Self‐Supervised Image Harmonization via Region‐Aware Harmony Classification

Image harmonization is a widely used technique in image composition, which aims to adjust the appearance of the composited foreground object according to the style of the background image so that the resulting composited image is visually natural and appears to be photographed. Previous methods are...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Computer graphics forum Ročník 44; číslo 6
Hlavní autoři: Tian, Chenyang, Wang, Xinbo, Zhang, Qing
Médium: Journal Article
Jazyk:angličtina
Vydáno: Oxford Blackwell Publishing Ltd 01.09.2025
Témata:
ISSN:0167-7055, 1467-8659
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Image harmonization is a widely used technique in image composition, which aims to adjust the appearance of the composited foreground object according to the style of the background image so that the resulting composited image is visually natural and appears to be photographed. Previous methods are mostly trained in a fully supervised manner, while demonstrating promising results, they do not generalize well to complex unseen cases involving significant style and semantic difference between the composited foreground object and the background image. In this paper, we present a self‐supervised image harmonization framework that enables superior performance on complex cases. To do so, we first synthesize a large amount of data with wide diversity for training. We then develop an attentive harmonization module to adaptively adjust the foreground appearance by querying relevant background features. To allow more effective image harmonization, we develop a region‐aware harmony classifier to explicitly judge whether an image is harmonious or not. Experiments on several datasets show that our method performs favourably against previous methods. Our code will be made publicly available. In this paper, we present a self‐supervised image harmonization framework that enables superior performance on complex cases. To do so, we develop an attentive harmonization module and a region‐aware harmony classifier to explicitly judge whether an image is harmonious or not.
AbstractList Image harmonization is a widely used technique in image composition, which aims to adjust the appearance of the composited foreground object according to the style of the background image so that the resulting composited image is visually natural and appears to be photographed. Previous methods are mostly trained in a fully supervised manner, while demonstrating promising results, they do not generalize well to complex unseen cases involving significant style and semantic difference between the composited foreground object and the background image. In this paper, we present a self‐supervised image harmonization framework that enables superior performance on complex cases. To do so, we first synthesize a large amount of data with wide diversity for training. We then develop an attentive harmonization module to adaptively adjust the foreground appearance by querying relevant background features. To allow more effective image harmonization, we develop a region‐aware harmony classifier to explicitly judge whether an image is harmonious or not. Experiments on several datasets show that our method performs favourably against previous methods. Our code will be made publicly available.
Image harmonization is a widely used technique in image composition, which aims to adjust the appearance of the composited foreground object according to the style of the background image so that the resulting composited image is visually natural and appears to be photographed. Previous methods are mostly trained in a fully supervised manner, while demonstrating promising results, they do not generalize well to complex unseen cases involving significant style and semantic difference between the composited foreground object and the background image. In this paper, we present a self‐supervised image harmonization framework that enables superior performance on complex cases. To do so, we first synthesize a large amount of data with wide diversity for training. We then develop an attentive harmonization module to adaptively adjust the foreground appearance by querying relevant background features. To allow more effective image harmonization, we develop a region‐aware harmony classifier to explicitly judge whether an image is harmonious or not. Experiments on several datasets show that our method performs favourably against previous methods. Our code will be made publicly available. In this paper, we present a self‐supervised image harmonization framework that enables superior performance on complex cases. To do so, we develop an attentive harmonization module and a region‐aware harmony classifier to explicitly judge whether an image is harmonious or not.
