.115729&rft.externalDocID=S0378778825004591 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-7788&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-7788&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-7788&client=summon |