Exact and Efficient Mesh‐Kernel Generation

The mesh kernel for a star‐shaped mesh is a convex polyhedron given by the intersection of all half‐spaces defined by the faces of the input mesh. For all non‐star‐shaped meshes, the kernel is empty. We present a method to robustly and efficiently compute the kernel of an input triangle mesh by usin...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Computer graphics forum Ročník 44; číslo 5
Hlavní autoři: Nehring‐Wirxel, J., Kern, P., Trettner, P., Kobbelt, L.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Oxford Blackwell Publishing Ltd 01.08.2025
Témata:
ISSN:0167-7055, 1467-8659
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:The mesh kernel for a star‐shaped mesh is a convex polyhedron given by the intersection of all half‐spaces defined by the faces of the input mesh. For all non‐star‐shaped meshes, the kernel is empty. We present a method to robustly and efficiently compute the kernel of an input triangle mesh by using exact plane‐based integer arithmetic to compute the mesh kernel. We make use of several ways to accelerate the computation time. Since many applications just require information if a non‐empty mesh kernel exists, we also propose a method to efficiently determine whether a kernel exists by developing an exact plane‐based linear program solver. We evaluate our method on a large dataset of triangle meshes and show that in contrast to previous methods, our approach is exact and robust while maintaining a high performance. It is on average two orders of magnitude faster than other exact state‐of‐the‐art methods and often about one order of magnitude faster than non‐exact methods.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0167-7055
1467-8659
DOI:10.1111/cgf.70187