A finite deformation constitutive model for brain white matter considering the time-dependent and damage behaviors of matrix and axonal fibers

This work aims to develop a novel two-phase constitutive model to capture the hyperelastic, time-dependent, and damage behaviors of extracellular matrix and axonal fibers of brain white matter. Within the continuum damage mechanics framework, the Ogden model was used to describe the hyperelastic and...

Full description

Saved in:
Bibliographic Details
Published in:Mechanics of materials Vol. 209; p. 105430
Main Authors: Xia, Bing, Fan, Lei, He, Ge
Format: Journal Article
Language:English
Published: Elsevier Ltd 01.10.2025
Subjects:
ISSN:0167-6636
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract This work aims to develop a novel two-phase constitutive model to capture the hyperelastic, time-dependent, and damage behaviors of extracellular matrix and axonal fibers of brain white matter. Within the continuum damage mechanics framework, the Ogden model was used to describe the hyperelastic and viscous behavior of the matrix, while exponential and second-order power functions were employed to represent the similar behavior of fibers. The damage evolutions in both the matrix and fiber phases of the brain white matter were represented using sigmoid functions. The developed two-phase viscohyperelastic-damage constitutive model was calibrated and validated using the experimental data of the corpus callosum of brains. Specifically, the model was calibrated and validated using experimental data collected under various loading conditions, including uniaxial tension, uniaxial compression, simple shear, stress relaxation, and cyclic loading. The comparison of predicted results and experimental data demonstrated that this constitutive model effectively captures the mechanical behaviors of brain white matter, such as nonlinear elasticity (hyperelasticity), stress softening (damage), and time-dependent effects (strain rate dependence, stress relaxation, and cyclic loading responses), and it has capabilities of separately modeling the fiber and matrix phases of the brain tissue. •A brain tissue constitutive model separately considering the behaviors of fiber and matrix phases.•The model can capture the hyperelastic, time-dependent and damage behaviors of each phase.•The model holds promise for enhancing comprehension of brain tissue damage and injury.•The model can be integrated into FEA software to support optimization of head protection equipment such as helmets.
AbstractList This work aims to develop a novel two-phase constitutive model to capture the hyperelastic, time-dependent, and damage behaviors of extracellular matrix and axonal fibers of brain white matter. Within the continuum damage mechanics framework, the Ogden model was used to describe the hyperelastic and viscous behavior of the matrix, while exponential and second-order power functions were employed to represent the similar behavior of fibers. The damage evolutions in both the matrix and fiber phases of the brain white matter were represented using sigmoid functions. The developed two-phase viscohyperelastic-damage constitutive model was calibrated and validated using the experimental data of the corpus callosum of brains. Specifically, the model was calibrated and validated using experimental data collected under various loading conditions, including uniaxial tension, uniaxial compression, simple shear, stress relaxation, and cyclic loading. The comparison of predicted results and experimental data demonstrated that this constitutive model effectively captures the mechanical behaviors of brain white matter, such as nonlinear elasticity (hyperelasticity), stress softening (damage), and time-dependent effects (strain rate dependence, stress relaxation, and cyclic loading responses), and it has capabilities of separately modeling the fiber and matrix phases of the brain tissue. •A brain tissue constitutive model separately considering the behaviors of fiber and matrix phases.•The model can capture the hyperelastic, time-dependent and damage behaviors of each phase.•The model holds promise for enhancing comprehension of brain tissue damage and injury.•The model can be integrated into FEA software to support optimization of head protection equipment such as helmets.
ArticleNumber 105430
Author Xia, Bing
Fan, Lei
He, Ge
Author_xml – sequence: 1
  givenname: Bing
  orcidid: 0000-0001-8598-6179
  surname: Xia
  fullname: Xia, Bing
  organization: Joint Department of Biomedical Engineering, Marquette University and Medical College of Wisconsin, Milwaukee, WI, USA
– sequence: 2
  givenname: Lei
  surname: Fan
  fullname: Fan, Lei
  email: lei.fan@marquette.edu
  organization: Joint Department of Biomedical Engineering, Marquette University and Medical College of Wisconsin, Milwaukee, WI, USA
– sequence: 3
  givenname: Ge
  orcidid: 0000-0002-7593-1585
  surname: He
  fullname: He, Ge
  email: ghe@ltu.edu
  organization: Department of Biomedical Engineering, Lawrence Technological University, Southfield, MI, 48075, USA
BookMark eNqFkEtOwzAQhr0oEi1wBCRfICV26jxWqKp4SZXYwNpy7EkzVWNXtinlEpwZp-2e1UjzPzTzzcjEOguE3LN8znJWPmznA-h-UHHOcy7STiyKfEKmSauysizKazILYZvnuWhENSW_S9qhxQjUQOd8CqKzVDsbIsaviAeggzOwo0mkrVdo6Xc_2pMzgj850YBHu6GxBxpxgMzAHqwBG6myhho1qA3QFnp1QOcDdd2Y9ng8yerorEr92IIPt-SqU7sAd5d5Qz6fnz5Wr9n6_eVttVxnmosmZoyJ1jAGi7pjtSo5VKpmHETdipJB-rwF3tWCN1osFG-VKnRVd8LoRKCGpi5uiDj3au9C8NDJvcdB-R_JcjmClFt5ASlHkPIMMuUezzlIxx0QvAwawWow6EFHaRz-0_AHweOGHw
Cites_doi 10.1016/j.jmbbm.2017.12.021
10.1016/j.jmps.2006.05.004
10.1007/s10237-020-01391-8
10.1186/1754-1611-7-21
10.1002/nme.2212
10.1007/s10439-018-02166-0
10.4271/2007-22-0005
10.1089/neu.2020.7412
10.1016/j.jbiomech.2023.111554
10.1016/j.jmbbm.2018.09.029
10.1016/j.jmps.2019.103777
10.1016/j.jmbbm.2022.105618
10.1016/j.actbio.2011.02.015
10.1007/s10439-019-02239-8
10.1089/neu.2015.4239
10.1016/j.jmbbm.2016.04.024
10.1016/j.ijsolstr.2022.111554
10.1007/s11682-012-9164-5
10.1016/j.mechrescom.2011.09.002
10.1016/S0045-7825(00)00323-6
10.1016/S0045-7825(01)00337-1
10.1016/j.ijplas.2005.07.006
10.1098/rsif.2005.0073
10.1016/j.jmps.2017.12.001
10.1016/j.ijplas.2006.04.002
10.1016/j.jmbbm.2011.01.002
10.1016/j.actbio.2016.10.036
10.1115/1.2372490
10.1016/j.actbio.2006.06.005
10.1016/j.ijsolstr.2008.12.015
10.1016/j.cma.2020.113128
10.1007/s10338-022-00309-4
10.1016/j.jmbbm.2022.105294
10.1016/j.actbio.2017.06.024
10.1016/0749-6419(94)90040-X
10.1007/s004660050329
10.1016/0045-7825(92)90123-2
10.1016/j.actbio.2016.07.040
