Bayesmix: Bayesian mixture models in C++
We describe BayesMix, a C++ library for MCMC posterior simulation for general Bayesian mixture models. The goal of BayesMix is to provide a self-contained ecosystem to perform inference for mixture models to computer scientists, statisticians and practitioners. The key idea of this library is extens...
Gespeichert in:
| Veröffentlicht in: | Journal of statistical software Jg. 112; H. 9 |
|---|---|
| Hauptverfasser: | , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Foundation for Open Access Statistics
2025
|
| ISSN: | 1548-7660, 1548-7660 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | We describe BayesMix, a C++ library for MCMC posterior simulation for general Bayesian mixture models. The goal of BayesMix is to provide a self-contained ecosystem to perform inference for mixture models to computer scientists, statisticians and practitioners. The key idea of this library is extensibility, as we wish the users to easily adapt our software to their specific Bayesian mixture models. In addition to the several models and MCMC algorithms for posterior inference included in the library, new users with little familiarity on mixture models and the related MCMC algorithms can extend our library with minimal coding effort. Our library is computationally very efficient when compared to competitor software. Examples show that the typical code runtimes are from two to 25 times faster than competitors for data dimension from one to ten. We also provide Python (bayesmixpy) and R (bayesmixr) interfaces. Our library is publicly available on GitHub at https://github.com/bayesmix-dev/bayesmix/. |
|---|---|
| AbstractList | We describe BayesMix, a C++ library for MCMC posterior simulation for general Bayesian mixture models. The goal of BayesMix is to provide a self-contained ecosystem to perform inference for mixture models to computer scientists, statisticians and practitioners. The key idea of this library is extensibility, as we wish the users to easily adapt our software to their specific Bayesian mixture models. In addition to the several models and MCMC algorithms for posterior inference included in the library, new users with little familiarity on mixture models and the related MCMC algorithms can extend our library with minimal coding effort. Our library is computationally very efficient when compared to competitor software. Examples show that the typical code runtimes are from two to 25 times faster than competitors for data dimension from one to ten. We also provide Python (bayesmixpy) and R (bayesmixr) interfaces. Our library is publicly available on GitHub at https://github.com/bayesmix-dev/bayesmix/. |
| Author | Guglielmi, Alessandra Guindani, Bruno Beraha, Mario Gianella, Matteo |
| Author_xml | – sequence: 1 givenname: Mario surname: Beraha fullname: Beraha, Mario – sequence: 2 givenname: Bruno surname: Guindani fullname: Guindani, Bruno – sequence: 3 givenname: Matteo surname: Gianella fullname: Gianella, Matteo – sequence: 4 givenname: Alessandra surname: Guglielmi fullname: Guglielmi, Alessandra |
| BookMark | eNp1kE1LAzEQhoNUsK0eve9RKFsnm2ST9abFj0LBi57DbD4kZbsrySr237tuRUTwNO8MM8_AMyOTtmsdIecUllSVTF5uU1q-U1osA1RHZEoFV7ksS5j8yidkltIWoABeiSm5uMG9S7vwcZWNKWCbDV3_Fl2266xrUhbabLVYnJJjj01yZ991Tp7vbp9WD_nm8X69ut7kphBVlUvGRYWGG1UaV1NTWFFS4OCZqkF563ntZO1tWQAq4aSHwiEvKPcOhHTA5mR94NoOt_o1hh3Gve4w6HHQxReNsQ-mcVoaxYAOXy06DiVDy2jtQVqkSghwAys_sEzsUorO__Ao6FGZHpTpL2V6UDbssz_7JvTYh67tI4bmn6tPdIRxZg |
| CitedBy_id | crossref_primary_10_1093_jrsssb_qkaf027 |
| ContentType | Journal Article |
| DBID | AAYXX CITATION DOA |
| DOI | 10.18637/jss.v112.i09 |
