A wake-induced two-phase planning framework for offshore wind farm maintenance with stochastic mixed-integer program

Offshore wind farms are essential in fulfilling global renewable energy targets; yet, their maintenance poses substantial challenges due to remote marine locations and harsh environmental conditions. Effective maintenance strategies and implementation are crucial to enhance operational efficiency an...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Applied energy Ročník 380; s. 124976
Hlavní autoři: Lee, Namkyoung, Lee, Hyuntae, Joung, Seulgi
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Ltd 15.02.2025
Témata:
ISSN:0306-2619
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Offshore wind farms are essential in fulfilling global renewable energy targets; yet, their maintenance poses substantial challenges due to remote marine locations and harsh environmental conditions. Effective maintenance strategies and implementation are crucial to enhance operational efficiency and reduce costs. Current models frequently overlook an integrated perspective on periodic factors and uncertainties inherent in metocean conditions and failure rates, leading to suboptimal planning and increased costs. This study bridges this gap by introducing a comprehensive maintenance planning framework that incorporates these uncertainties. We formulate an annual planning model as a stochastic mixed-integer linear programming problem. The annual planning process aims to minimize operations and maintenance costs, including losses from downtime, by employing wake model constraints and accounting for stochastic scenarios. By tackling the scheme challenge, we garner strategic allocations of maintenance resources, which specifies the requisite number of operational vehicles and teams to be deployed over the year. Tentatively, we establish a long-term strategy and devise a short-term program that encompasses failure parameters and weather-related conditions. To further refine planning, we address weekly short-term scheduling problems to elaborate detailed maintenance schedules. Each week, maintenance tasks are adjusted based on actual stochastic conditions, yielding precise, real-world schedules. Our weekly scheduling considers not only preventive and corrective maintenance but also opportunistic maintenance. In particular, we harness a flexible scheduling approach to accommodate the efficiency of maintenance vessels. Computational tests demonstrate that our framework remarkably reduces downtime losses by 19.0% and recovery delays by 38.2%, leveraging scheduling flexibility. •We address mathematical optimization for maintenance planning in offshore wind farms.•Our framework reduces downtime losses (19%) and recovery delays (38.2%).•Unified model incorporates long-term resource planning and short-term scheduling.•Annual planning with weather and failure scenarios enables robust wake modeling.•Weekly scheduling with task-focused flexibility enhances maintenance efficiency. [Display omitted]