10.1016/S0020-7683(02)00602-9
10.1007/s00193-017-0791-z
10.1016/j.ijsolstr.2007.06.020
10.1016/j.jbiomech.2014.09.030
10.1016/j.cma.2017.04.009
10.1016/j.ijsolstr.2004.02.057
10.1016/S0021-9290(98)00077-3
10.1002/cnm.2823
10.1016/j.pneurobio.2011.04.002
10.1007/s00466-004-0629-2
10.1016/j.compbiomed.2024.109063
10.1016/j.clinbiomech.2020.105000
10.1016/j.jmbbm.2023.105753
10.1016/0045-7825(87)90107-1
10.3389/fncel.2018.00144
10.3389/fbioe.2021.714128
10.1007/s00707-019-02383-1
10.1016/j.jmbbm.2017.04.008
10.1016/j.cma.2006.09.009
10.1016/j.jmbbm.2013.04.007
10.1016/j.ijnonlinmec.2004.05.003
10.1016/S0020-7683(97)00217-5
10.1115/1.4053205
10.1002/nme.1825
10.1016/j.jmbbm.2018.04.011
10.1016/j.jmbbm.2017.07.014
10.1016/j.jbiomech.2013.09.001
ContentType Journal Article
Copyright 2025 Elsevier Ltd
Copyright_xml – notice: 2025 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.mechmat.2025.105430
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
ExternalDocumentID 10_1016_j_mechmat_2025_105430
S0167663625001929
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
29M
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYWO
ABEFU
ABFNM
ABJNI
ABMAC
ABWVN
ABXDB
ACDAQ
ACGFS
ACNNM
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADMUD
ADNMO
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AENEX
AEUPX
AFFNX
AFJKZ
AFPUW
AFTJW
AGCQF
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFKBS
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY7
M24
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SET
SEW
SMS
SPC
SPCBC
SST
SSZ
T5K
WUQ
XPP
ZMT
~02
~G-
~HD
9DU
AAYXX
ACLOT
CITATION
ID FETCH-LOGICAL-c259t-115bd11e48f18a62e7a812e58b561e202be2f8529c54a2baa3c78f5dc6638e983
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001555134100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0167-6636
IngestDate Sat Nov 29 07:36:36 EST 2025
Sat Sep 13 17:02:34 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Biological tissue
Damage mechanics
Constitutive model
brain white matter
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c259t-115bd11e48f18a62e7a812e58b561e202be2f8529c54a2baa3c78f5dc6638e983
ORCID 0000-0002-7593-1585
0000-0001-8598-6179
ParticipantIDs crossref_primary_10_1016_j_mechmat_2025_105430
elsevier_sciencedirect_doi_10_1016_j_mechmat_2025_105430
PublicationCentury 2000
PublicationDate October 2025
2025-10-00
PublicationDateYYYYMMDD 2025-10-01
PublicationDate_xml – month: 10
  year: 2025
  text: October 2025
PublicationDecade 2020
PublicationTitle Mechanics of materials
PublicationYear 2025
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Miyazaki, Tachiya, Anata, Hojo (bib48) 2012; 22
Upadhyay, Subhash, Spearot (bib72) 2020; 135
Zhu, Jiang, Jiang (bib84) 2019; 230
Holzapfel (bib37) 2000; 455
Feng, Gao, Wang, Tao, Qiu, Zhao (bib20) 2017; 71
Weizel, Distler, Detsch, Boccaccini, Seitz, Budday (bib77) 2023; 138
He, Fan, Liu (bib33) 2022; 144
Gasser, Ogden, Holzapfel (bib27) 2006; 3
Simo (bib67) 1992; 99
Maugin (bib45) 1994; 10
Simo, T, H (bib68) 1998
Baugh, Stamm, Riley, Gavett, Shenton, Lin, Nowinski, Cantu, McKee, Stern (bib3) 2012; 6
Ganpule, Daphalapurkar, Cetingul (bib23) 2018; 28
Budday, Sommer, Haybaeck, Steinmann, Holzapfel, Kuhl (bib5) 2017; 60
Budday, Ovaert, Holzapfel, Steinmann, Kuhl (bib7) 2019
Budday, Sommer, Birkl, Langkammer, Haybaeck, Kohnert, Bauer, Paulsen, Steinmann, Kuhl, Holzapfel (bib4) 2017; 48
He, Fan (bib32) 2023; 4
Moran, Smith, García (bib49) 2014; 47
Simo (bib66) 1987; 60
Nguyen, Jones, Boyce (bib53) 2007; 44
Pioletti, Rakotomanana, Benvenuti, Leyvraz (bib59) 1998; 31
Ouyang, Nauman, Shi (bib54) 2013; 7
Menichetti, Bartsoen, Depreitere, Vander Sloten, Famaey (bib46) 2021; 9
(bib78) 2023
Li, Zhou, Kleiven (bib43) 2021; 20
Nahum, Smith, Ward (bib50) 1977
Klinkel, Sansour, Wagner (bib42) 2005; 35
Nedjar (bib51) 2002; 191
Suter, Miller (bib70) 2011; 94
Reese (bib60) 2003; 40
de Rooij, Kuhl (bib11) 2016; 68
Holzapfel (bib38) 2000
Peña (bib56) 2011; 38
Limbert, Middleton (bib44) 2004; 41
Jin, Zhu, Mao, Shen, Yang (bib41) 2013; 46
De Rooij, Kuhl (bib12) 2018; 12
Zhou, Domel, Li, Grant, Kleiven, Camarillo, Zeineh (bib81) 2021; 38
Voyiadjis, Sumelka (bib75) 2019; 89
Holzapfel, Gasser (bib39) 2001; 190
Eskandari, Shafieian, Aghdam, Laksari (bib16) 2020; 75
He, Fan (bib31) 2023; 151
Reese, Govindjee (bib61) 1998; 35
Zhou, Wang, Jörgens, Li (bib83) 2022; 132
Comellas, Budday, Pelteret, Holzapfel, Steinmann (bib10) 2020; 369
Fung (bib22) 1994
Ionescu, Guilkey, Berzins, Kirby, Weiss (bib40) 2006; 128
Calvo, Peña, Martinez, Doblaré (bib8) 2007; 69
Garimella, Kraft (bib25) 2017; 33
Spencer (bib69) 1971
Merodio, Ogden (bib47) 2005; 40
He, Fan, Horstemeyer (bib35) 2024; 181
Simo (bib65) 1987; 60
Garimella, Menghani, Gerber, Sridhar, Kraft (bib26) 2019; 47
Peña, Peña, Doblaré (bib58) 2009; 46
Volokh (bib73) 2011; 4
Feng, Okamoto, Namani, Genin, Bayly (bib18) 2013; 23
Nedjar (bib52) 2007; 196
Sansour, Kollmann (bib63) 1998; 21
Anand, Ames (bib1) 2006; 22
Salzar, Treichler, Wardlaw, Weiss, Goeller (bib62) 2017; 34
Peña, Calvo, Martínez, Doblaré (bib57) 2008; 74
Franceschini, Bigoni, Regitnig, Holzapfel (bib21) 2006; 54
Elkin, Morrison (bib15) 2007
Balzani, Schröder, Gross (bib2) 2006; 2
Garcia-Gonzalez, Jérusalem, Garzon-Hernandez, Zaera, Arias (bib24) 2018; 112
He, Fan (bib30) 2022; 35
Budday, Sommer, Holzapfel, Steinmann, Kuhl (bib6) 2017; 74
Fathi, Hatefi Ardakani, Fatemi Dehaghani, Mohammadi (bib17) 2017; 322
Parivash, Goubran, Mills, Rezaii, Thaler, Wolman, Bian, Mitchell, Boldt, Douglas, Wilson, Choi, Xie, Yushkevich, Digiacomo, Wongsripuemtet, Parekh, Fiehler, Do (bib55) 2019; 36
Haldar, Pal (bib28) 2018; 81
Sansour, Karšaj, Sorić (bib64) 2006; 22
Weickenmeier, de Rooij, Budday, Steinmann, Ovaert, Kuhl (bib76) 2016; 42
Christian Gasser (bib9) 2011; 7
Dollé, III, Schloss, Yarmush (bib13) 2014; 2
Feng, Okamoto, Genin, Bayly (bib19) 2016; 61
He, Xia, Feng, Chen, Fan, Zhang (bib34) 2023; 141
Wu, Alshareef, Giudice, Panzer (bib79) 2019; 47
Zhao, Ford, Flashman, McAllister, Ji (bib80) 2016; 33
Zhou, Li, Domel, Dennis, Georgiadis, Liu, Raymond, Grant, Kleiven, Camarillo, Zeineh (bib82) 2022; 10
Du, Li, Wang, Zhuang, Liu (bib14) 2022; 242
Hardy, Mason, Foster, Shah, Kopacz, Yang, King, Bishop, Bey, Anderst, Tashman (bib29) 2007; 51
Voyiadjis, Samadi-Dooki (bib74) 2018; 83
He (10.1016/j.mechmat.2025.105430_bib30) 2022; 35
Garcia-Gonzalez (10.1016/j.mechmat.2025.105430_bib24) 2018; 112
Calvo (10.1016/j.mechmat.2025.105430_bib8) 2007; 69
Klinkel (10.1016/j.mechmat.2025.105430_bib42) 2005; 35
Nedjar (10.1016/j.mechmat.2025.105430_bib52) 2007; 196