Author Tian, Chenyang
Zhang, Qing
Wang, Xinbo
Author_xml – sequence: 1
  givenname: Chenyang
  surname: Tian
  fullname: Tian, Chenyang
  email: tianchy6@mail2.sysu.edu.cn
  organization: Sun Yat‐sen University
– sequence: 2
  givenname: Xinbo
  surname: Wang
  fullname: Wang, Xinbo
  email: wangxb898492298@gmail.com
  organization: Sun Yat‐sen University
– sequence: 3
  givenname: Qing
  surname: Zhang
  fullname: Zhang, Qing
  email: zhangq93@mail.sysu.edu.cn
  organization: Sun Yat‐sen University
BookMark eNp10EtOwzAQBmALFYm2sOAGkVixSOtHHCfLKqIPqVIlCmtr4tqVqzQpdh8qK47AGTkJpoEls5lZfDMj_T3UqZtaI3RP8ICEGqq1GQhMuLhCXZKkIs5SnndQF5MwC8z5Dep5v8EYJyLlXbRY6sp8fXwuDzvtjtbrVTTbwlpHU3DbprbvsLdNHR0tRM96HcZgRydwf-AcFRV4b41VF3mLrg1UXt_99j56HT-9FNN4vpjMitE8VpTnIqZc5QTYSmluiEkzyDQRjDDIVQmpoTjnmgph1KpMDEkYUJGDUQrzMoMy1ayPHtq7O9e8HbTfy01zcHV4KRnljOM0ozSox1Yp13jvtJE7Z7fgzpJg-ZOXDHnJS17BDlt7spU-_w9lMRm3G987XXCS
Cites_doi 10.1109/CVPR52729.2023.01754
10.1109/TIP.2020.2975979
10.1109/CVPR46437.2021.01610
10.1109/TIP.2003.819861
10.1109/CVPR.2018.00068
10.1109/WACV48630.2021.00166
10.1145/1141911.1141934
10.1109/CVPR52729.2023.01362
10.1109/ICCV.2007.4409107
10.1109/ICCV.2017.167
10.1109/CVPR52688.2022.01909
10.1007/978-3-319-46475-6_43
10.1109/CVPR.2019.00603
10.1007/978-3-030-58520-4_35
10.1109/ICCV.2017.146
10.1109/ICCV48922.2021.00658
10.1109/CVPR.2016.265
10.1109/ICME51207.2021.9428394
10.1109/CVPR46437.2021.00294
10.1145/882262.882269
10.1109/CVPR52688.2022.01792
10.1109/CVPR46437.2021.00924
10.1109/CVPR.2019.01030
10.1109/CVPR52729.2023.00574
10.1145/3581783.3612404
10.1109/CVPR42600.2020.00842
10.1109/38.946629
10.1109/ICCV.2019.00913
10.1007/978-3-030-01219-9_28
10.1109/WACV51458.2022.00303
10.1109/CVPR42600.2020.00975
10.1145/2185520.2185580
10.1145/3581783.3611747
10.1145/3652583.3657616
10.1109/CVPR52688.2022.01104
10.1145/1778765.1778862
10.1007/978-3-030-58601-0_34
10.1109/ICCV51070.2023.00371
10.1016/j.cviu.2006.11.011
10.1109/ICCV48922.2021.00986
10.1109/ICCV51070.2023.00688
10.1109/ICCV.2015.314
10.1109/ICCV.2005.166
10.1609/aaai.v34i07.6614
ContentType Journal Article
Copyright 2025 Eurographics ‐ The European Association for Computer Graphics and John Wiley & Sons Ltd.
Copyright_xml – notice: 2025 Eurographics ‐ The European Association for Computer Graphics and John Wiley & Sons Ltd.
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1111/cgf.70157
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts

CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1467-8659
EndPage n/a
ExternalDocumentID 10_1111_cgf_70157
CGF70157
Genre researchArticle
GrantInformation_xml – fundername: Guangdong Basic and Applied Basic Research Foundation
  funderid: 2023A1515030002
– fundername: National Natural Science Foundation of China
  funderid: 62471499
GroupedDBID .3N
.4S
.DC
.GA
.Y3
05W
0R~
10A
15B
1OB
1OC
29F
31~
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5HH
5LA
5VS
66C
6J9
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
8VB
930
A03
AAESR
AAEVG
AAHQN
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABDPE
ABEML
ABPVW
ACAHQ
ACBWZ
ACCZN
ACFBH
ACGFS
ACPOU
ACRPL
ACSCC
ACUHS
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADMLS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEGXH
AEIGN
AEIMD
AEMOZ
AENEX
AEUYR
AEYWJ
AFBPY
AFEBI
AFFNX
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AHEFC
AHQJS
AIDQK
AIDYY
AIQQE
AITYG
AIURR
AJXKR
AKVCP
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ARCSS
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CAG
COF
CS3
CWDTD
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EAD
EAP
EBA
EBO
EBR
EBS
EBU
EDO
EJD
EMK
EST
ESX
F00
F01
F04
F5P
FEDTE
FZ0
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
I-F
IHE
IX1
J0M
K1G
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QWB
R.K
RDJ
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
TH9
TN5
TUS
UB1
V8K
W8V
W99
WBKPD
WIH
WIK
WOHZO
WQJ
WXSBR
WYISQ
WZISG
XG1
ZL0
ZZTAW
~IA
~IF
~WT
AAYXX
CITATION
O8X
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c2597-25c91a3dce5f1f68a8e17313a9cba6f2095e277fcdb4f143a279afcc05b8ab6e3
IEDL.DBID DRFUL
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001499813100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0167-7055
IngestDate Wed Sep 24 06:01:20 EDT 2025
Sat Nov 29 07:24:12 EST 2025
