A finite deformation constitutive model for brain white matter considering the time-dependent and damage behaviors of matrix and axonal fibers
This work aims to develop a novel two-phase constitutive model to capture the hyperelastic, time-dependent, and damage behaviors of extracellular matrix and axonal fibers of brain white matter. Within the continuum damage mechanics framework, the Ogden model was used to describe the hyperelastic and...
Saved in:
| Published in: | Mechanics of materials Vol. 209; p. 105430 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Elsevier Ltd
01.10.2025
|
| Subjects: | |
| ISSN: | 0167-6636 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | This work aims to develop a novel two-phase constitutive model to capture the hyperelastic, time-dependent, and damage behaviors of extracellular matrix and axonal fibers of brain white matter. Within the continuum damage mechanics framework, the Ogden model was used to describe the hyperelastic and viscous behavior of the matrix, while exponential and second-order power functions were employed to represent the similar behavior of fibers. The damage evolutions in both the matrix and fiber phases of the brain white matter were represented using sigmoid functions. The developed two-phase viscohyperelastic-damage constitutive model was calibrated and validated using the experimental data of the corpus callosum of brains. Specifically, the model was calibrated and validated using experimental data collected under various loading conditions, including uniaxial tension, uniaxial compression, simple shear, stress relaxation, and cyclic loading. The comparison of predicted results and experimental data demonstrated that this constitutive model effectively captures the mechanical behaviors of brain white matter, such as nonlinear elasticity (hyperelasticity), stress softening (damage), and time-dependent effects (strain rate dependence, stress relaxation, and cyclic loading responses), and it has capabilities of separately modeling the fiber and matrix phases of the brain tissue.
•A brain tissue constitutive model separately considering the behaviors of fiber and matrix phases.•The model can capture the hyperelastic, time-dependent and damage behaviors of each phase.•The model holds promise for enhancing comprehension of brain tissue damage and injury.•The model can be integrated into FEA software to support optimization of head protection equipment such as helmets. |
|---|---|
| AbstractList | This work aims to develop a novel two-phase constitutive model to capture the hyperelastic, time-dependent, and damage behaviors of extracellular matrix and axonal fibers of brain white matter. Within the continuum damage mechanics framework, the Ogden model was used to describe the hyperelastic and viscous behavior of the matrix, while exponential and second-order power functions were employed to represent the similar behavior of fibers. The damage evolutions in both the matrix and fiber phases of the brain white matter were represented using sigmoid functions. The developed two-phase viscohyperelastic-damage constitutive model was calibrated and validated using the experimental data of the corpus callosum of brains. Specifically, the model was calibrated and validated using experimental data collected under various loading conditions, including uniaxial tension, uniaxial compression, simple shear, stress relaxation, and cyclic loading. The comparison of predicted results and experimental data demonstrated that this constitutive model effectively captures the mechanical behaviors of brain white matter, such as nonlinear elasticity (hyperelasticity), stress softening (damage), and time-dependent effects (strain rate dependence, stress relaxation, and cyclic loading responses), and it has capabilities of separately modeling the fiber and matrix phases of the brain tissue.
•A brain tissue constitutive model separately considering the behaviors of fiber and matrix phases.•The model can capture the hyperelastic, time-dependent and damage behaviors of each phase.•The model holds promise for enhancing comprehension of brain tissue damage and injury.•The model can be integrated into FEA software to support optimization of head protection equipment such as helmets. |
| ArticleNumber | 105430 |
| Author | Xia, Bing Fan, Lei He, Ge |
| Author_xml | – sequence: 1 givenname: Bing orcidid: 0000-0001-8598-6179 surname: Xia fullname: Xia, Bing organization: Joint Department of Biomedical Engineering, Marquette University and Medical College of Wisconsin, Milwaukee, WI, USA – sequence: 2 givenname: Lei surname: Fan fullname: Fan, Lei email: lei.fan@marquette.edu organization: Joint Department of Biomedical Engineering, Marquette University and Medical College of Wisconsin, Milwaukee, WI, USA – sequence: 3 givenname: Ge orcidid: 0000-0002-7593-1585 surname: He fullname: He, Ge email: ghe@ltu.edu organization: Department of Biomedical Engineering, Lawrence Technological University, Southfield, MI, 48075, USA |
| BookMark | eNqFkEtOwzAQhr0oEi1wBCRfICV26jxWqKp4SZXYwNpy7EkzVWNXtinlEpwZp-2e1UjzPzTzzcjEOguE3LN8znJWPmznA-h-UHHOcy7STiyKfEKmSauysizKazILYZvnuWhENSW_S9qhxQjUQOd8CqKzVDsbIsaviAeggzOwo0mkrVdo6Xc_2pMzgj850YBHu6GxBxpxgMzAHqwBG6myhho1qA3QFnp1QOcDdd2Y9ng8yerorEr92IIPt-SqU7sAd5d5Qz6fnz5Wr9n6_eVttVxnmosmZoyJ1jAGi7pjtSo5VKpmHETdipJB-rwF3tWCN1osFG-VKnRVd8LoRKCGpi5uiDj3au9C8NDJvcdB-R_JcjmClFt5ASlHkPIMMuUezzlIxx0QvAwawWow6EFHaRz-0_AHweOGHw |
| Cites_doi | 10.1016/j.jmbbm.2017.12.021 10.1016/j.jmps.2006.05.004 10.1007/s10237-020-01391-8 10.1186/1754-1611-7-21 10.1002/nme.2212 10.1007/s10439-018-02166-0 10.4271/2007-22-0005 10.1089/neu.2020.7412 10.1016/j.jbiomech.2023.111554 10.1016/j.jmbbm.2018.09.029 10.1016/j.jmps.2019.103777 10.1016/j.jmbbm.2022.105618 10.1016/j.actbio.2011.02.015 10.1007/s10439-019-02239-8 10.1089/neu.2015.4239 10.1016/j.jmbbm.2016.04.024 10.1016/j.ijsolstr.2022.111554 10.1007/s11682-012-9164-5 10.1016/j.mechrescom.2011.09.002 10.1016/S0045-7825(00)00323-6 10.1016/S0045-7825(01)00337-1 10.1016/j.ijplas.2005.07.006 10.1098/rsif.2005.0073 10.1016/j.jmps.2017.12.001 10.1016/j.ijplas.2006.04.002 10.1016/j.jmbbm.2011.01.002 10.1016/j.actbio.2016.10.036 10.1115/1.2372490 10.1016/j.actbio.2006.06.005 10.1016/j.ijsolstr.2008.12.015 10.1016/j.cma.2020.113128 10.1007/s10338-022-00309-4 10.1016/j.jmbbm.2022.105294 10.1016/j.actbio.2017.06.024 10.1016/0749-6419(94)90040-X 10.1007/s004660050329 10.1016/0045-7825(92)90123-2 10.1016/j.actbio.2016.07.040 10.1016/S0020-7683(02)00602-9 10.1007/s00193-017-0791-z 10.1016/j.ijsolstr.2007.06.020 10.1016/j.jbiomech.2014.09.030 10.1016/j.cma.2017.04.009 10.1016/j.ijsolstr.2004.02.057 10.1016/S0021-9290(98)00077-3 10.1002/cnm.2823 10.1016/j.pneurobio.2011.04.002 10.1007/s00466-004-0629-2 10.1016/j.compbiomed.2024.109063 10.1016/j.clinbiomech.2020.105000 10.1016/j.jmbbm.2023.105753 10.1016/0045-7825(87)90107-1 10.3389/fncel.2018.00144 10.3389/fbioe.2021.714128 10.1007/s00707-019-02383-1 10.1016/j.jmbbm.2017.04.008 10.1016/j.cma.2006.09.009 10.1016/j.jmbbm.2013.04.007 10.1016/j.ijnonlinmec.2004.05.003 10.1016/S0020-7683(97)00217-5 10.1115/1.4053205 10.1002/nme.1825 10.1016/j.jmbbm.2018.04.011 10.1016/j.jmbbm.2017.07.014 10.1016/j.jbiomech.2013.09.001 |