Christian Gasser (10.1016/j.mechmat.2025.105430_bib9) 2011; 7
Elkin (10.1016/j.mechmat.2025.105430_bib15) 2007
Feng (10.1016/j.mechmat.2025.105430_bib19) 2016; 61
Haldar (10.1016/j.mechmat.2025.105430_bib28) 2018; 81
Comellas (10.1016/j.mechmat.2025.105430_bib10) 2020; 369
Eskandari (10.1016/j.mechmat.2025.105430_bib16) 2020; 75
Feng (10.1016/j.mechmat.2025.105430_bib20) 2017; 71
Ionescu (10.1016/j.mechmat.2025.105430_bib40) 2006; 128
Reese (10.1016/j.mechmat.2025.105430_bib60) 2003; 40
Zhu (10.1016/j.mechmat.2025.105430_bib84) 2019; 230
Franceschini (10.1016/j.mechmat.2025.105430_bib21) 2006; 54
Simo (10.1016/j.mechmat.2025.105430_bib67) 1992; 99
Ganpule (10.1016/j.mechmat.2025.105430_bib23) 2018; 28
Wu (10.1016/j.mechmat.2025.105430_bib79) 2019; 47
Simo (10.1016/j.mechmat.2025.105430_bib66) 1987; 60
Upadhyay (10.1016/j.mechmat.2025.105430_bib72) 2020; 135
Holzapfel (10.1016/j.mechmat.2025.105430_bib39) 2001; 190
Weizel (10.1016/j.mechmat.2025.105430_bib77) 2023; 138
Zhou (10.1016/j.mechmat.2025.105430_bib81) 2021; 38
Fathi (10.1016/j.mechmat.2025.105430_bib17) 2017; 322
Zhou (10.1016/j.mechmat.2025.105430_bib83) 2022; 132
Holzapfel (10.1016/j.mechmat.2025.105430_bib37) 2000; 455
Balzani (10.1016/j.mechmat.2025.105430_bib2) 2006; 2
He (10.1016/j.mechmat.2025.105430_bib33) 2022; 144
Peña (10.1016/j.mechmat.2025.105430_bib56) 2011; 38
Sansour (10.1016/j.mechmat.2025.105430_bib64) 2006; 22
Zhou (10.1016/j.mechmat.2025.105430_bib82) 2022; 10
Miyazaki (10.1016/j.mechmat.2025.105430_bib48) 2012; 22
Hardy (10.1016/j.mechmat.2025.105430_bib29) 2007; 51
Holzapfel (10.1016/j.mechmat.2025.105430_bib38) 2000
Gasser (10.1016/j.mechmat.2025.105430_bib27) 2006; 3
Sansour (10.1016/j.mechmat.2025.105430_bib63) 1998; 21
Moran (10.1016/j.mechmat.2025.105430_bib49) 2014; 47
Budday (10.1016/j.mechmat.2025.105430_bib4) 2017; 48
Jin (10.1016/j.mechmat.2025.105430_bib41) 2013; 46
Reese (10.1016/j.mechmat.2025.105430_bib61) 1998; 35
Anand (10.1016/j.mechmat.2025.105430_bib1) 2006; 22
He (10.1016/j.mechmat.2025.105430_bib35) 2024; 181
(10.1016/j.mechmat.2025.105430_bib78) 2023
Nahum (10.1016/j.mechmat.2025.105430_bib50) 1977
Garimella (10.1016/j.mechmat.2025.105430_bib25) 2017; 33
Simo (10.1016/j.mechmat.2025.105430_bib65) 1987; 60
Fung (10.1016/j.mechmat.2025.105430_bib22) 1994
Maugin (10.1016/j.mechmat.2025.105430_bib45) 1994; 10
Parivash (10.1016/j.mechmat.2025.105430_bib55) 2019; 36
Baugh (10.1016/j.mechmat.2025.105430_bib3) 2012; 6
Peña (10.1016/j.mechmat.2025.105430_bib58) 2009; 46
Simo (10.1016/j.mechmat.2025.105430_bib68) 1998
Budday (10.1016/j.mechmat.2025.105430_bib6) 2017; 74
Budday (10.1016/j.mechmat.2025.105430_bib5) 2017; 60
Merodio (10.1016/j.mechmat.2025.105430_bib47) 2005; 40
Salzar (10.1016/j.mechmat.2025.105430_bib62) 2017; 34
Garimella (10.1016/j.mechmat.2025.105430_bib26) 2019; 47
Voyiadjis (10.1016/j.mechmat.2025.105430_bib75) 2019; 89
Feng (10.1016/j.mechmat.2025.105430_bib18) 2013; 23
Nedjar (10.1016/j.mechmat.2025.105430_bib51) 2002; 191
Voyiadjis (10.1016/j.mechmat.2025.105430_bib74) 2018; 83
Li (10.1016/j.mechmat.2025.105430_bib43) 2021; 20
Menichetti (10.1016/j.mechmat.2025.105430_bib46) 2021; 9
Budday (10.1016/j.mechmat.2025.105430_bib7) 2019
Limbert (10.1016/j.mechmat.2025.105430_bib44) 2004; 41
Spencer (10.1016/j.mechmat.2025.105430_bib69) 1971
He (10.1016/j.mechmat.2025.105430_bib34) 2023; 141
He (10.1016/j.mechmat.2025.105430_bib32) 2023; 4
Dollé (10.1016/j.mechmat.2025.105430_bib13) 2014; 2
Nguyen (10.1016/j.mechmat.2025.105430_bib53) 2007; 44
de Rooij (10.1016/j.mechmat.2025.105430_bib11) 2016; 68
Du (10.1016/j.mechmat.2025.105430_bib14) 2022; 242
Weickenmeier (10.1016/j.mechmat.2025.105430_bib76) 2016; 42
Zhao (10.1016/j.mechmat.2025.105430_bib80) 2016; 33
Pioletti (10.1016/j.mechmat.2025.105430_bib59) 1998; 31
De Rooij (10.1016/j.mechmat.2025.105430_bib12) 2018; 12
Peña (10.1016/j.mechmat.2025.105430_bib57) 2008; 74
He (10.1016/j.mechmat.2025.105430_bib31) 2023; 151
Ouyang (10.1016/j.mechmat.2025.105430_bib54) 2013; 7
Volokh (10.1016/j.mechmat.2025.105430_bib73) 2011; 4
Suter (10.1016/j.mechmat.2025.105430_bib70) 2011; 94
References_xml – volume: 20
  start-page: 403
  year: 2021
  end-page: 431
  ident: bib43
  article-title: An anatomically detailed and personalizable head injury model: significance of brain and white matter tract morphological variability on strain
  publication-title: Biomech. Model. Mechanobiol.
– volume: 2
  start-page: 609
  year: 2006
  end-page: 618
  ident: bib2
  article-title: Simulation of discontinuous damage incorporating residual stresses in circumferentially overstretched atherosclerotic arteries
  publication-title: Acta Biomater.
– start-page: 239
  year: 1971
  end-page: 353
  ident: bib69
  article-title: Theory of invariants
  publication-title: Mathematics
– volume: 47
  start-page: 1889
  year: 2019
  end-page: 1907
  ident: bib26
  article-title: Embedded finite elements for modeling axonal injury
  publication-title: Ann. Biomed. Eng.
– volume: 455
  year: 2000
  ident: bib37
  publication-title: Nonlinear solid mechanics : a continuum approach for engineering
– volume: 28
  start-page: 127
  year: 2018
  end-page: 139
  ident: bib23
  article-title: Effect of bulk modulus on deformation of the brain under rotational accelerations
  publication-title: Shock Waves
– volume: 47
  start-page: 3762
  year: 2014
  end-page: 3766
  ident: bib49
  article-title: Fitted hyperelastic parameters for human brain tissue from reported tension, compression, and shear tests
  publication-title: J. Biomech.
– volume: 81
  start-page: 178
  year: 2018
  end-page: 194
  ident: bib28
  article-title: Rate dependent anisotropic constitutive modeling of brain tissue undergoing large deformation
  publication-title: J. Mech. Behav. Biomed. Mater.
– volume: 369
  year: 2020
  ident: bib10
  article-title: Modeling the porous and viscous responses of human brain tissue behavior
  publication-title: Comput. Methods Appl. Mech. Eng.
– volume: 31
  start-page: 753
  year: 1998
  end-page: 757
  ident: bib59
  article-title: Viscoelastic constitutive law in large deformations: application to human knee ligaments and tendons
  publication-title: J. Biomech.
– year: 2019
  ident: bib7
  article-title: Fifty Shades of Brain: a Review on the Mechanical Testing and Modeling of Brain Tissue
– volume: 41
  start-page: 4237
  year: 2004
  end-page: 4260
  ident: bib44
  article-title: A transversely isotropic viscohyperelastic material application to the modeling of biological soft connective tissues
  publication-title: Int. J. Solid Struct.