AbstractList Offshore wind farms are essential in fulfilling global renewable energy targets; yet, their maintenance poses substantial challenges due to remote marine locations and harsh environmental conditions. Effective maintenance strategies and implementation are crucial to enhance operational efficiency and reduce costs. Current models frequently overlook an integrated perspective on periodic factors and uncertainties inherent in metocean conditions and failure rates, leading to suboptimal planning and increased costs. This study bridges this gap by introducing a comprehensive maintenance planning framework that incorporates these uncertainties. We formulate an annual planning model as a stochastic mixed-integer linear programming problem. The annual planning process aims to minimize operations and maintenance costs, including losses from downtime, by employing wake model constraints and accounting for stochastic scenarios. By tackling the scheme challenge, we garner strategic allocations of maintenance resources, which specifies the requisite number of operational vehicles and teams to be deployed over the year. Tentatively, we establish a long-term strategy and devise a short-term program that encompasses failure parameters and weather-related conditions. To further refine planning, we address weekly short-term scheduling problems to elaborate detailed maintenance schedules. Each week, maintenance tasks are adjusted based on actual stochastic conditions, yielding precise, real-world schedules. Our weekly scheduling considers not only preventive and corrective maintenance but also opportunistic maintenance. In particular, we harness a flexible scheduling approach to accommodate the efficiency of maintenance vessels. Computational tests demonstrate that our framework remarkably reduces downtime losses by 19.0% and recovery delays by 38.2%, leveraging scheduling flexibility. •We address mathematical optimization for maintenance planning in offshore wind farms.•Our framework reduces downtime losses (19%) and recovery delays (38.2%).•Unified model incorporates long-term resource planning and short-term scheduling.•Annual planning with weather and failure scenarios enables robust wake modeling.•Weekly scheduling with task-focused flexibility enhances maintenance efficiency. [Display omitted]
ArticleNumber 124976
Author Lee, Namkyoung
Joung, Seulgi
Lee, Hyuntae
Author_xml – sequence: 1
  givenname: Namkyoung
  orcidid: 0009-0008-6035-3031
  surname: Lee
  fullname: Lee, Namkyoung
  organization: Power Technology Research Institute, KEPCO Engineering & Construction Company. INC, 269, Hyeoksin-ro, Gimcheon-si, 39660, Gyeongsangbuk-do, Republic of Korea
– sequence: 2
  givenname: Hyuntae
  surname: Lee
  fullname: Lee, Hyuntae
  organization: Department of Industrial Engineering, Chonnam National University, 77, Yongbong-ro, Buk-gu, 61186, Gwangju, Republic of Korea
– sequence: 3
  givenname: Seulgi
  orcidid: 0000-0001-7608-2266
  surname: Joung
  fullname: Joung, Seulgi
  email: sgjoung@ajou.ac.kr
  organization: Department of Industrial Engineering, Ajou University, 206, Worldcup-ro, Yeongtong-gu, 16499, Suwon, Republic of Korea
BookMark eNqFkMtOwzAQRb0oEm3hF5B_IMGPNI8dVcVLqsQG1pZrj1O3jR3ZhtC_J1FhzWqkO7pHM2eBZs47QOiOkpwSWt4fctmDg9Cec0ZYkVNWNFU5Q3PCSZmxkjbXaBHjgRDCKCNzlNZ4kEfIrNOfCjROg8_6vYyA-5N0zroWmyA7GHw4YuMD9sbEvQ-Ah7GCjQwd7qR1CZx0akrTHsfk1chIVuHOfoPOpn0LAffBtyPtBl0ZeYpw-zuX6OPp8X3zkm3fnl83622m2KpJGZWsYjXsoFgZIA2rJQHFC82Nami1K7SUTNW0LmShKK84UMMVa9iK0ga43vElKi9cFXyMAYzog-1kOAtKxORLHMSfLzH5EhdfY_HhUoTxui8LQURlYfxP2wAqCe3tf4gfxd9-aw
Cites_doi 10.1007/s43253-022-00082-7
10.3390/jmse5010011
10.1016/j.apenergy.2021.117189
10.1002/we.2815
10.1002/we.348
10.1260/0309-524X.39.1.15
10.1016/j.oceaneng.2023.114041
10.1016/j.ymssp.2019.02.012
10.1016/j.trc.2015.01.005
10.1016/j.epsr.2020.106298
10.1016/j.renene.2020.06.030
10.1016/j.apenergy.2022.119284
10.1016/j.rser.2015.12.229
10.1029/98JC02622
10.1016/j.renene.2020.07.065
10.1016/j.ymssp.2017.10.035