| ContentType | Journal Article |
| Copyright | 2025 Elsevier Ltd |
| Copyright_xml | – notice: 2025 Elsevier Ltd |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.mechmat.2025.105430 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| ExternalDocumentID | 10_1016_j_mechmat_2025_105430 S0167663625001929 |
| GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 29M 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYWO ABEFU ABFNM ABJNI ABMAC ABWVN ABXDB ACDAQ ACGFS ACNNM ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADMUD ADNMO ADTZH AEBSH AECPX AEIPS AEKER AENEX AEUPX AFFNX AFJKZ AFPUW AFTJW AGCQF AGHFR AGQPQ AGUBO AGYEJ AHHHB AHJVU AIEXJ AIGII AIIUN AIKHN AITUG AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFKBS EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W JJJVA KOM LY7 M24 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RNS ROL RPZ SDF SDG SDP SES SET SEW SMS SPC SPCBC SST SSZ T5K WUQ XPP ZMT ~02 ~G- ~HD 9DU AAYXX ACLOT CITATION |
| ID | FETCH-LOGICAL-c259t-115bd11e48f18a62e7a812e58b561e202be2f8529c54a2baa3c78f5dc6638e983 |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001555134100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0167-6636 |
| IngestDate | Sat Nov 29 07:36:36 EST 2025 Sat Sep 13 17:02:34 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Biological tissue Damage mechanics Constitutive model brain white matter |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c259t-115bd11e48f18a62e7a812e58b561e202be2f8529c54a2baa3c78f5dc6638e983 |
| ORCID | 0000-0002-7593-1585 0000-0001-8598-6179 |
| ParticipantIDs | crossref_primary_10_1016_j_mechmat_2025_105430 elsevier_sciencedirect_doi_10_1016_j_mechmat_2025_105430 |
| PublicationCentury | 2000 |
| PublicationDate | October 2025 2025-10-00 |
| PublicationDateYYYYMMDD | 2025-10-01 |
| PublicationDate_xml | – month: 10 year: 2025 text: October 2025 |
| PublicationDecade | 2020 |
| PublicationTitle | Mechanics of materials |
| PublicationYear | 2025 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Miyazaki, Tachiya, Anata, Hojo (bib48) 2012; 22 Upadhyay, Subhash, Spearot (bib72) 2020; 135 Zhu, Jiang, Jiang (bib84) 2019; 230 Holzapfel (bib37) 2000; 455 Feng, Gao, Wang, Tao, Qiu, Zhao (bib20) 2017; 71 Weizel, Distler, Detsch, Boccaccini, Seitz, Budday (bib77) 2023; 138 He, Fan, Liu (bib33) 2022; 144 Gasser, Ogden, Holzapfel (bib27) 2006; 3 Simo (bib67) 1992; 99 Maugin (bib45) 1994; 10 Simo, T, H (bib68) 1998 Baugh, Stamm, Riley, Gavett, Shenton, Lin, Nowinski, Cantu, McKee, Stern (bib3) 2012; 6 Ganpule, Daphalapurkar, Cetingul (bib23) 2018; 28 Budday, Sommer, Haybaeck, Steinmann, Holzapfel, Kuhl (bib5) 2017; 60 Budday, Ovaert, Holzapfel, Steinmann, Kuhl (bib7) 2019 Budday, Sommer, Birkl, Langkammer, Haybaeck, Kohnert, Bauer, Paulsen, Steinmann, Kuhl, Holzapfel (bib4) 2017; 48 He, Fan (bib32) 2023; 4 Moran, Smith, García (bib49) 2014; 47 Simo (bib66) 1987; 60 Nguyen, Jones, Boyce (bib53) 2007; 44 Pioletti, Rakotomanana, Benvenuti, Leyvraz (bib59) 1998; 31 Ouyang, Nauman, Shi (bib54) 2013; 7 Menichetti, Bartsoen, Depreitere, Vander Sloten, Famaey (bib46) 2021; 9 (bib78) 2023 Li, Zhou, Kleiven (bib43) 2021; 20 Nahum, Smith, Ward (bib50) 1977 Klinkel, Sansour, Wagner (bib42) 2005; 35 Nedjar (bib51) 2002; 191 Suter, Miller (bib70) 2011; 94 Reese (bib60) 2003; 40 de Rooij, Kuhl (bib11) 2016; 68 Holzapfel (bib38) 2000 Peña (bib56) 2011; 38 Limbert, Middleton (bib44) 2004; 41 Jin, Zhu, Mao, Shen, Yang (bib41) 2013; 46 De Rooij, Kuhl (bib12) 2018; 12 Zhou, Domel, Li, Grant, Kleiven, Camarillo, Zeineh (bib81) 2021; 38 Voyiadjis, Sumelka (bib75) 2019; 89 Holzapfel, Gasser (bib39) 2001; 190 Eskandari, Shafieian, Aghdam, Laksari (bib16) 2020; 75 He, Fan (bib31) 2023; 151 Reese, Govindjee (bib61) 1998; 35 Zhou, Wang, Jörgens, Li (bib83) 2022; 132 Comellas, Budday, Pelteret, Holzapfel, Steinmann (bib10) 2020; 369 Fung (bib22) 1994 Ionescu, Guilkey, Berzins, Kirby, Weiss (bib40) 2006; 128 Calvo, Peña, Martinez, Doblaré (bib8) 2007; 69 Garimella, Kraft (bib25) 2017; 33 Spencer (bib69) 1971 Merodio, Ogden (bib47) 2005; 40 He, Fan, Horstemeyer (bib35) 2024; 181 Simo (bib65) 1987; 60 Garimella, Menghani, Gerber, Sridhar, Kraft (bib26) 2019; 47 Peña, Peña, Doblaré (bib58) 2009; 46 Volokh (bib73) 2011; 4 Feng, Okamoto, Namani, Genin, Bayly (bib18) 2013; 23 Nedjar (bib52) 2007; 196 Sansour, Kollmann (bib63) 1998; 21 Anand, Ames (bib1) 2006; 22 Salzar, Treichler, Wardlaw, Weiss, Goeller (bib62) 2017; 34 Peña, Calvo, Martínez, Doblaré (bib57) 2008; 74 Franceschini, Bigoni, Regitnig, Holzapfel (bib21) 2006; 54 Elkin, Morrison (bib15) 2007 Balzani, Schröder, Gross (bib2) 2006; 2 Garcia-Gonzalez, Jérusalem, Garzon-Hernandez, Zaera, Arias (bib24) 2018; 112 He, Fan (bib30) 2022; 35 Budday, Sommer, Holzapfel, Steinmann, Kuhl (bib6) 2017; 74 Fathi, Hatefi Ardakani, Fatemi Dehaghani, Mohammadi (bib17) 2017; 322 Parivash, Goubran, Mills, Rezaii, Thaler, Wolman, Bian, Mitchell, Boldt, Douglas, Wilson, Choi, Xie, Yushkevich, Digiacomo, Wongsripuemtet, Parekh, Fiehler, Do (bib55) 2019; 36 Haldar, Pal (bib28) 2018; 81 Sansour, Karšaj, Sorić (bib64) 2006; 22 Weickenmeier, de Rooij, Budday, Steinmann, Ovaert, Kuhl (bib76) 2016; 42 Christian Gasser (bib9) 2011; 7 Dollé, III, Schloss, Yarmush (bib13) 2014; 2 Feng, Okamoto, Genin, Bayly (bib19) 2016; 61 He, Xia, Feng, Chen, Fan, Zhang (bib34) 2023; 141 Wu, Alshareef, Giudice, Panzer (bib79) 2019; 47 Zhao, Ford, Flashman, McAllister, Ji (bib80) 2016; 33 Zhou, Li, Domel, Dennis, Georgiadis, Liu, Raymond, Grant, Kleiven, Camarillo, Zeineh (bib82) 2022; 10 Du, Li, Wang, Zhuang, Liu (bib14) 2022; 242 Hardy, Mason, Foster, Shah, Kopacz, Yang, King, Bishop, Bey, Anderst, Tashman (bib29) 2007; 51 Voyiadjis, Samadi-Dooki (bib74) 2018; 83 He (10.1016/j.mechmat.2025.105430_bib30) 2022; 35 Garcia-Gonzalez (10.1016/j.mechmat.2025.105430_bib24) 2018; 112 Calvo (10.1016/j.mechmat.2025.105430_bib8) 2007; 69 Klinkel (10.1016/j.mechmat.2025.105430_bib42) 2005; 35 Nedjar (10.1016/j.mechmat.2025.105430_bib52) 2007; 196 Christian Gasser (10.1016/j.mechmat.2025.105430_bib9) 2011; 7 Elkin (10.1016/j.mechmat.2025.105430_bib15) 2007 Feng (10.1016/j.mechmat.2025.105430_bib19) 2016; 61 Haldar (10.1016/j.mechmat.2025.105430_bib28) 2018; 81 Comellas (10.1016/j.mechmat.2025.105430_bib10) 2020; 369 Eskandari (10.1016/j.mechmat.2025.105430_bib16) 2020; 75 Feng (10.1016/j.mechmat.2025.105430_bib20) 2017; 71 Ionescu (10.1016/j.mechmat.2025.105430_bib40) 2006; 128 Reese (10.1016/j.mechmat.2025.105430_bib60) 2003; 40 Zhu (10.1016/j.mechmat.2025.105430_bib84) 2019; 230 Franceschini (10.1016/j.mechmat.2025.105430_bib21) 2006; 54 Simo (10.1016/j.mechmat.2025.105430_bib67) 1992; 99 Ganpule (10.1016/j.mechmat.2025.105430_bib23) 2018; 28 Wu (10.1016/j.mechmat.2025.105430_bib79) 2019; 47 Simo (10.1016/j.mechmat.2025.105430_bib66) 1987; 60 Upadhyay (10.1016/j.mechmat.2025.105430_bib72) 2020; 135 Holzapfel (10.1016/j.mechmat.2025.105430_bib39) 2001; 