– volume: 46
  start-page: 2795
  year: 2013
  end-page: 2801
  ident: bib41
  article-title: A comprehensive experimental study on material properties of human brain tissue
  publication-title: J. Biomech.
– volume: 35
  start-page: 409
  year: 2005
  end-page: 417
  ident: bib42
  article-title: An anisotropic fibre-matrix material model at finite elastic-plastic strains
  publication-title: Comput. Mech.
– volume: 44
  start-page: 8366
  year: 2007
  end-page: 8389
  ident: bib53
  article-title: Modeling the anisotropic finite-deformation viscoelastic behavior of soft fiber-reinforced composites
  publication-title: Int. J. Solid Struct.
– volume: 40
  start-page: 951
  year: 2003
  end-page: 980
  ident: bib60
  article-title: Meso-macro modelling of fibre-reinforced rubber-like composites exhibiting large elastoplastic deformation
  publication-title: Int. J. Solid Struct.
– volume: 128
  start-page: 917
  year: 2006
  end-page: 924
  ident: bib40
  article-title: Simulation of soft tissue failure using the material point method
  publication-title: J. Biomech. Eng.
– volume: 135
  year: 2020
  ident: bib72
  article-title: Visco-hyperelastic constitutive modeling of strain rate sensitive soft materials
  publication-title: J. Mech. Phys. Solid.
– volume: 75
  year: 2020
  ident: bib16
  article-title: A knowledge map analysis of brain biomechanics: current evidence and future directions
  publication-title: Clin. BioMech.
– volume: 22
  start-page: 2346
  year: 2006
  end-page: 2365
  ident: bib64
  article-title: A formulation of anisotropic continuum elastoplasticity at finite strains. Part I: modelling
  publication-title: Int. J. Plast.
– volume: 144
  year: 2022
  ident: bib33
  article-title: Mesoscale simulation-based parametric study of damage potential in brain tissue using hyperelastic and internal state variable models
  publication-title: J. Biomech. Eng.
– volume: 138
  year: 2023
  ident: bib77
  article-title: Time-dependent hyper-viscoelastic parameter identification of human articular cartilage and substitute materials
  publication-title: J. Mech. Behav. Biomed. Mater.
– volume: 33
  start-page: 1834
  year: 2016
  end-page: 1847
  ident: bib80
  article-title: White matter injury susceptibility via fiber strain evaluation using whole-brain tractography
  publication-title: J. Neurotrauma
– volume: 132
  year: 2022
  ident: bib83
  article-title: Fiber orientation downsampling compromises the computation of white matter tract-related deformation
  publication-title: J. Mech. Behav. Biomed. Mater.
– volume: 54
  start-page: 2592
  year: 2006
  end-page: 2620
  ident: bib21
  article-title: Brain tissue deforms similarly to filled elastomers and follows consolidation theory
  publication-title: J. Mech. Phys. Solid.
– volume: 9
  start-page: 757
  year: 2021
  ident: bib46
  article-title: A machine learning approach to investigate the uncertainty of tissue-level injury metrics for cerebral contusion
  publication-title: Front. Bioeng. Biotechnol.
– volume: 10
  year: 2022
  ident: bib82
  article-title: The presence of the temporal horn exacerbates the vulnerability of hippocampus during head impacts
  publication-title: Front. Bioeng. Biotechnol.
– volume: 22
  start-page: 1123
  year: 2006
  end-page: 1170
  ident: bib1
  article-title: On modeling the micro-indentation response of an amorphous polymer
  publication-title: Int. J. Plast.
– volume: 35
  start-page: 705
  year: 2022
  end-page: 715
  ident: bib30
  article-title: Investigating the head impact force-induced evolution of hyperphosphorylated tau proteins in brain tissue through mechanical mesoscale finite element simulation
  publication-title: Acta Mech. Solida Sin.
– volume: 74
  start-page: 1198
  year: 2008
  end-page: 1218
  ident: bib57
  article-title: On finite-strain damage of viscoelastic-fibred materials. Application to soft biological tissues
  publication-title: Int. J. Numer. Methods Eng.
– volume: 21
  start-page: 512
  year: 1998
  end-page: 525
  ident: bib63
  article-title: Large viscoplastic deformations of shells. Theory and finite element formulation
  publication-title: Comput. Mech.
– year: 1998
  ident: bib68
  article-title: Computational inelasticity
  publication-title: Computational Inelasticity
– volume: 61
  start-page: 554
  year: 2016
  end-page: 566
  ident: bib19
  article-title: On the accuracy and fitting of transversely isotropic material models
  publication-title: J. Mech. Behav. Biomed. Mater.
– year: 1994
  ident: bib22
  article-title: A First Course in Continuum Mechanics for Physical and Biological Engineers and Scientists
– volume: 230
  start-page: 2125
  year: 2019
  end-page: 2135
  ident: bib84
  article-title: A visco-hyperelastic model of brain tissue incorporating both tension/compression asymmetry and volume compressibility
  publication-title: Acta Mech.
– year: 2007
  ident: bib15
  article-title: Region-specific tolerance criteria for the living brain
  publication-title: SAE Technical Papers
– volume: 33
  year: 2017
  ident: bib25
  article-title: Modeling the mechanics of axonal fiber tracts using the embedded finite element method
  publication-title: International Journal for Numerical Methods in Biomedical Engineering
– volume: 69
  start-page: 2036
  year: 2007
  end-page: 2057
  ident: bib8
  article-title: An uncoupled directional damage model for fibred biological soft tissues. Formulation and computational aspects
  publication-title: Int. J. Numer. Methods Eng.
– volume: 6
  start-page: 244
  year: 2012
  end-page: 254
  ident: bib3
  article-title: Chronic traumatic encephalopathy: neurodegeneration following repetitive concussive and subconcussive brain trauma
  publication-title: Brain Imaging and Behavior
– volume: 112
  start-page: 209
  year: 2018
  end-page: 224
  ident: bib24
  article-title: A continuum mechanics constitutive framework for transverse isotropic soft tissues
  publication-title: J. Mech. Phys. Solid.
– volume: 4
  start-page: 1582
  year: 2011
  end-page: 1594
  ident: bib73
  article-title: Modeling failure of soft anisotropic materials with application to arteries
  publication-title: J. Mech. Behav. Biomed. Mater.
– volume: 38
  start-page: 1662
  year: 2021
  end-page: 1669
  ident: bib81
  article-title: White matter tract-oriented deformation is dependent on real-time axonal fiber orientation
  publication-title: J. Neurotrauma
– year: 2000
  ident: bib38
  article-title: Nonlinear Solid Mechanics: a Continuum Approach for Engineering Science
– volume: 190
  start-page: 4379
  year: 2001
  end-page: 4403
  ident: bib39
  article-title: A viscoelastic model for fiber-reinforced composites at finite strains: continuum basis, computational aspects and applications
  publication-title: Comput. Methods Appl. Mech. Eng.
– volume: 196
  start-page: 1745
  year: 2007
  end-page: 1756
  ident: bib52
  article-title: An anisotropic viscoelastic fibre–matrix model at finite strains: continuum formulation and computational aspects
  publication-title: Comput. Methods Appl. Mech. Eng.
– volume: 2
  start-page: 106
  year: 2014
  end-page: 117
  ident: bib13
  publication-title: Brain-on-a-chip microsystem for investigating traumatic brain injury: Axon diameter and mitochondrial membrane changes play a significant role in axonal response to strain injuries
– volume: 46
  start-page: 1727
  year: 2009
  end-page: 1735
  ident: bib58
  article-title: On the mullins effect and hysteresis of fibered biological materials: a comparison between continuous and discontinuous damage models
  publication-title: Int. J. Solid Struct.
– volume: 74
  start-page: 463
  year: 2017
  end-page: 476
  ident: bib6
  article-title: Viscoelastic parameter identification of human brain tissue
  publication-title: J. Mech. Behav. Biomed. Mater.
– volume: 60
  start-page: 315
  year: 2017
  end-page: 329
  ident: bib5
  article-title: Rheological characterization of human brain tissue
  publication-title: Acta Biomater.
– volume: 68
  year: 2016
  ident: bib11
  article-title: Constitutive modeling of brain tissue: current perspectives. In applied mechanics reviews
  publication-title: Am. Soc. Mech. Eng.
