Bayesmix: Bayesian mixture models in C++

We describe BayesMix, a C++ library for MCMC posterior simulation for general Bayesian mixture models. The goal of BayesMix is to provide a self-contained ecosystem to perform inference for mixture models to computer scientists, statisticians and practitioners. The key idea of this library is extens...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of statistical software Jg. 112; H. 9
Hauptverfasser: Beraha, Mario, Guindani, Bruno, Gianella, Matteo, Guglielmi, Alessandra
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Foundation for Open Access Statistics 2025
ISSN:1548-7660, 1548-7660
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract We describe BayesMix, a C++ library for MCMC posterior simulation for general Bayesian mixture models. The goal of BayesMix is to provide a self-contained ecosystem to perform inference for mixture models to computer scientists, statisticians and practitioners. The key idea of this library is extensibility, as we wish the users to easily adapt our software to their specific Bayesian mixture models. In addition to the several models and MCMC algorithms for posterior inference included in the library, new users with little familiarity on mixture models and the related MCMC algorithms can extend our library with minimal coding effort. Our library is computationally very efficient when compared to competitor software. Examples show that the typical code runtimes are from two to 25 times faster than competitors for data dimension from one to ten. We also provide Python (bayesmixpy) and R (bayesmixr) interfaces. Our library is publicly available on GitHub at https://github.com/bayesmix-dev/bayesmix/.
AbstractList We describe BayesMix, a C++ library for MCMC posterior simulation for general Bayesian mixture models. The goal of BayesMix is to provide a self-contained ecosystem to perform inference for mixture models to computer scientists, statisticians and practitioners. The key idea of this library is extensibility, as we wish the users to easily adapt our software to their specific Bayesian mixture models. In addition to the several models and MCMC algorithms for posterior inference included in the library, new users with little familiarity on mixture models and the related MCMC algorithms can extend our library with minimal coding effort. Our library is computationally very efficient when compared to competitor software. Examples show that the typical code runtimes are from two to 25 times faster than competitors for data dimension from one to ten. We also provide Python (bayesmixpy) and R (bayesmixr) interfaces. Our library is publicly available on GitHub at https://github.com/bayesmix-dev/bayesmix/.
Author Guglielmi, Alessandra
Guindani, Bruno
Beraha, Mario
Gianella, Matteo
Author_xml – sequence: 1
  givenname: Mario
  surname: Beraha
  fullname: Beraha, Mario
– sequence: 2
  givenname: Bruno
  surname: Guindani
  fullname: Guindani, Bruno
– sequence: 3
  givenname: Matteo
  surname: Gianella
  fullname: Gianella, Matteo
– sequence: 4
  givenname: Alessandra
  surname: Guglielmi
  fullname: Guglielmi, Alessandra
BookMark eNp1kE1LAzEQhoNUsK0eve9RKFsnm2ST9abFj0LBi57DbD4kZbsrySr237tuRUTwNO8MM8_AMyOTtmsdIecUllSVTF5uU1q-U1osA1RHZEoFV7ksS5j8yidkltIWoABeiSm5uMG9S7vwcZWNKWCbDV3_Fl2266xrUhbabLVYnJJjj01yZ991Tp7vbp9WD_nm8X69ut7kphBVlUvGRYWGG1UaV1NTWFFS4OCZqkF563ntZO1tWQAq4aSHwiEvKPcOhHTA5mR94NoOt_o1hh3Gve4w6HHQxReNsQ-mcVoaxYAOXy06DiVDy2jtQVqkSghwAys_sEzsUorO__Ao6FGZHpTpL2V6UDbssz_7JvTYh67tI4bmn6tPdIRxZg