10.1016/j.marpol.2020.104134
10.1016/j.apenergy.2024.124431
10.1016/j.renene.2015.11.022
10.1016/j.renene.2016.07.037
10.1016/j.ejor.2019.04.020
10.1016/j.energy.2017.02.174
10.1016/j.apenergy.2022.119429
10.1002/we.1887
10.1016/j.rser.2021.110886
10.1016/j.energy.2019.07.019
ContentType Journal Article
Copyright 2024 Elsevier Ltd
Copyright_xml – notice: 2024 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.apenergy.2024.124976
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Environmental Sciences
ExternalDocumentID 10_1016_j_apenergy_2024_124976
S0306261924023602
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHBH
AAHCO
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AAXKI
AAXUO
ABJNI
ABMAC
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFJKZ
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AHJVU
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
JJJVA
KOM
LY6
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SSR
SST
SSZ
T5K
TN5
~02
~G-
9DU
AAQXK
AATTM
AAYWO
AAYXX
ABEFU
ABFNM
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EFLBG
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
SAC
WUQ
ZY4
~HD
ID FETCH-LOGICAL-c259t-1a2728ebe45fe0928a0ec34d3fc917b4daa2c8184a4c1373e1f3c2925119e3db3
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001375081200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0306-2619
IngestDate Sat Nov 29 06:10:05 EST 2025
Sat Jan 11 15:48:57 EST 2025
IsPeerReviewed true
IsScholarly true
Keywords Mixed-integer program
Stochastic program
Maintenance scheduling
Offshore wind farm
Wake effect
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c259t-1a2728ebe45fe0928a0ec34d3fc917b4daa2c8184a4c1373e1f3c2925119e3db3
ORCID 0000-0001-7608-2266
0009-0008-6035-3031
ParticipantIDs crossref_primary_10_1016_j_apenergy_2024_124976
elsevier_sciencedirect_doi_10_1016_j_apenergy_2024_124976
PublicationCentury 2000
PublicationDate 2025-02-15
PublicationDateYYYYMMDD 2025-02-15
PublicationDate_xml – month: 02
  year: 2025
  text: 2025-02-15
  day: 15
PublicationDecade 2020
PublicationTitle Applied energy
PublicationYear 2025
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Raknes, Ødeskaug, Stålhane, Hvattum (b8) 2017; 5
Zhang, Chowdhury, Zhang, Tong, Messac (b9) 2023; 26
Cui, Geng, Zhu, Han (b33) 2017; 125
Tusar, Sarker (b6) 2023; 274
Johnston, Foley, Doran, Littler (b3) 2020; 160
Ehler (b1) 2021; 132
Dai, Stålhane, Utne (b7) 2015; 39
Shields, Beiter, Nunemaker, Cooperman, Duffy (b2) 2021; 298
Carroll, McDonald, McMillan (b16) 2016; 19
Ren, Verma, Li, Teuwen, Jiang (b28) 2021; 144
Shakoor, Hassan, Raheem, Wu (b29) 2016; 58
Zhong, Pantelous, Goh, Zhou (b30) 2019; 124
Zhong, Pantelous, Beer, Zhou (b11) 2018; 104
Lee, Woo, Kim (b18) 2025; 377
Maples, Saur, Hand, Van De Pietermen, Obdam (b25) 2013
Liu, Qin, Lu, Zhang, Zhu, Faber (b4) 2022; 322
Katic, Højstrup, Jensen (b21) 1986; Vol. 1
Yang, Kwak, Cho, Huh (b22) 2019; 183
Gundegjerde, Halvorsen, Halvorsen-Weare, Hvattum, Nonås (b13) 2015; 52
Barthelmie, Hansen, Frandsen, Rathmann, Schepers, Schlez, Phillips, Rados, Zervos, Politis (b17) 2009; 12
Jensen (b20) 1983
Miettinen (b32) 1999
Gutierrez-Alcoba, Hendrix, Ortega, Halvorsen-Weare, Haugland (b14) 2019; 279
Booij, Ris, Holthuijsen (b27) 1999; 104
Li, Ouelhadj, Song, Jones, Wall, Howell, Igwe, Martin, Song, Pertin (b5) 2016; 99
Wolsey, Nemhauser (b23) 1999
Mathews, Thurbon, Kim, Tan (b26) 2023; 4
Li, Jiang, Carroll, Negenborn (b15) 2022; 321
Zhou, Miao, Yan, Zhang (b12) 2020; 160
Ge, Chen, Fu, Chung, Mi (b10) 2020; 184