– volume: 23
  start-page: 117
  year: 2013
  end-page: 132
  ident: bib18
  article-title: Measurements of mechanical anisotropy in brain tissue and implications for transversely isotropic material models of white matter
  publication-title: J. Mech. Behav. Biomed. Mater.
– year: 1977
  ident: bib50
  article-title: Intracranial Pressure Dynamics During Head Impact
– volume: 35
  start-page: 3455
  year: 1998
  end-page: 3482
  ident: bib61
  article-title: A theory of finite viscoelasticity and numerical aspects
  publication-title: Int. J. Solid Struct.
– volume: 242
  year: 2022
  ident: bib14
  article-title: Revealing the nonlinear mechanical behavior of white matter brain tissue by analyzing the asynchronous deformation and damage of matrix and axonal fibers
  publication-title: Int. J. Solid Struct.
– volume: 94
  start-page: 91
  year: 2011
  end-page: 101
  ident: bib70
  article-title: The emerging role of forces in axonal elongation
  publication-title: Prog. Neurobiol.
– volume: 48
  start-page: 319
  year: 2017
  end-page: 340
  ident: bib4
  article-title: Mechanical characterization of human brain tissue
  publication-title: Acta Biomater.
– volume: 181
  year: 2024
  ident: bib35
  article-title: Embedded finite element modeling of the mechanics of brain axonal fiber tracts under head impact conditions
  publication-title: Comput. Biol. Med.
– volume: 42
  start-page: 265
  year: 2016
  end-page: 272
  ident: bib76
  article-title: Brain stiffness increases with myelin content
  publication-title: Acta Biomater.
– volume: 7
  year: 2013
  ident: bib54
  article-title: Contribution of cytoskeletal elements to the axonal mechanical properties
  publication-title: J. Biol. Eng.
– volume: 322
  start-page: 262
  year: 2017
  end-page: 295
  ident: bib17
  article-title: A finite strain integral-type anisotropic damage model for fiber-reinforced materials: application in soft biological tissues
  publication-title: Comput. Methods Appl. Mech. Eng.
– volume: 141
  year: 2023
  ident: bib34
  article-title: Modeling the damage-induced softening behavior of brain white matter using a coupled hyperelasticty-damage model
  publication-title: J. Mech. Behav. Biomed. Mater.
– volume: 99
  start-page: 61
  year: 1992
  end-page: 112
  ident: bib67
  article-title: Algorithms for static and dynamic multiplicative plasticity that preserve the classical return mapping schemes of the infinitesimal theory
  publication-title: Comput. Methods Appl. Mech. Eng.
– volume: 36
  start-page: 2762
  year: 2019
  end-page: 2773
  ident: bib55
  publication-title: Longitudinal Changes in Hippocampal Subfield Volume Associated with Collegiate Football
– volume: 83
  start-page: 63
  year: 2018
  end-page: 78
  ident: bib74
  article-title: Hyperelastic modeling of the human brain tissue: effects of no-slip boundary condition and compressibility on the uniaxial deformation
  publication-title: J. Mech. Behav. Biomed. Mater.
– volume: 7
  start-page: 2457
  year: 2011
  end-page: 2466
  ident: bib9
  article-title: An irreversible constitutive model for fibrous soft biological tissue: a 3-D microfiber approach with demonstrative application to abdominal aortic aneurysms
  publication-title: Acta Biomater.
– volume: 151
  year: 2023
  ident: bib31
  article-title: A transversely isotropic viscohyperelastic-damage model for the brain tissue with strain rate sensitivity
  publication-title: J. Biomech.
– volume: 10
  start-page: 393
  year: 1994
  end-page: 408
  ident: bib45
  article-title: Eshelby stress in elastoplasticity and ductile fracture
  publication-title: Int. J. Plast.
– volume: 40
  start-page: 213
  year: 2005
  end-page: 227
  ident: bib47
  article-title: Mechanical response of fiber-reinforced incompressible non-linearly elastic solids
  publication-title: Int. J. Non Lin. Mech.
– volume: 191
  start-page: 1541
  year: 2002
  end-page: 1562
  ident: bib51
  article-title: Frameworks for finite strain viscoelastic-plasticity based on multiplicative decompositions. Part I: continuum formulations
  publication-title: Comput. Methods Appl. Mech. Eng.
– year: 2023
  ident: bib78
  article-title: Global Status Report on Road Safety 2023
– volume: 89
  start-page: 209
  year: 2019
  end-page: 216
  ident: bib75
  article-title: Brain modelling in the framework of anisotropic hyperelasticity with time fractional damage evolution governed by the caputo-almeida fractional derivative
  publication-title: J. Mech. Behav. Biomed. Mater.
– volume: 3
  start-page: 15
  year: 2006
  end-page: 35
  ident: bib27
  article-title: Hyperelastic modelling of arterial layers with distributed collagen fibre orientations
  publication-title: J. R. Soc. Interface
– volume: 38
  start-page: 610
  year: 2011
  end-page: 615
  ident: bib56
  article-title: Damage functions of the internal variables for soft biological fibred tissues
  publication-title: Mech. Res. Commun.
– volume: 22
  start-page: 1718
  year: 2012
  end-page: 1723
  ident: bib48
  publication-title: MEASUREMENT OF PRESSURE RESPONSES IN A PHYSICAL MODEL OF A HUMAN HEAD WITH HIGH SHAPE FIDELITY BASED ON CT/MRI DATA
– volume: 60
  start-page: 153
  year: 1987
  end-page: 173
  ident: bib65
  article-title: On a fully three-dimensional finite-strain viscoelastic damage model: formulation and computational aspects
  publication-title: Comput. Methods Appl. Mech. Eng.
– volume: 12
  year: 2018
  ident: bib12
  article-title: Physical biology of axonal damage
  publication-title: Front. Cell. Neurosci.
– volume: 51
  start-page: 17
  year: 2007
  ident: bib29
  article-title: A study of the response of the human cadaver head to impact
  publication-title: Stapp Car Crash Journal
– volume: 4
  year: 2023
  ident: bib32
  article-title: Modeling the damage initiation of white matter brain tissue during indentation
  publication-title: ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE)
– volume: 60
  start-page: 153
  year: 1987
  end-page: 173
  ident: bib66
  article-title: On a fully three-dimensional finite-strain viscoelastic damage model: formulation and computational aspects
  publication-title: Comput. Methods Appl. Mech. Eng.
– volume: 71
  start-page: 407
  year: 2017
  end-page: 415
  ident: bib20
  article-title: A longitudinal study of the mechanical properties of injured brain tissue in a mouse model
  publication-title: J. Mech. Behav. Biomed. Mater.
– volume: 34
  start-page: 1589
  year: 2017
  end-page: 1602
  ident: bib62
  publication-title: Experimental Investigation of Cavitation as a Possible Damage Mechanism in Blast-Induced Traumatic Brain Injury in Post-Mortem Human Subject Heads
– volume: 47
  start-page: 1908
  year: 2019
  end-page: 1922
  ident: bib79
  article-title: Explicit modeling of white matter axonal fiber tracts in a finite element brain model
  publication-title: Ann. Biomed. Eng.