| DatabaseName | CrossRef DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Mathematics |
| EISSN | 1548-7660 |
| ExternalDocumentID | oai_doaj_org_article_7c8301599dae4063ad31bf07da18550e 10_18637_jss_v112_i09 |
| GroupedDBID | 29L 2WC 5GY 5VS AAFWJ AAKPC AAYXX ACGFO ACIPV ADBBV AENEX AFPKN ALMA_UNASSIGNED_HOLDINGS BCNDV C1A CITATION E3Z EBS EJD F5P GROUPED_DOAJ GX1 IPNFZ KQ8 M~E OK1 OVT P2P RIG RNS TR2 XSB |
| ID | FETCH-LOGICAL-c2599-73459ac4c86ceb1c2d561040f38b08fdf4be7bfd620a85e7f02ea4214fe057e03 |
| IEDL.DBID | DOA |
| ISSN | 1548-7660 |
| IngestDate | Fri Oct 03 12:53:20 EDT 2025 Sat Nov 29 08:06:14 EST 2025 Tue Nov 18 22:38:32 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 9 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c2599-73459ac4c86ceb1c2d561040f38b08fdf4be7bfd620a85e7f02ea4214fe057e03 |
| ORCID | 0000-0002-3495-414X 0000-0002-3165-3579 0000-0002-1710-3466 0000-0001-7005-7588 |
| OpenAccessLink | https://doaj.org/article/7c8301599dae4063ad31bf07da18550e |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_7c8301599dae4063ad31bf07da18550e crossref_primary_10_18637_jss_v112_i09 crossref_citationtrail_10_18637_jss_v112_i09 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-00-00 |
| PublicationDateYYYYMMDD | 2025-01-01 |
| PublicationDate_xml | – year: 2025 text: 2025-00-00 |
| PublicationDecade | 2020 |
| PublicationTitle | Journal of statistical software |
| PublicationYear | 2025 |
| Publisher | Foundation for Open Access Statistics |
| Publisher_xml | – name: Foundation for Open Access Statistics |
| SSID | ssj0020495 |
| Score | 2.4576995 |
| Snippet | We describe BayesMix, a C++ library for MCMC posterior simulation for general Bayesian mixture models. The goal of BayesMix is to provide a self-contained... |
| SourceID | doaj crossref |
| SourceType | Open Website Enrichment Source Index Database |
| Title | Bayesmix: Bayesian mixture models in C++ |
| URI | https://doaj.org/article/7c8301599dae4063ad31bf07da18550e |
| Volume | 112 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1548-7660 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0020495 issn: 1548-7660 databaseCode: DOA dateStart: 19960101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1548-7660 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0020495 issn: 1548-7660 databaseCode: M~E dateStart: 19960101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NS8NAEF2keNCD-In1ixxEhJo2TTbZXW-2tHiwxYNCb2GzmYVISaWpRS_-dmeStPQiXryEfAwhebPsvFmW9xi7VlYCqCRytRTgcj81bmIld4X1IMKCjZ1z6VryJMZjOZmo5w2rL9oTVskDV8B1hJE4BkOlUg1YfAKdBt3EeiLVXdLiApp9kfWsmqm61ULeG9aKmjIKROetKNpLpBbtjHYeblSgDaH-sqIM99leTQWdh-oTDtgW5Idsd7TWUS2O2G1Pf0Exyj7vnfIMc-ngFa36O-RiNi2cLHf6rdYxex0OXvqPbu1t4BpsOJQrAh4qbbiRkcHp0vgpERnu2UAmnrSp5QmIxKaR72kZAkLng-Z-l1tAhgVecMIa-SyHU-aECdcyUgIifEzy-EIhSQuwVUH4kU802d3qf2NTC3-T_8Q0pgaA4IkRnpjgiRGeJrtZh79Xihe_BfYIvHUQCVWXNzB9cZ2--K_0nf3HS87Zjk-2vOXKyAVrLOYfcMm2zXKRFfOrcmTgcfQ9-AH9N7yo |
| linkProvider | Directory of Open Access Journals |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=BayesMix%3A+Bayesian+Mixture+Models+in+C%2B%2B&rft.jtitle=Journal+of+statistical+software&rft.au=Mario+Beraha&rft.au=Bruno+Guindani&rft.au=Matteo+Gianella&rft.au=Alessandra+Guglielmi&rft.date=2025&rft.pub=Foundation+for+Open+Access+Statistics&rft.eissn=1548-7660&rft.volume=112&rft.issue=1&rft_id=info:doi/10.18637%2Fjss.v112.i09&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_7c8301599dae4063ad31bf07da18550e |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1548-7660&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1548-7660&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1548-7660&client=summon |