Bak, Zahle, Bitsche, Kim, Yde, Henriksen, Natarajan, Hansen (b19) 2013
Gurobi Optimization (b24) 2023
Abdollahzadeh, Atashgar, Abbasi (b31) 2016; 88
Zhou (10.1016/j.apenergy.2024.124976_b12) 2020; 160
Mathews (10.1016/j.apenergy.2024.124976_b26) 2023; 4
Bak (10.1016/j.apenergy.2024.124976_b19) 2013
Jensen (10.1016/j.apenergy.2024.124976_b20) 1983
Raknes (10.1016/j.apenergy.2024.124976_b8) 2017; 5
Booij (10.1016/j.apenergy.2024.124976_b27) 1999; 104
Johnston (10.1016/j.apenergy.2024.124976_b3) 2020; 160
Abdollahzadeh (10.1016/j.apenergy.2024.124976_b31) 2016; 88
Liu (10.1016/j.apenergy.2024.124976_b4) 2022; 322
Barthelmie (10.1016/j.apenergy.2024.124976_b17) 2009; 12
Maples (10.1016/j.apenergy.2024.124976_b25) 2013
Lee (10.1016/j.apenergy.2024.124976_b18) 2025; 377
Yang (10.1016/j.apenergy.2024.124976_b22) 2019; 183
Shields (10.1016/j.apenergy.2024.124976_b2) 2021; 298
Carroll (10.1016/j.apenergy.2024.124976_b16) 2016; 19
Ren (10.1016/j.apenergy.2024.124976_b28) 2021; 144
Li (10.1016/j.apenergy.2024.124976_b15) 2022; 321
Zhong (10.1016/j.apenergy.2024.124976_b30) 2019; 124
Li (10.1016/j.apenergy.2024.124976_b5) 2016; 99
Gurobi Optimization (10.1016/j.apenergy.2024.124976_b24) 2023
Ge (10.1016/j.apenergy.2024.124976_b10) 2020; 184
Tusar (10.1016/j.apenergy.2024.124976_b6) 2023; 274
Gundegjerde (10.1016/j.apenergy.2024.124976_b13) 2015; 52
Zhang (10.1016/j.apenergy.2024.124976_b9) 2023; 26
Ehler (10.1016/j.apenergy.2024.124976_b1) 2021; 132
Katic (10.1016/j.apenergy.2024.124976_b21) 1986; Vol. 1
Dai (10.1016/j.apenergy.2024.124976_b7) 2015; 39
Shakoor (10.1016/j.apenergy.2024.124976_b29) 2016; 58
Miettinen (10.1016/j.apenergy.2024.124976_b32) 1999
Cui (10.1016/j.apenergy.2024.124976_b33) 2017; 125
Gutierrez-Alcoba (10.1016/j.apenergy.2024.124976_b14) 2019; 279
Zhong (10.1016/j.apenergy.2024.124976_b11) 2018; 104
Wolsey (10.1016/j.apenergy.2024.124976_b23) 1999
References_xml – volume: 184
  year: 2020
  ident: b10
  article-title: Optimization of maintenance scheduling for offshore wind turbines considering the wake effect of arbitrary wind direction
  publication-title: Electr Power Syst Res
– volume: Vol. 1
  start-page: 407
  year: 1986
  end-page: 410
  ident: b21
  article-title: A simple model for cluster efficiency
  publication-title: European wind energy association conference and exhibition
– year: 2023
  ident: b24
  article-title: Gurobi optimizer reference manual
– year: 1999
  ident: b23
  publication-title: Integer and combinatorial optimization
– volume: 58
  start-page: 1048
  year: 2016
  end-page: 1059
  ident: b29
  article-title: Wake effect modeling: A review of wind farm layout optimization using Jensen’s model
  publication-title: Renew Sustain Energy Rev
– volume: 104
  start-page: 7649
  year: 1999
  end-page: 7666
  ident: b27
  article-title: A third-generation wave model for coastal regions 1. Model description and validation
  publication-title: J Geophys Res
– volume: 274
  year: 2023
  ident: b6
  article-title: Developing the optimal vessel fleet size and mix model to minimize the transportation cost of offshore wind farms
  publication-title: Ocean Eng
– volume: 26
  start-page: 1103
  year: 2023
  end-page: 1122
  ident: b9
  article-title: Optimal selection of time windows for preventive maintenance of offshore wind farms subject to wake losses
  publication-title: Wind Energy
– volume: 322
  year: 2022
  ident: b4
  article-title: Towards resilience of offshore wind farms: A framework and application to asset integrity management