190 Weizel (10.1016/j.mechmat.2025.105430_bib77) 2023; 138 Zhou (10.1016/j.mechmat.2025.105430_bib81) 2021; 38 Fathi (10.1016/j.mechmat.2025.105430_bib17) 2017; 322 Zhou (10.1016/j.mechmat.2025.105430_bib83) 2022; 132 Holzapfel (10.1016/j.mechmat.2025.105430_bib37) 2000; 455 Balzani (10.1016/j.mechmat.2025.105430_bib2) 2006; 2 He (10.1016/j.mechmat.2025.105430_bib33) 2022; 144 Peña (10.1016/j.mechmat.2025.105430_bib56) 2011; 38 Sansour (10.1016/j.mechmat.2025.105430_bib64) 2006; 22 Zhou (10.1016/j.mechmat.2025.105430_bib82) 2022; 10 Miyazaki (10.1016/j.mechmat.2025.105430_bib48) 2012; 22 Hardy (10.1016/j.mechmat.2025.105430_bib29) 2007; 51 Holzapfel (10.1016/j.mechmat.2025.105430_bib38) 2000 Gasser (10.1016/j.mechmat.2025.105430_bib27) 2006; 3 Sansour (10.1016/j.mechmat.2025.105430_bib63) 1998; 21 Moran (10.1016/j.mechmat.2025.105430_bib49) 2014; 47 Budday (10.1016/j.mechmat.2025.105430_bib4) 2017; 48 Jin (10.1016/j.mechmat.2025.105430_bib41) 2013; 46 Reese (10.1016/j.mechmat.2025.105430_bib61) 1998; 35 Anand (10.1016/j.mechmat.2025.105430_bib1) 2006; 22 He (10.1016/j.mechmat.2025.105430_bib35) 2024; 181 (10.1016/j.mechmat.2025.105430_bib78) 2023 Nahum (10.1016/j.mechmat.2025.105430_bib50) 1977 Garimella (10.1016/j.mechmat.2025.105430_bib25) 2017; 33 Simo (10.1016/j.mechmat.2025.105430_bib65) 1987; 60 Fung (10.1016/j.mechmat.2025.105430_bib22) 1994 Maugin (10.1016/j.mechmat.2025.105430_bib45) 1994; 10 Parivash (10.1016/j.mechmat.2025.105430_bib55) 2019; 36 Baugh (10.1016/j.mechmat.2025.105430_bib3) 2012; 6 Peña (10.1016/j.mechmat.2025.105430_bib58) 2009; 46 Simo (10.1016/j.mechmat.2025.105430_bib68) 1998 Budday (10.1016/j.mechmat.2025.105430_bib6) 2017; 74 Budday (10.1016/j.mechmat.2025.105430_bib5) 2017; 60 Merodio (10.1016/j.mechmat.2025.105430_bib47) 2005; 40 Salzar (10.1016/j.mechmat.2025.105430_bib62) 2017; 34 Garimella (10.1016/j.mechmat.2025.105430_bib26) 2019; 47 Voyiadjis (10.1016/j.mechmat.2025.105430_bib75) 2019; 89 Feng (10.1016/j.mechmat.2025.105430_bib18) 2013; 23 Nedjar (10.1016/j.mechmat.2025.105430_bib51) 2002; 191 Voyiadjis (10.1016/j.mechmat.2025.105430_bib74) 2018; 83 Li (10.1016/j.mechmat.2025.105430_bib43) 2021; 20 Menichetti (10.1016/j.mechmat.2025.105430_bib46) 2021; 9 Budday (10.1016/j.mechmat.2025.105430_bib7) 2019 Limbert (10.1016/j.mechmat.2025.105430_bib44) 2004; 41 Spencer (10.1016/j.mechmat.2025.105430_bib69) 1971 He (10.1016/j.mechmat.2025.105430_bib34) 2023; 141 He (10.1016/j.mechmat.2025.105430_bib32) 2023; 4 Dollé (10.1016/j.mechmat.2025.105430_bib13) 2014; 2 Nguyen (10.1016/j.mechmat.2025.105430_bib53) 2007; 44 de Rooij (10.1016/j.mechmat.2025.105430_bib11) 2016; 68 Du (10.1016/j.mechmat.2025.105430_bib14) 2022; 242 Weickenmeier (10.1016/j.mechmat.2025.105430_bib76) 2016; 42 Zhao (10.1016/j.mechmat.2025.105430_bib80) 2016; 33 Pioletti (10.1016/j.mechmat.2025.105430_bib59) 1998; 31 De Rooij (10.1016/j.mechmat.2025.105430_bib12) 2018; 12 Peña (10.1016/j.mechmat.2025.105430_bib57) 2008; 74 He (10.1016/j.mechmat.2025.105430_bib31) 2023; 151 Ouyang (10.1016/j.mechmat.2025.105430_bib54) 2013; 7 Volokh (10.1016/j.mechmat.2025.105430_bib73) 2011; 4 Suter (10.1016/j.mechmat.2025.105430_bib70) 2011; 94 |
| References_xml | – volume: 20 start-page: 403 year: 2021 end-page: 431 ident: bib43 article-title: An anatomically detailed and personalizable head injury model: significance of brain and white matter tract morphological variability on strain publication-title: Biomech. Model. Mechanobiol. – volume: 2 start-page: 609 year: 2006 end-page: 618 ident: bib2 article-title: Simulation of discontinuous damage incorporating residual stresses in circumferentially overstretched atherosclerotic arteries publication-title: Acta Biomater. – start-page: 239 year: 1971 end-page: 353 ident: bib69 article-title: Theory of invariants publication-title: Mathematics – volume: 47 start-page: 1889 year: 2019 end-page: 1907 ident: bib26 article-title: Embedded finite elements for modeling axonal injury publication-title: Ann. Biomed. Eng. – volume: 455 year: 2000 ident: bib37 publication-title: Nonlinear solid mechanics : a continuum approach for engineering – volume: 28 start-page: 127 year: 2018 end-page: 139 ident: bib23 article-title: Effect of bulk modulus on deformation of the brain under rotational accelerations publication-title: Shock Waves – volume: 47 start-page: 3762 year: 2014 end-page: 3766 ident: bib49 article-title: Fitted hyperelastic parameters for human brain tissue from reported tension, compression, and shear tests publication-title: J. Biomech. – volume: 81 start-page: 178 year: 2018 end-page: 194 ident: bib28 article-title: Rate dependent anisotropic constitutive modeling of brain tissue undergoing large deformation publication-title: J. Mech. Behav. Biomed. Mater. – volume: 369 year: 2020 ident: bib10 article-title: Modeling the porous and viscous responses of human brain tissue behavior publication-title: Comput. Methods Appl. Mech. Eng. – volume: 31 start-page: 753 year: 1998 end-page: 757 ident: bib59 article-title: Viscoelastic constitutive law in large deformations: application to human knee ligaments and tendons publication-title: J. Biomech. – year: 2019 ident: bib7 article-title: Fifty Shades of Brain: a Review on the Mechanical Testing and Modeling of Brain Tissue – volume: 41 start-page: 4237 year: 2004 end-page: 4260 ident: bib44 article-title: A transversely isotropic viscohyperelastic material application to the modeling of biological soft connective tissues publication-title: Int. J. Solid Struct. – volume: 46 start-page: 2795 year: 2013 end-page: 2801 ident: bib41 article-title: A comprehensive experimental study on material properties of human brain tissue publication-title: J. Biomech. – volume: 35 start-page: 409 year: 2005 end-page: 417 ident: bib42 article-title: An anisotropic fibre-matrix material model at finite elastic-plastic strains publication-title: Comput. Mech. – volume: 44 start-page: 8366 year: 2007 end-page: 8389 ident: bib53 article-title: Modeling the anisotropic finite-deformation viscoelastic behavior of soft fiber-reinforced composites publication-title: Int. J. Solid Struct. – volume: 40 start-page: 951 year: 2003 end-page: 980 ident: bib60 article-title: Meso-macro modelling of fibre-reinforced rubber-like composites exhibiting large elastoplastic deformation publication-title: Int. J. Solid Struct. – volume: 128 start-page: 917 year: 2006 end-page: 924 ident: bib40 article-title: Simulation of soft tissue failure using the material point method publication-title: J. Biomech. Eng. – volume: 135 year: 2020 ident: bib72 article-title: Visco-hyperelastic constitutive modeling of strain rate sensitive soft materials publication-title: J. Mech. Phys. Solid. – volume: 75 year: 2020 ident: bib16 article-title: A knowledge map analysis of brain biomechanics: current evidence and future directions publication-title: Clin. BioMech. – volume: 22 start-page: 2346 year: 2006 end-page: 2365 ident: bib64 article-title: A formulation of anisotropic continuum elastoplasticity at finite strains. Part I: modelling publication-title: Int. J. Plast. – volume: 144 year: 2022 ident: bib33 article-title: Mesoscale simulation-based parametric study of damage potential in brain tissue using hyperelastic and internal state variable models publication-title: J. Biomech. Eng. – volume: 138 year: 2023 ident: bib77 article-title: Time-dependent hyper-viscoelastic parameter identification of human articular cartilage and substitute materials publication-title: J. Mech. Behav. Biomed. Mater. – volume: 33 start-page: 1834 year: 2016 end-page: 1847 ident: bib80 article-title: White matter injury susceptibility via fiber strain evaluation using whole-brain tractography publication-title: J. Neurotrauma – volume: 132 year: 2022 ident: bib83 article-title: Fiber orientation downsampling compromises the computation of white matter tract-related deformation publication-title: J. Mech. Behav. Biomed. Mater. – volume: 54 start-page: 2592 year: 2006 end-page: 2620 ident: bib21 article-title: Brain tissue deforms similarly to filled elastomers and follows consolidation theory publication-title: J. Mech. Phys. Solid. – volume: 9 start-page: 757 year: 2021 ident: bib46 article-title: A machine learning approach to investigate the uncertainty of tissue-level injury metrics for cerebral contusion publication-title: Front. Bioeng. Biotechnol. – volume: 10 year: 2022 ident: bib82 article-title: The presence of the temporal horn exacerbates the vulnerability of hippocampus during head impacts publication-title: Front. Bioeng. Biotechnol. – volume: 22 start-page: 1123 year: 2006 end-page: 1170 ident: bib1 article-title: On modeling the micro-indentation response of an amorphous polymer publication-title: Int. J. Plast. – volume: 35 start-page: 705 year: 2022 end-page: 715 ident: bib30 article-title: Investigating the head impact force-induced evolution of hyperphosphorylated tau proteins in brain tissue through mechanical mesoscale finite element simulation publication-title: Acta Mech. Solida Sin. – volume: 74 start-page: 1198 year: 2008 end-page: 1218 ident: bib57 article-title: On finite-strain damage of viscoelastic-fibred materials. Application to soft biological tissues publication-title: Int. J. Numer. Methods Eng. – volume: 21 start-page: 512 year: 1998 end-page: 525 ident: bib63 article-title: Large viscoplastic deformations of shells. Theory and finite element formulation publication-title: Comput. Mech. – year: 1998 ident: bib68 article-title: Computational inelasticity publication-title: Computational Inelasticity – volume: 61 start-page: 554 year: 2016 end-page: 566 ident: bib19 article-title: On the accuracy and fitting of transversely isotropic material models publication-title: J. Mech. Behav. Biomed. Mater. – year: 1994 ident: bib22 article-title: A First Course in Continuum Mechanics for Physical and Biological Engineers and Scientists – volume: 230 start-page: 2125 year: 2019 end-page: 2135 ident: bib84 article-title: A visco-hyperelastic model of brain tissue incorporating both tension/compression asymmetry and volume compressibility publication-title: Acta Mech. – year: 2007 ident: bib15 article-title: Region-specific tolerance criteria for the living brain publication-title: SAE Technical Papers – volume: 33 year: 2017 ident: bib25 article-title: Modeling the mechanics of axonal fiber tracts using the embedded finite element method publication-title: International Journal for Numerical Methods in Biomedical Engineering – volume: 69 start-page: 2036 year: 2007 end-page: 2057 ident: bib8 article-title: An uncoupled directional damage model for fibred biological soft tissues. Formulation and computational aspects publication-title: Int. J. Numer. Methods Eng. – volume: 6 start-page: 244 year: 2012 end-page: 254 ident: bib3 article-title: Chronic traumatic encephalopathy: neurodegeneration following repetitive concussive and subconcussive brain trauma publication-title: Brain Imaging and Behavior – volume: 112 start-page: 209 year: 2018 end-page: 224 ident: bib24 article-title: A continuum mechanics constitutive framework for transverse isotropic soft tissues publication-title: J. Mech. Phys. Solid. – volume: 4 start-page: 1582 year: 2011 end-page: 1594 ident: bib73 article-title: Modeling failure of soft anisotropic materials with application to arteries publication-title: J. Mech. Behav. Biomed. Mater. – volume: 38 start-page: 1662 year: 2021 end-page: 1669 ident: bib81 article-title: White matter tract-oriented deformation is dependent on real-time axonal fiber orientation publication-title: J. Neurotrauma – year: 2000 ident: bib38 article-title: Nonlinear Solid Mechanics: a Continuum Approach for Engineering Science – volume: 190 start-page: 4379 year: 2001 end-page: 4403 ident: bib39 article-title: A viscoelastic model for fiber-reinforced composites at finite strains: continuum basis, computational aspects and applications publication-title: Comput. Methods Appl. Mech. Eng. – volume: 196 start-page: 1745 year: 2007 end-page: 1756 ident: bib52 article-title: An anisotropic viscoelastic fibre–matrix model at finite strains: continuum formulation and computational aspects publication-title: Comput. Methods Appl. Mech. Eng. – volume: 2 start-page: 106 year: 2014 end-page: 117 ident: bib13 publication-title: Brain-on-a-chip microsystem for investigating traumatic brain injury: Axon diameter and mitochondrial membrane changes play a significant role in axonal response to strain injuries – volume: 46 start-page: 1727 year: 2009 end-page: 1735 ident: bib58 article-title: On the mullins effect and hysteresis of fibered biological materials: a comparison between continuous and discontinuous damage models publication-title: Int. J. Solid Struct. – volume: 74 start-page: 463 year: 2017 end-page: 476 ident: bib6 article-title: Viscoelastic parameter identification of human brain tissue publication-title: J. Mech. Behav. Biomed. Mater. – volume: 60 start-page: 315 year: 2017 end-page: 329 ident: bib5 article-title: Rheological characterization of human brain tissue publication-title: Acta Biomater. – volume: 68 year: 2016 ident: bib11 article-title: Constitutive modeling of brain tissue: current perspectives. In applied mechanics reviews publication-title: Am. Soc. Mech. Eng. – volume: 23 start-page: 117 year: 2013 end-page: 132 ident: bib18 article-title: Measurements of mechanical anisotropy in brain tissue and implications for transversely isotropic material models of white matter publication-title: J. Mech. Behav. Biomed. Mater. – year: 1977 ident: bib50 article-title: Intracranial Pressure Dynamics During Head Impact – volume: 35 start-page: 3455 year: 1998 end-page: 3482 ident: bib61 article-title: A theory of finite viscoelasticity and numerical aspects publication-title: Int. J. Solid Struct. – volume: 242 year: 2022 ident: bib14 article-title: Revealing the nonlinear mechanical behavior of white matter brain tissue by analyzing the asynchronous deformation and damage of matrix and axonal fibers publication-title: Int. J. Solid Struct. – volume: 94 start-page: 91 year: 2011 end-page: 101 ident: bib70 article-title: The emerging role of forces in axonal elongation publication-title: Prog. Neurobiol. – volume: 48 start-page: 319 year: 2017 end-page: 340 ident: bib4 article-title: Mechanical characterization of human brain tissue publication-title: Acta Biomater. – volume: 181 year: 2024 ident: bib35 article-title: Embedded finite element modeling of the mechanics of brain axonal fiber tracts under head impact conditions publication-title: Comput. Biol. Med. – volume: 42 start-page: 265 year: 2016 end-page: 272 ident: bib76 article-title: Brain stiffness increases with myelin content publication-title: Acta Biomater. – volume: 7 year: 2013 ident: bib54 article-title: Contribution of cytoskeletal elements to the axonal mechanical properties publication-title: J. Biol. Eng. – volume: 322 start-page: 262 year: 2017 end-page: 295 ident: bib17 article-title: A finite strain integral-type anisotropic damage model for fiber-reinforced materials: application in soft biological tissues publication-title: Comput. Methods Appl. Mech. Eng. – volume: 141 year: 2023 ident: bib34 article-title: Modeling the damage-induced softening behavior of brain white matter using a coupled hyperelasticty-damage model publication-title: J. Mech. Behav. Biomed. Mater. – volume: 99 start-page: 61 year: 1992 end-page: 112 ident: bib67 article-title: Algorithms for static and dynamic multiplicative plasticity that preserve the classical return mapping schemes of the infinitesimal theory publication-title: Comput. Methods Appl. Mech. Eng. – volume: 36 start-page: 2762 year: 2019 end-page: 2773 ident: bib55 publication-title: Longitudinal Changes in Hippocampal Subfield Volume Associated with Collegiate Football – volume: 83 start-page: 63 year: 2018 end-page: 78 ident: bib74 article-title: Hyperelastic modeling of the human brain tissue: effects of no-slip boundary condition and compressibility on the uniaxial deformation publication-title: J. Mech. Behav. Biomed. Mater. – volume: 7 start-page: 2457 year: 2011 end-page: 2466 ident: bib9 article-title: An irreversible constitutive model for fibrous soft biological tissue: a 3-D microfiber approach with demonstrative application to abdominal aortic aneurysms publication-title: Acta Biomater. – volume: 151 year: 2023 ident: bib31 article-title: A transversely isotropic viscohyperelastic-damage model for the brain tissue with strain rate sensitivity publication-title: J. Biomech. – volume: 10 start-page: 393 year: 1994 end-page: 408 ident: bib45 article-title: Eshelby stress in elastoplasticity and ductile fracture publication-title: Int. J. Plast. – volume: 40 start-page: 213 year: 2005 end-page: 227 ident: bib47 article-title: Mechanical response of fiber-reinforced incompressible non-linearly elastic solids publication-title: Int. J. Non Lin. Mech. – volume: 191 start-page: 1541 year: 2002 end-page: 1562 ident: bib51 article-title: Frameworks for finite strain viscoelastic-plasticity based on multiplicative decompositions. Part I: continuum formulations publication-title: Comput. Methods Appl. Mech. Eng. – year: 2023 ident: bib78 article-title: Global Status Report on Road Safety 2023 – volume: 89 start-page: 209 year: 2019 end-page: 216 ident: bib75 article-title: Brain modelling in the framework of anisotropic hyperelasticity with time fractional damage evolution governed by the caputo-almeida fractional derivative publication-title: J. Mech. Behav. Biomed. Mater. – volume: 3 start-page: 15 year: 2006 end-page: 35 ident: bib27 article-title: Hyperelastic modelling of arterial layers with distributed collagen fibre orientations publication-title: J. R. Soc. Interface – volume: 38 start-page: 610 year: 2011 end-page: 615 ident: bib56 article-title: Damage functions of the internal variables for soft biological fibred tissues publication-title: Mech. Res. Commun. – volume: 22 start-page: 1718 year: 2012 end-page: 1723 ident: bib48 publication-title: MEASUREMENT OF PRESSURE RESPONSES IN A PHYSICAL MODEL OF A HUMAN HEAD WITH HIGH SHAPE FIDELITY BASED ON CT/MRI DATA – volume: 60 start-page: 153 year: 1987 end-page: 173 ident: bib65 article-title: On a fully three-dimensional finite-strain viscoelastic damage model: formulation and computational aspects publication-title: Comput. Methods Appl. Mech. Eng. – volume: 12 year: 2018 ident: bib12 article-title: Physical biology of axonal damage publication-title: Front. Cell. Neurosci. – volume: 51 start-page: 17 year: 2007 ident: bib29 article-title: A study of the response of the human cadaver head to impact publication-title: Stapp Car Crash Journal – volume: 4 year: 2023 ident: bib32 article-title: Modeling the damage initiation of white matter brain tissue during indentation publication-title: ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE) – volume: 60 start-page: 153 year: 1987 end-page: 173 ident: bib66 article-title: On a fully three-dimensional finite-strain viscoelastic damage model: formulation and computational aspects publication-title: Comput. Methods Appl. Mech. Eng. – volume: 71 start-page: 407 year: 2017 end-page: 415 ident: bib20 article-title: A longitudinal study of the mechanical properties of injured brain tissue in a mouse model publication-title: J. Mech. Behav. Biomed. Mater. – volume: 34 start-page: 1589 year: 2017 end-page: 1602 ident: bib62 publication-title: Experimental Investigation of Cavitation as a Possible Damage Mechanism in Blast-Induced Traumatic Brain Injury in Post-Mortem Human Subject Heads – volume: 47 start-page: 1908 year: 2019 end-page: 1922 ident: bib79 article-title: Explicit modeling of white matter axonal fiber tracts in a finite element brain model publication-title: Ann. Biomed. Eng. – volume: 81 start-page: 178 year: 2018 ident: 10.1016/j.mechmat.2025.105430_bib28 article-title: Rate dependent anisotropic constitutive modeling of brain tissue undergoing large deformation publication-title: J. Mech. Behav. Biomed. Mater. doi: 10.1016/j.jmbbm.2017.12.021 – volume: 54 start-page: 2592 issue: 12 year: 2006 ident: 10.1016/j.mechmat.2025.105430_bib21 article-title: Brain tissue deforms similarly to filled elastomers and follows consolidation theory publication-title: J. Mech. Phys. Solid. doi: 10.1016/j.jmps.2006.05.004 – volume: 20 start-page: 403 issue: 2 year: 2021 ident: 10.1016/j.mechmat.2025.105430_bib43 article-title: An anatomically detailed and personalizable head injury model: significance of brain and white matter tract morphological variability on strain publication-title: Biomech. Model. Mechanobiol. doi: 10.1007/s10237-020-01391-8 – year: 2023 ident: 10.1016/j.mechmat.2025.105430_bib78 – volume: 7 issue: 1 year: 2013 ident: 10.1016/j.mechmat.2025.105430_bib54 article-title: Contribution of cytoskeletal elements to the axonal mechanical properties publication-title: J. Biol. Eng. doi: 10.1186/1754-1611-7-21 – volume: 74 start-page: 1198 issue: 7 year: 2008 ident: 10.1016/j.mechmat.2025.105430_bib57 article-title: On finite-strain damage of viscoelastic-fibred materials. Application to soft biological tissues publication-title: Int. J. Numer. Methods Eng. doi: 10.1002/nme.2212 – volume: 47 start-page: 1889 issue: 9 year: 2019 ident: 10.1016/j.mechmat.2025.105430_bib26 article-title: Embedded finite elements for modeling axonal injury publication-title: Ann. Biomed. Eng. doi: 10.1007/s10439-018-02166-0 – volume: 34 start-page: 1589 issue: 8 year: 2017 ident: 10.1016/j.mechmat.2025.105430_bib62 publication-title: Experimental Investigation of Cavitation as a Possible Damage Mechanism in Blast-Induced Traumatic Brain Injury in Post-Mortem Human Subject Heads – year: 2007 ident: 10.1016/j.mechmat.2025.105430_bib15 article-title: Region-specific tolerance criteria for the living brain publication-title: SAE Technical Papers doi: 10.4271/2007-22-0005 – volume: 36 start-page: 2762 issue: 19 year: 2019 ident: 10.1016/j.mechmat.2025.105430_bib55 publication-title: Longitudinal Changes in Hippocampal Subfield Volume Associated with Collegiate Football – volume: 38 start-page: 1662 issue: 12 year: 2021 ident: 10.1016/j.mechmat.2025.105430_bib81 article-title: White matter tract-oriented deformation is dependent on real-time axonal fiber orientation publication-title: J. Neurotrauma doi: 10.1089/neu.2020.7412 – year: 2000 ident: 10.1016/j.mechmat.2025.105430_bib38 – volume: 151 year: 2023 ident: 10.1016/j.mechmat.2025.105430_bib31 article-title: A transversely isotropic viscohyperelastic-damage model for the brain tissue with strain rate sensitivity publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2023.111554 – volume: 89 start-page: 209 year: 2019 ident: 10.1016/j.mechmat.2025.105430_bib75 article-title: Brain modelling in the framework of anisotropic hyperelasticity with time fractional damage evolution governed by the caputo-almeida fractional derivative publication-title: J. Mech. Behav. Biomed. Mater. doi: 10.1016/j.jmbbm.2018.09.029 – volume: 135 year: 2020 ident: 10.1016/j.mechmat.2025.105430_bib72 article-title: Visco-hyperelastic constitutive modeling of strain rate sensitive soft materials publication-title: J. Mech. Phys. Solid. doi: 10.1016/j.jmps.2019.103777 – volume: 138 year: 2023 ident: 10.1016/j.mechmat.2025.105430_bib77 article-title: Time-dependent hyper-viscoelastic parameter identification of human articular cartilage and substitute materials publication-title: J. Mech. Behav. Biomed. Mater. doi: 10.1016/j.jmbbm.2022.105618 – volume: 7 start-page: 2457 issue: 6 year: 2011 ident: 10.1016/j.mechmat.2025.105430_bib9 article-title: An irreversible constitutive model for fibrous soft biological tissue: a 3-D microfiber approach with demonstrative application to abdominal aortic aneurysms publication-title: Acta Biomater. doi: 10.1016/j.actbio.2011.02.015 – volume: 47 start-page: 1908 issue: 9 year: 2019 ident: 10.1016/j.mechmat.2025.105430_bib79 article-title: Explicit modeling of white matter axonal fiber tracts in a finite element brain model publication-title: Ann. Biomed. Eng. doi: 10.1007/s10439-019-02239-8 – volume: 33 start-page: 1834 issue: 20 year: 2016 ident: 10.1016/j.mechmat.2025.105430_bib80 article-title: White matter injury susceptibility via fiber strain evaluation using whole-brain tractography publication-title: J. Neurotrauma doi: 10.1089/neu.2015.4239 – volume: 61 start-page: 554 year: 2016 ident: 10.1016/j.mechmat.2025.105430_bib19 article-title: On the accuracy and fitting of transversely isotropic material models publication-title: J. Mech. Behav. Biomed. Mater. doi: 10.1016/j.jmbbm.2016.04.024 – volume: 242 year: 2022 ident: 10.1016/j.mechmat.2025.105430_bib14 article-title: Revealing the nonlinear mechanical behavior of white matter brain tissue by analyzing the asynchronous deformation and damage of matrix and axonal fibers publication-title: Int. J. Solid Struct. doi: 10.1016/j.ijsolstr.2022.111554 – volume: 6 start-page: 244 issue: 2 year: 2012 ident: 10.1016/j.mechmat.2025.105430_bib3 article-title: Chronic traumatic encephalopathy: neurodegeneration following repetitive concussive and subconcussive brain trauma publication-title: Brain Imaging and Behavior doi: 10.1007/s11682-012-9164-5 – volume: 38 start-page: 610 issue: 8 year: 2011 ident: 10.1016/j.mechmat.2025.105430_bib56 article-title: Damage functions of the internal variables for soft biological fibred tissues publication-title: Mech. Res. Commun. doi: 10.1016/j.mechrescom.2011.09.002 – volume: 190 start-page: 4379 issue: 34 year: 2001 ident: 10.1016/j.mechmat.2025.105430_bib39 article-title: A viscoelastic model for fiber-reinforced composites at finite strains: continuum basis, computational aspects and applications publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/S0045-7825(00)00323-6 – volume: 191 start-page: 1541 issue: 15–16 year: 2002 ident: 10.1016/j.mechmat.2025.105430_bib51 article-title: Frameworks for finite strain viscoelastic-plasticity based on multiplicative decompositions. Part I: continuum formulations publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/S0045-7825(01)00337-1 – volume: 22 start-page: 1123 issue: 6 year: 2006 ident: 10.1016/j.mechmat.2025.105430_bib1 article-title: On modeling the micro-indentation response of an amorphous polymer publication-title: Int. J. Plast. doi: 10.1016/j.ijplas.2005.07.006 – volume: 455 year: 2000 ident: 10.1016/j.mechmat.2025.105430_bib37 publication-title: Nonlinear solid mechanics : a continuum approach for engineering – volume: 3 start-page: 15 issue: 6 year: 2006 ident: 10.1016/j.mechmat.2025.105430_bib27 article-title: Hyperelastic modelling of arterial layers with distributed collagen fibre orientations publication-title: J. R. Soc. Interface doi: 10.1098/rsif.2005.0073 – volume: 22 start-page: 1718 issue: 9–11 year: 2012 ident: 10.1016/j.mechmat.2025.105430_bib48 publication-title: MEASUREMENT OF PRESSURE RESPONSES IN A PHYSICAL MODEL OF A HUMAN HEAD WITH HIGH SHAPE FIDELITY BASED ON CT/MRI DATA – volume: 112 start-page: 209 year: 2018 ident: 10.1016/j.mechmat.2025.105430_bib24 article-title: A continuum mechanics constitutive framework for transverse isotropic soft tissues publication-title: J. Mech. Phys. Solid. doi: 10.1016/j.jmps.2017.12.001 – volume: 22 start-page: 2346 issue: 12 year: 2006 ident: 10.1016/j.mechmat.2025.105430_bib64 article-title: A formulation of anisotropic continuum elastoplasticity at finite strains. Part I: modelling publication-title: Int. J. Plast. doi: 10.1016/j.ijplas.2006.04.002 – volume: 4 start-page: 1582 issue: 8 year: 2011 ident: 10.1016/j.mechmat.2025.105430_bib73 article-title: Modeling failure of soft anisotropic materials with application to arteries publication-title: J. Mech. Behav. Biomed. Mater. doi: 10.1016/j.jmbbm.2011.01.002 – volume: 48 start-page: 319 year: 2017 ident: 10.1016/j.mechmat.2025.105430_bib4 article-title: Mechanical characterization of human brain tissue publication-title: Acta Biomater. doi: 10.1016/j.actbio.2016.10.036 – volume: 128 start-page: 917 issue: 6 year: 2006 ident: 10.1016/j.mechmat.2025.105430_bib40 article-title: Simulation of soft tissue failure using the material point method publication-title: J. Biomech. Eng. doi: 10.1115/1.2372490 – volume: 2 start-page: 609 issue: 6 year: 2006 ident: 