– volume: 81
  start-page: 178
  year: 2018
  ident: 10.1016/j.mechmat.2025.105430_bib28
  article-title: Rate dependent anisotropic constitutive modeling of brain tissue undergoing large deformation
  publication-title: J. Mech. Behav. Biomed. Mater.
  doi: 10.1016/j.jmbbm.2017.12.021
– volume: 54
  start-page: 2592
  issue: 12
  year: 2006
  ident: 10.1016/j.mechmat.2025.105430_bib21
  article-title: Brain tissue deforms similarly to filled elastomers and follows consolidation theory
  publication-title: J. Mech. Phys. Solid.
  doi: 10.1016/j.jmps.2006.05.004
– volume: 20
  start-page: 403
  issue: 2
  year: 2021
  ident: 10.1016/j.mechmat.2025.105430_bib43
  article-title: An anatomically detailed and personalizable head injury model: significance of brain and white matter tract morphological variability on strain
  publication-title: Biomech. Model. Mechanobiol.
  doi: 10.1007/s10237-020-01391-8
– year: 2023
  ident: 10.1016/j.mechmat.2025.105430_bib78
– volume: 7
  issue: 1
  year: 2013
  ident: 10.1016/j.mechmat.2025.105430_bib54
  article-title: Contribution of cytoskeletal elements to the axonal mechanical properties
  publication-title: J. Biol. Eng.
  doi: 10.1186/1754-1611-7-21
– volume: 74
  start-page: 1198
  issue: 7
  year: 2008
  ident: 10.1016/j.mechmat.2025.105430_bib57
  article-title: On finite-strain damage of viscoelastic-fibred materials. Application to soft biological tissues
  publication-title: Int. J. Numer. Methods Eng.
  doi: 10.1002/nme.2212
– volume: 47
  start-page: 1889
  issue: 9
  year: 2019
  ident: 10.1016/j.mechmat.2025.105430_bib26
  article-title: Embedded finite elements for modeling axonal injury
  publication-title: Ann. Biomed. Eng.
  doi: 10.1007/s10439-018-02166-0
– volume: 34
  start-page: 1589
  issue: 8
  year: 2017
  ident: 10.1016/j.mechmat.2025.105430_bib62
  publication-title: Experimental Investigation of Cavitation as a Possible Damage Mechanism in Blast-Induced Traumatic Brain Injury in Post-Mortem Human Subject Heads
– year: 2007
  ident: 10.1016/j.mechmat.2025.105430_bib15
  article-title: Region-specific tolerance criteria for the living brain
  publication-title: SAE Technical Papers
  doi: 10.4271/2007-22-0005
– volume: 36
  start-page: 2762
  issue: 19
  year: 2019
  ident: 10.1016/j.mechmat.2025.105430_bib55
  publication-title: Longitudinal Changes in Hippocampal Subfield Volume Associated with Collegiate Football
– volume: 38
  start-page: 1662
  issue: 12
  year: 2021
  ident: 10.1016/j.mechmat.2025.105430_bib81
  article-title: White matter tract-oriented deformation is dependent on real-time axonal fiber orientation
  publication-title: J. Neurotrauma
  doi: 10.1089/neu.2020.7412
– year: 2000
  ident: 10.1016/j.mechmat.2025.105430_bib38
– volume: 151
  year: 2023
  ident: 10.1016/j.mechmat.2025.105430_bib31
  article-title: A transversely isotropic viscohyperelastic-damage model for the brain tissue with strain rate sensitivity
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2023.111554
– volume: 89
  start-page: 209
  year: 2019
  ident: 10.1016/j.mechmat.2025.105430_bib75
  article-title: Brain modelling in the framework of anisotropic hyperelasticity with time fractional damage evolution governed by the caputo-almeida fractional derivative
  publication-title: J. Mech. Behav. Biomed. Mater.
  doi: 10.1016/j.jmbbm.2018.09.029
– volume: 135
  year: 2020
  ident: 10.1016/j.mechmat.2025.105430_bib72
  article-title: Visco-hyperelastic constitutive modeling of strain rate sensitive soft materials
  publication-title: J. Mech. Phys. Solid.
  doi: 10.1016/j.jmps.2019.103777
– volume: 138
  year: 2023
  ident: 10.1016/j.mechmat.2025.105430_bib77
  article-title: Time-dependent hyper-viscoelastic parameter identification of human articular cartilage and substitute materials
  publication-title: J. Mech. Behav. Biomed. Mater.
  doi: 10.1016/j.jmbbm.2022.105618
– volume: 7
  start-page: 2457
  issue: 6
  year: 2011
  ident: 10.1016/j.mechmat.2025.105430_bib9
  article-title: An irreversible constitutive model for fibrous soft biological tissue: a 3-D microfiber approach with demonstrative application to abdominal aortic aneurysms
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2011.02.015
– volume: 47
  start-page: 1908
  issue: 9
  year: 2019
  ident: 10.1016/j.mechmat.2025.105430_bib79
  article-title: Explicit modeling of white matter axonal fiber tracts in a finite element brain model
  publication-title: Ann. Biomed. Eng.
  doi: 10.1007/s10439-019-02239-8
– volume: 33
  start-page: 1834
  issue: 20
  year: 2016
  ident: 10.1016/j.mechmat.2025.105430_bib80
  article-title: White matter injury susceptibility via fiber strain evaluation using whole-brain tractography
  publication-title: J. Neurotrauma
  doi: 10.1089/neu.2015.4239
– volume: 61
  start-page: 554
  year: 2016
  ident: 10.1016/j.mechmat.2025.105430_bib19
  article-title: On the accuracy and fitting of transversely isotropic material models
  publication-title: J. Mech. Behav. Biomed. Mater.
  doi: 10.1016/j.jmbbm.2016.04.024
– volume: 242
  year: 2022
  ident: 10.1016/j.mechmat.2025.105430_bib14
  article-title: Revealing the nonlinear mechanical behavior of white matter brain tissue by analyzing the asynchronous deformation and damage of matrix and axonal fibers
  publication-title: Int. J. Solid Struct.
  doi: 10.1016/j.ijsolstr.2022.111554
– volume: 6
  start-page: 244
  issue: 2
  year: 2012
  ident: 10.1016/j.mechmat.2025.105430_bib3
  article-title: Chronic traumatic encephalopathy: neurodegeneration following repetitive concussive and subconcussive brain trauma
  publication-title: Brain Imaging and Behavior
  doi: 10.1007/s11682-012-9164-5
– volume: 38
  start-page: 610
  issue: 8
  year: 2011
  ident: 10.1016/j.mechmat.2025.105430_bib56
  article-title: Damage functions of the internal variables for soft biological fibred tissues
  publication-title: Mech. Res. Commun.
  doi: 10.1016/j.mechrescom.2011.09.002
– volume: 190
  start-page: 4379
  issue: 34
  year: 2001
  ident: 10.1016/j.mechmat.2025.105430_bib39
  article-title: A viscoelastic model for fiber-reinforced composites at finite strains: continuum basis, computational aspects and applications
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/S0045-7825(00)00323-6
– volume: 191
  start-page: 1541
  issue: 15–16
  year: 2002
  ident: 10.1016/j.mechmat.2025.105430_bib51
  article-title: Frameworks for finite strain viscoelastic-plasticity based on multiplicative decompositions. Part I: continuum formulations
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/S0045-7825(01)00337-1
– volume: 22
  start-page: 1123
  issue: 6
  year: 2006
  ident: 10.1016/j.mechmat.2025.105430_bib1
  article-title: On modeling the micro-indentation response of an amorphous polymer
  publication-title: Int. J. Plast.
  doi: 10.1016/j.ijplas.2005.07.006
– volume: 455
  year: 2000
  ident: 10.1016/j.mechmat.2025.105430_bib37
  publication-title: Nonlinear solid mechanics : a continuum approach for engineering
– volume: 3
  start-page: 15
  issue: 6
  year: 2006
  ident: 10.1016/j.mechmat.2025.105430_bib27
  article-title: Hyperelastic modelling of arterial layers with distributed collagen fibre orientations
  publication-title: J. R. Soc. Interface
  doi: 10.1098/rsif.2005.0073
– volume: 22
  start-page: 1718
  issue: 9–11
  year: 2012
  ident: 10.1016/j.mechmat.2025.105430_bib48
  publication-title: MEASUREMENT OF PRESSURE RESPONSES IN A PHYSICAL MODEL OF A HUMAN HEAD WITH HIGH SHAPE FIDELITY BASED ON CT/MRI DATA
– volume: 112
  start-page: 209
  year: 2018
  ident: 10.1016/j.mechmat.2025.105430_bib24
  article-title: A continuum mechanics constitutive framework for transverse isotropic soft tissues
  publication-title: J. Mech. Phys. Solid.
  doi: 10.1016/j.jmps.2017.12.001
– volume: 22
  start-page: 2346
  issue: 12
  year: 2006
  ident: 10.1016/j.mechmat.2025.105430_bib64
  article-title: A formulation of anisotropic continuum elastoplasticity at finite strains. Part I: modelling
  publication-title: Int. J. Plast.
  doi: 10.1016/j.ijplas.2006.04.002
– volume: 4
  start-page: 1582
  issue: 8
  year: 2011
  ident: 10.1016/j.mechmat.2025.105430_bib73
  article-title: Modeling failure of soft anisotropic materials with application to arteries
  publication-title: J. Mech. Behav. Biomed. Mater.