CitedBy_id crossref_primary_10_1093_jrsssb_qkaf027
ContentType Journal Article
DBID AAYXX
CITATION
DOA
DOI 10.18637/jss.v112.i09
DatabaseName CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1548-7660
ExternalDocumentID oai_doaj_org_article_7c8301599dae4063ad31bf07da18550e
10_18637_jss_v112_i09
GroupedDBID 29L
2WC
5GY
5VS
AAFWJ
AAKPC
AAYXX
ACGFO
ACIPV
ADBBV
AENEX
AFPKN
ALMA_UNASSIGNED_HOLDINGS
BCNDV
C1A
CITATION
E3Z
EBS
EJD
F5P
GROUPED_DOAJ
GX1
IPNFZ
KQ8
M~E
OK1
OVT
P2P
RIG
RNS
TR2
XSB
ID FETCH-LOGICAL-c2599-73459ac4c86ceb1c2d561040f38b08fdf4be7bfd620a85e7f02ea4214fe057e03
IEDL.DBID DOA
ISSN 1548-7660
IngestDate Fri Oct 03 12:53:20 EDT 2025
Sat Nov 29 08:06:14 EST 2025
Tue Nov 18 22:38:32 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2599-73459ac4c86ceb1c2d561040f38b08fdf4be7bfd620a85e7f02ea4214fe057e03
ORCID 0000-0002-3495-414X
0000-0002-3165-3579
0000-0002-1710-3466
0000-0001-7005-7588
OpenAccessLink https://doaj.org/article/7c8301599dae4063ad31bf07da18550e
ParticipantIDs doaj_primary_oai_doaj_org_article_7c8301599dae4063ad31bf07da18550e
crossref_primary_10_18637_jss_v112_i09
crossref_citationtrail_10_18637_jss_v112_i09
PublicationCentury 2000
PublicationDate 2025-00-00
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – year: 2025
  text: 2025-00-00
PublicationDecade 2020
PublicationTitle Journal of statistical software
PublicationYear 2025
Publisher Foundation for Open Access Statistics
Publisher_xml – name: Foundation for Open Access Statistics
SSID ssj0020495
Score 2.4576995
Snippet We describe BayesMix, a C++ library for MCMC posterior simulation for general Bayesian mixture models. The goal of BayesMix is to provide a self-contained...
SourceID doaj
crossref
SourceType Open Website
Enrichment Source
Index Database
Title Bayesmix: Bayesian mixture models in C++
URI https://doaj.org/article/7c8301599dae4063ad31bf07da18550e
Volume 112
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1548-7660
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0020495
  issn: 1548-7660
  databaseCode: DOA
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1548-7660
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0020495
  issn: 1548-7660
  databaseCode: M~E
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NS8NAEF2keNCD-In1ixxEhJo2TTbZXW-2tHiwxYNCb2GzmYVISaWpRS_-dmeStPQiXryEfAwhebPsvFmW9xi7VlYCqCRytRTgcj81bmIld4X1IMKCjZ1z6VryJMZjOZmo5w2rL9oTVskDV8B1hJE4BkOlUg1YfAKdBt3EeiLVXdLiApp9kfWsmqm61ULeG9aKmjIKROetKNpLpBbtjHYeblSgDaH-sqIM99leTQWdh-oTDtgW5Idsd7TWUS2O2G1Pf0Exyj7vnfIMc-ngFa36O-RiNi2cLHf6rdYxex0OXvqPbu1t4BpsOJQrAh4qbbiRkcHp0vgpERnu2UAmnrSp5QmIxKaR72kZAkLng-Z-l1tAhgVecMIa-SyHU-aECdcyUgIifEzy-EIhSQuwVUH4kU802d3qf2NTC3-T_8Q0pgaA4IkRnpjgiRGeJrtZh79Xihe_BfYIvHUQCVWXNzB9cZ2--K_0nf3HS87Zjk-2vOXKyAVrLOYfcMm2zXKRFfOrcmTgcfQ9-AH9N7yo
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=BayesMix%3A+Bayesian+Mixture+Models+in+C%2B%2B&rft.jtitle=Journal+of+statistical+software&rft.au=Mario+Beraha&rft.au=Bruno+Guindani&rft.au=Matteo+Gianella&rft.au=Alessandra+Guglielmi&rft.date=2025&rft.pub=Foundation+for+Open+Access+Statistics&rft.eissn=1548-7660&rft.volume=112&rft.issue=1&rft_id=info:doi/10.18637%2Fjss.v112.i09&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_7c8301599dae4063ad31bf07da18550e
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1548-7660&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1548-7660&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1548-7660&client=summon