10.1016/j.mechmat.2025.105430_bib2 article-title: Simulation of discontinuous damage incorporating residual stresses in circumferentially overstretched atherosclerotic arteries publication-title: Acta Biomater. doi: 10.1016/j.actbio.2006.06.005 – volume: 46 start-page: 1727 issue: 7–8 year: 2009 ident: 10.1016/j.mechmat.2025.105430_bib58 article-title: On the mullins effect and hysteresis of fibered biological materials: a comparison between continuous and discontinuous damage models publication-title: Int. J. Solid Struct. doi: 10.1016/j.ijsolstr.2008.12.015 – volume: 369 year: 2020 ident: 10.1016/j.mechmat.2025.105430_bib10 article-title: Modeling the porous and viscous responses of human brain tissue behavior publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2020.113128 – volume: 35 start-page: 705 issue: 4 year: 2022 ident: 10.1016/j.mechmat.2025.105430_bib30 article-title: Investigating the head impact force-induced evolution of hyperphosphorylated tau proteins in brain tissue through mechanical mesoscale finite element simulation publication-title: Acta Mech. Solida Sin. doi: 10.1007/s10338-022-00309-4 – volume: 132 year: 2022 ident: 10.1016/j.mechmat.2025.105430_bib83 article-title: Fiber orientation downsampling compromises the computation of white matter tract-related deformation publication-title: J. Mech. Behav. Biomed. Mater. doi: 10.1016/j.jmbbm.2022.105294 – volume: 51 start-page: 17 issue: October year: 2007 ident: 10.1016/j.mechmat.2025.105430_bib29 article-title: A study of the response of the human cadaver head to impact publication-title: Stapp Car Crash Journal – year: 2019 ident: 10.1016/j.mechmat.2025.105430_bib7 – volume: 60 start-page: 315 year: 2017 ident: 10.1016/j.mechmat.2025.105430_bib5 article-title: Rheological characterization of human brain tissue publication-title: Acta Biomater. doi: 10.1016/j.actbio.2017.06.024 – volume: 10 start-page: 393 issue: 4 year: 1994 ident: 10.1016/j.mechmat.2025.105430_bib45 article-title: Eshelby stress in elastoplasticity and ductile fracture publication-title: Int. J. Plast. doi: 10.1016/0749-6419(94)90040-X – volume: 21 start-page: 512 issue: 6 year: 1998 ident: 10.1016/j.mechmat.2025.105430_bib63 article-title: Large viscoplastic deformations of shells. Theory and finite element formulation publication-title: Comput. Mech. doi: 10.1007/s004660050329 – volume: 99 start-page: 61 issue: 1 year: 1992 ident: 10.1016/j.mechmat.2025.105430_bib67 article-title: Algorithms for static and dynamic multiplicative plasticity that preserve the classical return mapping schemes of the infinitesimal theory publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/0045-7825(92)90123-2 – volume: 42 start-page: 265 year: 2016 ident: 10.1016/j.mechmat.2025.105430_bib76 article-title: Brain stiffness increases with myelin content publication-title: Acta Biomater. doi: 10.1016/j.actbio.2016.07.040 – year: 1994 ident: 10.1016/j.mechmat.2025.105430_bib22 – volume: 40 start-page: 951 issue: 4 year: 2003 ident: 10.1016/j.mechmat.2025.105430_bib60 article-title: Meso-macro modelling of fibre-reinforced rubber-like composites exhibiting large elastoplastic deformation publication-title: Int. J. Solid Struct. doi: 10.1016/S0020-7683(02)00602-9 – volume: 28 start-page: 127 year: 2018 ident: 10.1016/j.mechmat.2025.105430_bib23 article-title: Effect of bulk modulus on deformation of the brain under rotational accelerations publication-title: Shock Waves doi: 10.1007/s00193-017-0791-z – volume: 44 start-page: 8366 issue: 25–26 year: 2007 ident: 10.1016/j.mechmat.2025.105430_bib53 article-title: Modeling the anisotropic finite-deformation viscoelastic behavior of soft fiber-reinforced composites publication-title: Int. J. Solid Struct. doi: 10.1016/j.ijsolstr.2007.06.020 – volume: 47 start-page: 3762 issue: 15 year: 2014 ident: 10.1016/j.mechmat.2025.105430_bib49 article-title: Fitted hyperelastic parameters for human brain tissue from reported tension, compression, and shear tests publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2014.09.030 – volume: 2 start-page: 106 issue: 2 year: 2014 ident: 10.1016/j.mechmat.2025.105430_bib13 publication-title: Brain-on-a-chip microsystem for investigating traumatic brain injury: Axon diameter and mitochondrial membrane changes play a significant role in axonal response to strain injuries – volume: 322 start-page: 262 year: 2017 ident: 10.1016/j.mechmat.2025.105430_bib17 article-title: A finite strain integral-type anisotropic damage model for fiber-reinforced materials: application in soft biological tissues publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2017.04.009 – volume: 41 start-page: 4237 issue: 15 year: 2004 ident: 10.1016/j.mechmat.2025.105430_bib44 article-title: A transversely isotropic viscohyperelastic material application to the modeling of biological soft connective tissues publication-title: Int. J. Solid Struct. doi: 10.1016/j.ijsolstr.2004.02.057 – volume: 31 start-page: 753 issue: 8 year: 1998 ident: 10.1016/j.mechmat.2025.105430_bib59 article-title: Viscoelastic constitutive law in large deformations: application to human knee ligaments and tendons publication-title: J. Biomech. doi: 10.1016/S0021-9290(98)00077-3 – volume: 33 issue: 5 year: 2017 ident: 10.1016/j.mechmat.2025.105430_bib25 article-title: Modeling the mechanics of axonal fiber tracts using the embedded finite element method publication-title: International Journal for Numerical Methods in Biomedical Engineering doi: 10.1002/cnm.2823 – volume: 68 issue: Issue 1 year: 2016 ident: 10.1016/j.mechmat.2025.105430_bib11 article-title: Constitutive modeling of brain tissue: current perspectives. In applied mechanics reviews publication-title: Am. Soc. Mech. Eng. – volume: 94 start-page: 91 issue: 2 year: 2011 ident: 10.1016/j.mechmat.2025.105430_bib70 article-title: The emerging role of forces in axonal elongation publication-title: Prog. Neurobiol. doi: 10.1016/j.pneurobio.2011.04.002 – volume: 35 start-page: 409 issue: 6 year: 2005 ident: 10.1016/j.mechmat.2025.105430_bib42 article-title: An anisotropic fibre-matrix material model at finite elastic-plastic strains publication-title: Comput. Mech. doi: 10.1007/s00466-004-0629-2 – volume: 181 year: 2024 ident: 10.1016/j.mechmat.2025.105430_bib35 article-title: Embedded finite element modeling of the mechanics of brain axonal fiber tracts under head impact conditions publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2024.109063 – volume: 75 year: 2020 ident: 10.1016/j.mechmat.2025.105430_bib16 article-title: A knowledge map analysis of brain biomechanics: current evidence and future directions publication-title: Clin. BioMech. doi: 10.1016/j.clinbiomech.2020.105000 – volume: 141 year: 2023 ident: 10.1016/j.mechmat.2025.105430_bib34 article-title: Modeling the damage-induced softening behavior of brain white matter using a coupled hyperelasticty-damage model publication-title: J. Mech. Behav. Biomed. Mater. doi: 10.1016/j.jmbbm.2023.105753 – volume: 60 start-page: 153 issue: 2 year: 1987 ident: 10.1016/j.mechmat.2025.105430_bib66 article-title: On a