  doi: 10.1016/j.jmbbm.2011.01.002
– volume: 48
  start-page: 319
  year: 2017
  ident: 10.1016/j.mechmat.2025.105430_bib4
  article-title: Mechanical characterization of human brain tissue
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2016.10.036
– volume: 128
  start-page: 917
  issue: 6
  year: 2006
  ident: 10.1016/j.mechmat.2025.105430_bib40
  article-title: Simulation of soft tissue failure using the material point method
  publication-title: J. Biomech. Eng.
  doi: 10.1115/1.2372490
– volume: 2
  start-page: 609
  issue: 6
  year: 2006
  ident: 10.1016/j.mechmat.2025.105430_bib2
  article-title: Simulation of discontinuous damage incorporating residual stresses in circumferentially overstretched atherosclerotic arteries
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2006.06.005
– volume: 46
  start-page: 1727
  issue: 7–8
  year: 2009
  ident: 10.1016/j.mechmat.2025.105430_bib58
  article-title: On the mullins effect and hysteresis of fibered biological materials: a comparison between continuous and discontinuous damage models
  publication-title: Int. J. Solid Struct.
  doi: 10.1016/j.ijsolstr.2008.12.015
– volume: 369
  year: 2020
  ident: 10.1016/j.mechmat.2025.105430_bib10
  article-title: Modeling the porous and viscous responses of human brain tissue behavior
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2020.113128
– volume: 35
  start-page: 705
  issue: 4
  year: 2022
  ident: 10.1016/j.mechmat.2025.105430_bib30
  article-title: Investigating the head impact force-induced evolution of hyperphosphorylated tau proteins in brain tissue through mechanical mesoscale finite element simulation
  publication-title: Acta Mech. Solida Sin.
  doi: 10.1007/s10338-022-00309-4
– volume: 132
  year: 2022
  ident: 10.1016/j.mechmat.2025.105430_bib83
  article-title: Fiber orientation downsampling compromises the computation of white matter tract-related deformation
  publication-title: J. Mech. Behav. Biomed. Mater.
  doi: 10.1016/j.jmbbm.2022.105294
– volume: 51
  start-page: 17
  issue: October
  year: 2007
  ident: 10.1016/j.mechmat.2025.105430_bib29
  article-title: A study of the response of the human cadaver head to impact
  publication-title: Stapp Car Crash Journal
– year: 2019
  ident: 10.1016/j.mechmat.2025.105430_bib7
– volume: 60
  start-page: 315
  year: 2017
  ident: 10.1016/j.mechmat.2025.105430_bib5
  article-title: Rheological characterization of human brain tissue
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2017.06.024
– volume: 10
  start-page: 393
  issue: 4
  year: 1994
  ident: 10.1016/j.mechmat.2025.105430_bib45
  article-title: Eshelby stress in elastoplasticity and ductile fracture
  publication-title: Int. J. Plast.
  doi: 10.1016/0749-6419(94)90040-X
– volume: 21
  start-page: 512
  issue: 6
  year: 1998
  ident: 10.1016/j.mechmat.2025.105430_bib63
  article-title: Large viscoplastic deformations of shells. Theory and finite element formulation
  publication-title: Comput. Mech.
  doi: 10.1007/s004660050329
– volume: 99
  start-page: 61
  issue: 1
  year: 1992
  ident: 10.1016/j.mechmat.2025.105430_bib67
  article-title: Algorithms for static and dynamic multiplicative plasticity that preserve the classical return mapping schemes of the infinitesimal theory
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/0045-7825(92)90123-2
– volume: 42
  start-page: 265
  year: 2016
  ident: 10.1016/j.mechmat.2025.105430_bib76
  article-title: Brain stiffness increases with myelin content
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2016.07.040
– year: 1994
  ident: 10.1016/j.mechmat.2025.105430_bib22
– volume: 40
  start-page: 951
  issue: 4
  year: 2003
  ident: 10.1016/j.mechmat.2025.105430_bib60
  article-title: Meso-macro modelling of fibre-reinforced rubber-like composites exhibiting large elastoplastic deformation
  publication-title: Int. J. Solid Struct.
  doi: 10.1016/S0020-7683(02)00602-9
– volume: 28
  start-page: 127
  year: 2018
  ident: 10.1016/j.mechmat.2025.105430_bib23
  article-title: Effect of bulk modulus on deformation of the brain under rotational accelerations
  publication-title: Shock Waves
  doi: 10.1007/s00193-017-0791-z
– volume: 44
  start-page: 8366
  issue: 25–26
  year: 2007
  ident: 10.1016/j.mechmat.2025.105430_bib53
  article-title: Modeling the anisotropic finite-deformation viscoelastic behavior of soft fiber-reinforced composites
  publication-title: Int. J. Solid Struct.
  doi: 10.1016/j.ijsolstr.2007.06.020
– volume: 47
  start-page: 3762
  issue: 15
  year: 2014
  ident: 10.1016/j.mechmat.2025.105430_bib49
  article-title: Fitted hyperelastic parameters for human brain tissue from reported tension, compression, and shear tests
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2014.09.030
– volume: 2
  start-page: 106
  issue: 2
  year: 2014
  ident: 10.1016/j.mechmat.2025.105430_bib13
  publication-title: Brain-on-a-chip microsystem for investigating traumatic brain injury: Axon diameter and mitochondrial membrane changes play a significant role in axonal response to strain injuries
– volume: 322
  start-page: 262
  year: 2017
  ident: 10.1016/j.mechmat.2025.105430_bib17
  article-title: A finite strain integral-type anisotropic damage model for fiber-reinforced materials: application in soft biological tissues
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2017.04.009
– volume: 41
  start-page: 4237
  issue: 15
  year: 2004
  ident: 10.1016/j.mechmat.2025.105430_bib44
  article-title: A transversely isotropic viscohyperelastic material application to the modeling of biological soft connective tissues
  publication-title: Int. J. Solid Struct.
  doi: 10.1016/j.ijsolstr.2004.02.057
– volume: 31
  start-page: 753
  issue: 8
  year: 1998
  ident: 10.1016/j.mechmat.2025.105430_bib59
  article-title: Viscoelastic constitutive law in large deformations: application to human knee ligaments and tendons
  publication-title: J. Biomech.
  doi: 10.1016/S0021-9290(98)00077-3
– volume: 33
  issue: 5
  year: 2017
  ident: 10.1016/j.mechmat.2025.105430_bib25
  article-title: Modeling the mechanics of axonal fiber tracts using the embedded finite element method
  publication-title: International Journal for Numerical Methods in Biomedical Engineering
  doi: 10.1002/cnm.2823
– volume: 68
  issue: Issue 1
  year: 2016
  ident: 10.1016/j.mechmat.2025.105430_bib11
  article-title: Constitutive modeling of brain tissue: current perspectives. In applied mechanics reviews
  publication-title: Am. Soc. Mech. Eng.
– volume: 94
  start-page: 91
  issue: 2
  year: 2011
  ident: 10.1016/j.mechmat.2025.105430_bib70
  article-title: The emerging role of forces in axonal elongation
  publication-title: Prog. Neurobiol.
  doi: 10.1016/j.pneurobio.2011.04.002
– volume: 35
  start-page: 409
  issue: 6
  year: 2005
  ident: 10.1016/j.mechmat.2025.105430_bib42
  article-title: An anisotropic fibre-matrix material model at finite elastic-plastic strains
  publication-title: Comput. Mech.
  doi: 10.1007/s00466-004-0629-2
– volume: 181
  year: 2024
  ident: 10.1016/j.mechmat.2025.105430_bib35
  article-title: Embedded finite element modeling of the mechanics of brain axonal fiber tracts under head impact conditions
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2024.109063
– volume: 75
  year: 2020
  ident: 10.1016/j.mechmat.2025.105430_bib16
  article-title: A knowledge map analysis of brain biomechanics: current evidence and future directions
  publication-title: Clin. BioMech.
  doi: 10.1016/j.clinbiomech.2020.105000
– volume: 141
  year: 2023
  ident: 10.1016/j.mechmat.2025.105430_bib34
  article-title: Modeling the damage-induced softening behavior of brain white matter using a coupled hyperelasticty-damage model
  publication-title: J. Mech. Behav. Biomed. Mater.