  publication-title: Appl Energy
– volume: 39
  start-page: 15
  year: 2015
  end-page: 30
  ident: b7
  article-title: Routing and scheduling of maintenance fleet for offshore wind farms
  publication-title: Wind Eng
– volume: 321
  year: 2022
  ident: b15
  article-title: A multi-objective maintenance strategy optimization framework for offshore wind farms considering uncertainty
  publication-title: Appl Energy
– volume: 279
  start-page: 124
  year: 2019
  end-page: 131
  ident: b14
  article-title: On offshore wind farm maintenance scheduling for decision support on vessel fleet composition
  publication-title: European J Oper Res
– volume: 125
  start-page: 681
  year: 2017
  end-page: 704
  ident: b33
  article-title: Multi-objective optimization methods and application in energy saving
  publication-title: Energy
– volume: 4
  start-page: 27
  year: 2023
  end-page: 48
  ident: b26
  article-title: Gone with the wind: how state power and industrial policy in the offshore wind power sector are blowing away the obstacles to east Asia’s green energy transition
  publication-title: Rev Evol Political Econ
– volume: 144
  year: 2021
  ident: b28
  article-title: Offshore wind turbine operations and maintenance: A state-of-the-art review
  publication-title: Renew Sustain Energy Rev
– volume: 19
  start-page: 1107
  year: 2016
  end-page: 1119
  ident: b16
  article-title: Failure rate, repair time and unscheduled O&M cost analysis of offshore wind turbines
  publication-title: Wind Energy
– volume: 183
  start-page: 983
  year: 2019
  end-page: 995
  ident: b22
  article-title: Wind farm layout optimization for wake effect uniformity
  publication-title: Energy
– year: 2013
  ident: b19
  article-title: Description of the DTU 10 MW reference wind turbine
– volume: 160
  start-page: 1136
  year: 2020
  end-page: 1147
  ident: b12
  article-title: Bio-objective long-term maintenance scheduling for wind turbines in multiple wind farms
  publication-title: Renew Energy
– volume: 88
  start-page: 247
  year: 2016
  end-page: 261
  ident: b31
  article-title: Multi-objective opportunistic maintenance optimization of a wind farm considering limited number of maintenance groups
  publication-title: Renew Energy
– volume: 104
  start-page: 347
  year: 2018
  end-page: 369
  ident: b11
  article-title: Constrained non-linear multi-objective optimisation of preventive maintenance scheduling for offshore wind farms
  publication-title: Mech Syst Signal Process
– volume: 99
  start-page: 784
  year: 2016
  end-page: 799
  ident: b5
  article-title: A decision support system for strategic maintenance planning in offshore wind farms
  publication-title: Renew Energy
– volume: 52
  start-page: 74
  year: 2015
  end-page: 92
  ident: b13
  article-title: A stochastic fleet size and mix model for maintenance operations at offshore wind farms
  publication-title: Transp Res C
– year: 1983
  ident: b20
  publication-title: A note on wind generator interaction
– volume: 12
  start-page: 431
  year: 2009
  end-page: 444
  ident: b17
  article-title: Modelling and measuring flow and wind turbine wakes in large wind farms offshore
  publication-title: Wind Energy
– volume: 377
  year: 2025
  ident: b18
  article-title: A deep reinforcement learning ensemble for maintenance scheduling in offshore wind farms
  publication-title: Appl Energy
– volume: 124
  start-page: 643
  year: 2019
  end-page: 663
  ident: b30