fully three-dimensional finite-strain viscoelastic damage model: formulation and computational aspects publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/0045-7825(87)90107-1 – start-page: 239 year: 1971 ident: 10.1016/j.mechmat.2025.105430_bib69 article-title: Theory of invariants – volume: 12 year: 2018 ident: 10.1016/j.mechmat.2025.105430_bib12 article-title: Physical biology of axonal damage publication-title: Front. Cell. Neurosci. doi: 10.3389/fncel.2018.00144 – volume: 9 start-page: 757 year: 2021 ident: 10.1016/j.mechmat.2025.105430_bib46 article-title: A machine learning approach to investigate the uncertainty of tissue-level injury metrics for cerebral contusion publication-title: Front. Bioeng. Biotechnol. doi: 10.3389/fbioe.2021.714128 – year: 1977 ident: 10.1016/j.mechmat.2025.105430_bib50 – volume: 230 start-page: 2125 issue: 6 year: 2019 ident: 10.1016/j.mechmat.2025.105430_bib84 article-title: A visco-hyperelastic model of brain tissue incorporating both tension/compression asymmetry and volume compressibility publication-title: Acta Mech. doi: 10.1007/s00707-019-02383-1 – volume: 60 start-page: 153 issue: 2 year: 1987 ident: 10.1016/j.mechmat.2025.105430_bib65 article-title: On a fully three-dimensional finite-strain viscoelastic damage model: formulation and computational aspects publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/0045-7825(87)90107-1 – volume: 4 year: 2023 ident: 10.1016/j.mechmat.2025.105430_bib32 article-title: Modeling the damage initiation of white matter brain tissue during indentation publication-title: ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE) – year: 1998 ident: 10.1016/j.mechmat.2025.105430_bib68 article-title: Computational inelasticity publication-title: Computational Inelasticity – volume: 71 start-page: 407 year: 2017 ident: 10.1016/j.mechmat.2025.105430_bib20 article-title: A longitudinal study of the mechanical properties of injured brain tissue in a mouse model publication-title: J. Mech. Behav. Biomed. Mater. doi: 10.1016/j.jmbbm.2017.04.008 – volume: 196 start-page: 1745 issue: 9–12 year: 2007 ident: 10.1016/j.mechmat.2025.105430_bib52 article-title: An anisotropic viscoelastic fibre–matrix model at finite strains: continuum formulation and computational aspects publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2006.09.009 – volume: 23 start-page: 117 year: 2013 ident: 10.1016/j.mechmat.2025.105430_bib18 article-title: Measurements of mechanical anisotropy in brain tissue and implications for transversely isotropic material models of white matter publication-title: J. Mech. Behav. Biomed. Mater. doi: 10.1016/j.jmbbm.2013.04.007 – volume: 40 start-page: 213 issue: 2–3 year: 2005 ident: 10.1016/j.mechmat.2025.105430_bib47 article-title: Mechanical response of fiber-reinforced incompressible non-linearly elastic solids publication-title: Int. J. Non Lin. Mech. doi: 10.1016/j.ijnonlinmec.2004.05.003 – volume: 35 start-page: 3455 issue: 26–27 year: 1998 ident: 10.1016/j.mechmat.2025.105430_bib61 article-title: A theory of finite viscoelasticity and numerical aspects publication-title: Int. J. Solid Struct. doi: 10.1016/S0020-7683(97)00217-5 – volume: 144 issue: 7 year: 2022 ident: 10.1016/j.mechmat.2025.105430_bib33 article-title: Mesoscale simulation-based parametric study of damage potential in brain tissue using hyperelastic and internal state variable models publication-title: J. Biomech. Eng. doi: 10.1115/1.4053205 – volume: 10 year: 2022 ident: 10.1016/j.mechmat.2025.105430_bib82 article-title: The presence of the temporal horn exacerbates the vulnerability of hippocampus during head impacts publication-title: Front. Bioeng. Biotechnol. – volume: 69 start-page: 2036 issue: 10 year: 2007 ident: 10.1016/j.mechmat.2025.105430_bib8 article-title: An uncoupled directional damage model for fibred biological soft tissues. Formulation and computational aspects publication-title: Int. J. Numer. Methods Eng. doi: 10.1002/nme.1825 – volume: 83 start-page: 63 year: 2018 ident: 10.1016/j.mechmat.2025.105430_bib74 article-title: Hyperelastic modeling of the human brain tissue: effects of no-slip boundary condition and compressibility on the uniaxial deformation publication-title: J. Mech. Behav. Biomed. Mater. doi: 10.1016/j.jmbbm.2018.04.011 – volume: 74 start-page: 463 year: 2017 ident: 10.1016/j.mechmat.2025.105430_bib6 article-title: Viscoelastic parameter identification of human brain tissue publication-title: J. Mech. Behav. Biomed. Mater. doi: 10.1016/j.jmbbm.2017.07.014 – volume: 46 start-page: 2795 issue: 16 year: 2013 ident: 10.1016/j.mechmat.2025.105430_bib41 article-title: A comprehensive experimental study on material properties of human brain tissue publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2013.09.001 |
| SSID | ssj0005957 |
| Score | 2.4441967 |
| Snippet | This work aims to develop a novel two-phase constitutive model to capture the hyperelastic, time-dependent, and damage behaviors of extracellular matrix and... |
| SourceID | crossref elsevier |
| SourceType | Index Database Publisher |
| StartPage | 105430 |
| SubjectTerms | Biological tissue brain white matter Constitutive model Damage mechanics |
| Title | A finite deformation constitutive model for brain white matter considering the time-dependent and damage behaviors of matrix and axonal fibers |
| URI | https://dx.doi.org/10.1016/j.mechmat.2025.105430 |
| Volume | 209 |
| WOSCitedRecordID | wos001555134100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 issn: 0167-6636 databaseCode: AIEXJ dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: false ssIdentifier: ssj0005957 providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1La9tAEF4ap4f0UPoKcV_MoTcjR7v2WrtHt7i0pQ2BpOCb0GMFDlgOsdP6V_Q3d2ZHayk0lDTQizCSVlp2Pq--nf1mRoh3-FVJEl3EUZyV5K2SLsq1xj-ejI0rjZ6MC5_E9WtycmLmc3vaOPTXvpxAUtdmu7WX_9XUeA6NTaGz_2Du3UPxBP5Go-MRzY7HOxl-OqgWRCQHpdtFJpK4nEUBJBTy1W9Yp0kFIgY_aSthsPSZNv2dFJoXwqio-HwUSuWyHL3MlqT0CRH-XgyypFT_W079uvXexYq0KOsu-f3mKMyY0kJzAx6NYPI5y3bfh2-pzxDJgRFu0bps2ZHfdVYovZO9NR60EEXTSpa8UxMna2Q-k-6srHzWhD9neHY2XAyX2GXs6ZDeQsWKx832zs3k2Wf0bHo0Mj0is3ZP7KtEW9MT-9PPs_mXVg5kOSts6Esb7XV868tu5zEdbnL-RDxuFhUwZTA8FQ9c_Uw86qSafC5-TYFhAR1YQBcW4GEBeBE8LMDDAhgW0IEFICzgJiwA7Q4MC9jBAlYVMCz8ZYYFMCxeiO8fZ-cfPkVNLY6owAXyJsKFQ15K6camkiabKJdkSA2dNjkScIfjkjtVGa1soceZyrNsVCSm0mWBY2mcNaND0atXtTsSoBXtzRtjpUMyrqpMjnQ1sUkeyyIeKdkXwzCy6SWnXEmDFvEibUyRkilSNkVfmDD-acMbmQ-mCJq_N315_6avxEGL8Neit7m6dm_Ew-LHZrG-etvA6zdnbJjP |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+finite+deformation+constitutive+model+for+brain+white+matter+considering+the+time-dependent+and+damage+behaviors+of+matrix+and+axonal+fibers&rft.jtitle=Mechanics+of+materials&rft.au=Xia%2C+Bing&rft.au=Fan%2C+Lei&rft.au=He%2C+Ge&rft.date=2025-10-01&rft.pub=Elsevier+Ltd&rft.issn=0167-6636&rft.volume=209&rft_id=info:doi/10.1016%2Fj.mechmat.2025.105430&rft.externalDocID=S0167663625001929 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-6636&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-6636&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-6636&client=summon |