  doi: 10.1016/j.jmbbm.2023.105753
– volume: 60
  start-page: 153
  issue: 2
  year: 1987
  ident: 10.1016/j.mechmat.2025.105430_bib66
  article-title: On a fully three-dimensional finite-strain viscoelastic damage model: formulation and computational aspects
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/0045-7825(87)90107-1
– start-page: 239
  year: 1971
  ident: 10.1016/j.mechmat.2025.105430_bib69
  article-title: Theory of invariants
– volume: 12
  year: 2018
  ident: 10.1016/j.mechmat.2025.105430_bib12
  article-title: Physical biology of axonal damage
  publication-title: Front. Cell. Neurosci.
  doi: 10.3389/fncel.2018.00144
– volume: 9
  start-page: 757
  year: 2021
  ident: 10.1016/j.mechmat.2025.105430_bib46
  article-title: A machine learning approach to investigate the uncertainty of tissue-level injury metrics for cerebral contusion
  publication-title: Front. Bioeng. Biotechnol.
  doi: 10.3389/fbioe.2021.714128
– year: 1977
  ident: 10.1016/j.mechmat.2025.105430_bib50
– volume: 230
  start-page: 2125
  issue: 6
  year: 2019
  ident: 10.1016/j.mechmat.2025.105430_bib84
  article-title: A visco-hyperelastic model of brain tissue incorporating both tension/compression asymmetry and volume compressibility
  publication-title: Acta Mech.
  doi: 10.1007/s00707-019-02383-1
– volume: 60
  start-page: 153
  issue: 2
  year: 1987
  ident: 10.1016/j.mechmat.2025.105430_bib65
  article-title: On a fully three-dimensional finite-strain viscoelastic damage model: formulation and computational aspects
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/0045-7825(87)90107-1
– volume: 4
  year: 2023
  ident: 10.1016/j.mechmat.2025.105430_bib32
  article-title: Modeling the damage initiation of white matter brain tissue during indentation
  publication-title: ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE)
– year: 1998
  ident: 10.1016/j.mechmat.2025.105430_bib68
  article-title: Computational inelasticity
  publication-title: Computational Inelasticity
– volume: 71
  start-page: 407
  year: 2017
  ident: 10.1016/j.mechmat.2025.105430_bib20
  article-title: A longitudinal study of the mechanical properties of injured brain tissue in a mouse model
  publication-title: J. Mech. Behav. Biomed. Mater.
  doi: 10.1016/j.jmbbm.2017.04.008
– volume: 196
  start-page: 1745
  issue: 9–12
  year: 2007
  ident: 10.1016/j.mechmat.2025.105430_bib52
  article-title: An anisotropic viscoelastic fibre–matrix model at finite strains: continuum formulation and computational aspects
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2006.09.009
– volume: 23
  start-page: 117
  year: 2013
  ident: 10.1016/j.mechmat.2025.105430_bib18
  article-title: Measurements of mechanical anisotropy in brain tissue and implications for transversely isotropic material models of white matter
  publication-title: J. Mech. Behav. Biomed. Mater.
  doi: 10.1016/j.jmbbm.2013.04.007
– volume: 40
  start-page: 213
  issue: 2–3
  year: 2005
  ident: 10.1016/j.mechmat.2025.105430_bib47
  article-title: Mechanical response of fiber-reinforced incompressible non-linearly elastic solids
  publication-title: Int. J. Non Lin. Mech.
  doi: 10.1016/j.ijnonlinmec.2004.05.003
– volume: 35
  start-page: 3455
  issue: 26–27
  year: 1998
  ident: 10.1016/j.mechmat.2025.105430_bib61
  article-title: A theory of finite viscoelasticity and numerical aspects
  publication-title: Int. J. Solid Struct.
  doi: 10.1016/S0020-7683(97)00217-5
– volume: 144
  issue: 7
  year: 2022
  ident: 10.1016/j.mechmat.2025.105430_bib33
  article-title: Mesoscale simulation-based parametric study of damage potential in brain tissue using hyperelastic and internal state variable models
  publication-title: J. Biomech. Eng.
  doi: 10.1115/1.4053205
– volume: 10
  year: 2022
  ident: 10.1016/j.mechmat.2025.105430_bib82
  article-title: The presence of the temporal horn exacerbates the vulnerability of hippocampus during head impacts
  publication-title: Front. Bioeng. Biotechnol.
– volume: 69
  start-page: 2036
  issue: 10
  year: 2007
  ident: 10.1016/j.mechmat.2025.105430_bib8
  article-title: An uncoupled directional damage model for fibred biological soft tissues. Formulation and computational aspects
  publication-title: Int. J. Numer. Methods Eng.
  doi: 10.1002/nme.1825
– volume: 83
  start-page: 63
  year: 2018
  ident: 10.1016/j.mechmat.2025.105430_bib74
  article-title: Hyperelastic modeling of the human brain tissue: effects of no-slip boundary condition and compressibility on the uniaxial deformation
  publication-title: J. Mech. Behav. Biomed. Mater.
  doi: 10.1016/j.jmbbm.2018.04.011
– volume: 74
  start-page: 463
  year: 2017
  ident: 10.1016/j.mechmat.2025.105430_bib6
  article-title: Viscoelastic parameter identification of human brain tissue
  publication-title: J. Mech. Behav. Biomed. Mater.
  doi: 10.1016/j.jmbbm.2017.07.014
– volume: 46
  start-page: 2795
  issue: 16
  year: 2013
  ident: 10.1016/j.mechmat.2025.105430_bib41
  article-title: A comprehensive experimental study on material properties of human brain tissue
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2013.09.001
SSID ssj0005957
Score 2.4441967
Snippet This work aims to develop a novel two-phase constitutive model to capture the hyperelastic, time-dependent, and damage behaviors of extracellular matrix and...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 105430
SubjectTerms Biological tissue
brain white matter
Constitutive model
Damage mechanics
Title A finite deformation constitutive model for brain white matter considering the time-dependent and damage behaviors of matrix and axonal fibers
URI https://dx.doi.org/10.1016/j.mechmat.2025.105430
Volume 209
WOSCitedRecordID wos001555134100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 0167-6636
  databaseCode: AIEXJ
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0005957
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1La9tAEF4ap4f0UPoKcV_MoTcjR7v2WrtHt7i0pQ2BpOCb0GMFDlgOsdP6V_Q3d2ZHayk0lDTQizCSVlp2Pq--nf1mRoh3-FVJEl3EUZyV5K2SLsq1xj-ejI0rjZ6MC5_E9WtycmLmc3vaOPTXvpxAUtdmu7WX_9XUeA6NTaGz_2Du3UPxBP5Go-MRzY7HOxl-OqgWRCQHpdtFJpK4nEUBJBTy1W9Yp0kFIgY_aSthsPSZNv2dFJoXwqio-HwUSuWyHL3MlqT0CRH-XgyypFT_W079uvXexYq0KOsu-f3mKMyY0kJzAx6NYPI5y3bfh2-pzxDJgRFu0bps2ZHfdVYovZO9NR60EEXTSpa8UxMna2Q-k-6srHzWhD9neHY2XAyX2GXs6ZDeQsWKx832zs3k2Wf0bHo0Mj0is3ZP7KtEW9MT-9PPs_mXVg5kOSts6Esb7XV868tu5zEdbnL-RDxuFhUwZTA8FQ9c_Uw86qSafC5-TYFhAR1YQBcW4GEBeBE8LMDDAhgW0IEFICzgJiwA7Q4MC9jBAlYVMCz8ZYYFMCxeiO8fZ-cfPkVNLY6owAXyJsKFQ15K6camkiabKJdkSA2dNjkScIfjkjtVGa1soceZyrNsVCSm0mWBY2mcNaND0atXtTsSoBXtzRtjpUMyrqpMjnQ1sUkeyyIeKdkXwzCy6SWnXEmDFvEibUyRkilSNkVfmDD-acMbmQ-mCJq_N315_6avxEGL8Neit7m6dm_Ew-LHZrG-etvA6zdnbJjP
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+finite+deformation+constitutive+model+for+brain+white+matter+considering+the+time-dependent+and+damage+behaviors+of+matrix+and+axonal+fibers&rft.jtitle=Mechanics+of+materials&rft.au=Xia%2C+Bing&rft.au=Fan%2C+Lei&rft.au=He%2C+Ge&rft.date=2025-10-01&rft.pub=Elsevier+Ltd&rft.issn=0167-6636&rft.volume=209&rft_id=info:doi/10.1016%2Fj.mechmat.2025.105430&rft.externalDocID=S0167663625001929
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-6636&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-6636&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-6636&client=summon