  article-title: A reliability-and-cost-based fuzzy approach to optimize preventive maintenance scheduling for offshore wind farms
  publication-title: Mech Syst Signal Process
– volume: 5
  start-page: 11
  year: 2017
  ident: b8
  article-title: Scheduling of maintenance tasks and routing of a joint vessel fleet for multiple offshore wind farms
  publication-title: J Mar Sci Eng
– year: 2013
  ident: b25
  article-title: Installation, operation, and maintenance strategies to reduce the cost of offshore wind energy
– volume: 160
  start-page: 876
  year: 2020
  end-page: 885
  ident: b3
  article-title: Levelised cost of energy, a challenge for offshore wind
  publication-title: Renew Energy
– volume: 132
  year: 2021
  ident: b1
  article-title: Two decades of progress in marine spatial planning
  publication-title: Mar Policy
– year: 1999
  ident: b32
  publication-title: Nonlinear multiobjective optimization
– volume: 298
  year: 2021
  ident: b2
  article-title: Impacts of turbine and plant upsizing on the levelized cost of energy for offshore wind
  publication-title: Appl Energy
– volume: 4
  start-page: 27
  issue: 1
  year: 2023
  ident: 10.1016/j.apenergy.2024.124976_b26
  article-title: Gone with the wind: how state power and industrial policy in the offshore wind power sector are blowing away the obstacles to east Asia’s green energy transition
  publication-title: Rev Evol Political Econ
  doi: 10.1007/s43253-022-00082-7
– volume: 5
  start-page: 11
  issue: 1
  year: 2017
  ident: 10.1016/j.apenergy.2024.124976_b8
  article-title: Scheduling of maintenance tasks and routing of a joint vessel fleet for multiple offshore wind farms
  publication-title: J Mar Sci Eng
  doi: 10.3390/jmse5010011
– volume: 298
  year: 2021
  ident: 10.1016/j.apenergy.2024.124976_b2
  article-title: Impacts of turbine and plant upsizing on the levelized cost of energy for offshore wind
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2021.117189
– volume: 26
  start-page: 1103
  issue: 11
  year: 2023
  ident: 10.1016/j.apenergy.2024.124976_b9
  article-title: Optimal selection of time windows for preventive maintenance of offshore wind farms subject to wake losses
  publication-title: Wind Energy
  doi: 10.1002/we.2815
– volume: 12
  start-page: 431
  issue: 5
  year: 2009
  ident: 10.1016/j.apenergy.2024.124976_b17
  article-title: Modelling and measuring flow and wind turbine wakes in large wind farms offshore
  publication-title: Wind Energy
  doi: 10.1002/we.348
– year: 1999
  ident: 10.1016/j.apenergy.2024.124976_b32
– volume: 39
  start-page: 15
  issue: 1
  year: 2015
  ident: 10.1016/j.apenergy.2024.124976_b7
  article-title: Routing and scheduling of maintenance fleet for offshore wind farms
  publication-title: Wind Eng
  doi: 10.1260/0309-524X.39.1.15
– year: 2013
  ident: 10.1016/j.apenergy.2024.124976_b25
– volume: 274
  year: 2023
  ident: 10.1016/j.apenergy.2024.124976_b6
  article-title: Developing the optimal vessel fleet size and mix model to minimize the transportation cost of offshore wind farms
  publication-title: Ocean Eng
  doi: 10.1016/j.oceaneng.2023.114041
– volume: 124
  start-page: 643
  year: 2019
  ident: 10.1016/j.apenergy.2024.124976_b30
  article-title: A reliability-and-cost-based fuzzy approach to optimize preventive maintenance scheduling for offshore wind farms
  publication-title: Mech Syst Signal Process
  doi: 10.1016/j.ymssp.2019.02.012
– volume: 52
  start-page: 74
  year: 2015
  ident: 10.1016/j.apenergy.2024.124976_b13
  article-title: A stochastic fleet size and mix model for maintenance operations at offshore wind farms
  publication-title: Transp Res C
  doi: 10.1016/j.trc.2015.01.005
– volume: 184
  year: 2020
  ident: 10.1016/j.apenergy.2024.124976_b10
  article-title: Optimization of maintenance scheduling for offshore wind turbines considering the wake effect of arbitrary wind direction
  publication-title: Electr Power Syst Res
  doi: 10.1016/j.epsr.2020.106298
– volume: 160
  start-page: 876
  year: 2020
  ident: 10.1016/j.apenergy.2024.124976_b3
  article-title: Levelised cost of energy, a challenge for offshore wind
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2020.06.030
– volume: 321
  year: 2022
  ident: 10.1016/j.apenergy.2024.124976_b15
  article-title: A multi-objective maintenance strategy optimization framework for offshore wind farms considering uncertainty
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2022.119284
– volume: Vol. 1
  start-page: 407
  year: 1986
  ident: 10.1016/j.apenergy.2024.124976_b21
  article-title: A simple model for cluster efficiency
– volume: 58
  start-page: 1048
  year: 2016
  ident: 10.1016/j.apenergy.2024.124976_b29
  article-title: Wake effect modeling: A review of wind farm layout optimization using Jensen’s model
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2015.12.229
– year: 1983
  ident: 10.1016/j.apenergy.2024.124976_b20
– volume: 104
  start-page: 7649
  issue: C4
  year: 1999
  ident: 10.1016/j.apenergy.2024.124976_b27
  article-title: A third-generation wave model for coastal regions 1. Model description and validation
  publication-title: J Geophys Res
  doi: 10.1029/98JC02622
– volume: 160
  start-page: 1136
  year: 2020
  ident: 10.1016/j.apenergy.2024.124976_b12
  article-title: Bio-objective long-term maintenance scheduling for wind turbines in multiple wind farms
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2020.07.065
– volume: 104
  start-page: 347
  year: 2018
  ident: 10.1016/j.apenergy.2024.124976_b11
  article-title: Constrained non-linear multi-objective optimisation of preventive maintenance scheduling for offshore wind farms
  publication-title: Mech Syst Signal Process
  doi: 10.1016/j.ymssp.2017.10.035
– volume: 132
  year: 2021
  ident: 10.1016/j.apenergy.2024.124976_b1
  article-title: Two decades of progress in marine spatial planning
  publication-title: Mar Policy
  doi: 10.1016/j.marpol.2020.104134
– volume: 377
  year: 2025
  ident: 10.1016/j.apenergy.2024.124976_b18
  article-title: A deep reinforcement learning ensemble for maintenance scheduling in offshore wind farms
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2024.124431
– volume: 88
  start-page: 247
  issn: 0960-1481
  year: 2016
  ident: 10.1016/j.apenergy.2024.124976_b31
  article-title: Multi-objective opportunistic maintenance optimization of a wind farm considering limited number of maintenance groups
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2015.11.022
– volume: 99
  start-page: 784
  year: 2016
  ident: 10.1016/j.apenergy.2024.124976_b5
  article-title: A decision support system for strategic maintenance planning in offshore wind farms
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2016.07.037
– volume: 279
  start-page: 124
  issue: 1
  year: 2019
  ident: 10.1016/j.apenergy.2024.124976_b14
  article-title: On offshore wind farm maintenance scheduling for decision support on vessel fleet composition
  publication-title: European J Oper Res
  doi: 10.1016/j.ejor.2019.04.020
– volume: 125
  start-page: 681
  year: 2017
  ident: 10.1016/j.apenergy.2024.124976_b33
  article-title: Multi-objective optimization methods and application in energy saving
  publication-title: Energy
  doi: 10.1016/j.energy.2017.02.174
– year: 2023
  ident: 10.1016/j.apenergy.2024.124976_b24
– year: 2013
  ident: 10.1016/j.apenergy.2024.124976_b19
– volume: 322
  year: 2022
  ident: 10.1016/j.apenergy.2024.124976_b4
  article-title: Towards resilience of offshore wind farms: A framework and application to asset integrity management
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2022.119429
– volume: 19
  start-page: 1107
  issue: 6
  year: 2016
  ident: 10.1016/j.apenergy.2024.124976_b16
  article-title: Failure rate, repair time and unscheduled O&M cost analysis of offshore wind turbines
  publication-title: Wind Energy
  doi: 10.1002/we.1887
– year: 1999
  ident: 10.1016/j.apenergy.2024.124976_b23
– volume: 144
  year: 2021
  ident: 10.1016/j.apenergy.2024.124976_b28
  article-title: Offshore wind turbine operations and maintenance: A state-of-the-art review
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2021.110886
– volume: 183
  start-page: 983
  year: 2019
  ident: 10.1016/j.apenergy.2024.124976_b22
  article-title: Wind farm layout optimization for wake effect uniformity
  publication-title: Energy
  doi: 10.1016/j.energy.2019.07.019
SSID ssj0002120
Score 2.453522
Snippet Offshore wind farms are essential in fulfilling global renewable energy targets; yet, their maintenance poses substantial challenges due to remote marine...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 124976
SubjectTerms Maintenance scheduling
Mixed-integer program
Offshore wind farm
Stochastic program
Wake effect
Title A wake-induced two-phase planning framework for offshore wind farm maintenance with stochastic mixed-integer program
URI https://dx.doi.org/10.1016/j.apenergy.2024.124976
Volume 380
WOSCitedRecordID wos001375081200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 0306-2619
  databaseCode: AIEXJ
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0002120
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFLdKxwEOCAYT40s-cIs8UtupnWOFisYOFRJD6i1yXId1W5MqTdfuv-c5jtOsTMAOXKLIil8-3k_P7znv9x5CH41hoaKxIelQQ4BCs4jEVCsCoUgGC0rIhXDNJsRkIqfT-Fuvt_FcmJtrkedyu42X_1XVMAbKttTZB6i7FQoDcA5KhyOoHY7_pPhRsFFXhkCsvbb_9qtNQZYXsFbZhtF1f6Ig8wlZdY5hkWWri6I0wQamBJkqF8FC2SoSec0mcDnsVaFBhi3uuphvzYzUVSZM6dO7ui6u92tNzSrcS_iZqMXVrTUwe-Ont-u8Ui3IzrwN-m7W1z_n3a0JWlO9HTnTU7LCIbEhWtfcMte5qTGYtve1awDzmy132wqXJ2rpHhiCecpPdhPuFs_eW9TaVEOfxXaZeDmJlZM4OY_QARVRLPvoYPR1PD1rF3HaVPT0b9Ahl9__RPf7NR1f5fw5etYEGXjkwPEC9Ux-iJ52Sk8eoqPxjuEIlzYmfvUSVSPcxQ9u8YM9fnCLHwz4wR4_2OIHW_zgDn6wxQ_e4QffwQ9u8PMK_fgyPv98SprWHERDvFyRgaKCSjAAPMpMGFOpQqMZn7FMQ_yf8plSVIMvyBXXAyaYGWRM09jGs7Fhs5QdoX5e5OY1wsIWCRwaIyWPODNCKiNTyaRII7iUD4_RJ_9hk6WrwJL8WanHKPbfP2n8SOcfJgCtv8x98-C7vUVPdth_h_pVuTbv0WN9U81X5YcGV78Au_ec2A
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+wake-induced+two-phase+planning+framework+for+offshore+wind+farm+maintenance+with+stochastic+mixed-integer+program&rft.jtitle=Applied+energy&rft.au=Lee%2C+Namkyoung&rft.au=Lee%2C+Hyuntae&rft.au=Joung%2C+Seulgi&rft.date=2025-02-15&rft.issn=0306-2619&rft.volume=380&rft.spage=124976&rft_id=info:doi/10.1016%2Fj.apenergy.2024.124976&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_apenergy_2024_124976
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-2619&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-2619&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-2619&client=summon