Wed Sep 24 09:20:27 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2597-25c91a3dce5f1f68a8e17313a9cba6f2095e277fcdb4f143a279afcc05b8ab6e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 3253506822
PQPubID 30877
PageCount 13
ParticipantIDs proquest_journals_3253506822
crossref_primary_10_1111_cgf_70157
wiley_primary_10_1111_cgf_70157_CGF70157
PublicationCentury 2000
PublicationDate September 2025
2025-09-00
20250901
PublicationDateYYYYMMDD 2025-09-01
PublicationDate_xml – month: 09
  year: 2025
  text: September 2025
PublicationDecade 2020
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Computer graphics forum
PublicationYear 2025
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References 2007; 107
2023
2022
2021
2010; 29
2010
2020
2006; 25
2004; 13
2019
2020; 16
2007
2018
2017
2016
2020; 34
2015
2005; 2
2024
2016; 14
2012; 31
2003; 22
2020; 29
2001; 21
e_1_2_7_5_2
e_1_2_7_3_2
e_1_2_7_9_2
e_1_2_7_7_2
e_1_2_7_19_2
e_1_2_7_17_2
e_1_2_7_15_2
e_1_2_7_13_2
e_1_2_7_41_2
e_1_2_7_11_2
e_1_2_7_43_2
e_1_2_7_47_2
e_1_2_7_26_2
e_1_2_7_49_2
e_1_2_7_28_2
e_1_2_7_50_2
e_1_2_7_25_2
e_1_2_7_52_2
e_1_2_7_23_2
e_1_2_7_31_2
e_1_2_7_54_2
e_1_2_7_21_2
e_1_2_7_33_2
e_1_2_7_35_2
e_1_2_7_37_2
e_1_2_7_39_2
Vaswani A. (e_1_2_7_45_2) 2017
e_1_2_7_4_2
e_1_2_7_2_2
e_1_2_7_8_2
e_1_2_7_6_2
e_1_2_7_18_2
e_1_2_7_16_2
e_1_2_7_14_2
e_1_2_7_40_2
e_1_2_7_12_2
e_1_2_7_10_2
e_1_2_7_44_2
e_1_2_7_46_2
e_1_2_7_48_2
e_1_2_7_27_2
e_1_2_7_29_2
e_1_2_7_24_2
e_1_2_7_30_2
e_1_2_7_51_2
e_1_2_7_22_2
e_1_2_7_32_2
e_1_2_7_53_2
e_1_2_7_20_2
e_1_2_7_34_2
Tao M. W. (e_1_2_7_42_2) 2010
e_1_2_7_36_2
e_1_2_7_38_2
References_xml – volume: 31
  issue: 4
  year: 2012
  article-title: Understanding and improving the realism of image composites
  publication-title: ACM Transactions on Graphics
– volume: 2
  start-page: 1434
  year: 2005
  end-page: 1439
– start-page: 31
  year: 2010
  end-page: 44
– start-page: 18470
  year: 2022
  end-page: 18479
  article-title: High‐resolution image harmonization via collaborative dual transformations
– start-page: 1
  year: 2021
  end-page: 6
  article-title: Bargainnet: Background‐guided domain translation for image harmonization
– volume: 29
  issue: 4
  year: 2010
  article-title: Multi‐scale image harmonization
  publication-title: ACM Transactions on Graphics
– start-page: 586
  year: 2018
  end-page: 595
  article-title: The unreasonable effectiveness of deep features as a perceptual metric
– start-page: 2159
  year: 2023
  end-page: 2167
  article-title: Deep image harmonization in dual color spaces
– start-page: 1422
  year: 2023
  end-page: 1430
  article-title: Hierarchical dynamic image harmonization
– start-page: 10012
  year: 2021
  end-page: 10022
  article-title: Swin transformer: Hierarchical vision transformer using shifted windows
– start-page: 4015
  year: 2023
  end-page: 4026
  article-title: Segment anything
– start-page: 5873
  year: 2019
  end-page: 5881
  article-title: Arbitrary style transfer with style‐attentional networks
– year: 2015
  article-title: Very deep convolutional networks for large‐scale visual recognition
– start-page: 5927
  year: 2023
  end-page: 5936
  article-title: Semi‐supervised parametric real‐world image harmonization
– start-page: 3789
  year: 2017
  end-page: 3797
  article-title: Deep image harmonization
– start-page: 18290
  year: 2023
  end-page: 18299
  article-title: LEMaRT: Label‐efficient masked region transform for image harmonization
– start-page: 7482
  year: 2023
  end-page: 7491
  article-title: Deep image harmonization with learnable augmentation
– start-page: 1
  year: 2007
  end-page: 8
  article-title: Using color compatibility for assessing image realism
– volume: 13
  start-page: 600
  issue: 4
  year: 2004
  end-page: 612
  article-title: Image quality assessment: From error visibility to structural similarity
  publication-title: IEEE Transactions on Image Processing
– start-page: 8394
  year: 2020
  end-page: 8403
  article-title: DoveNet: Deep image harmonization via domain verification
– start-page: 10061
  year: 2019
  end-page: 10070
  article-title: Inserting videos into videos
– start-page: 9036
  year: 2019
  end-page: 9045
  article-title: Photorealistic style transfer via wavelet transforms
– start-page: 11326
  year: 2022
  end-page: 11336
  article-title: Stytr2: Image style transfer with transformers
– start-page: 9729
  year: 2020
  end-page: 9738
  article-title: Momentum contrast for unsupervised visual representation learning
– volume: 34
  start-page: 10443
  year: 2020
  end-page: 10450
  article-title: Ultrafast photorealistic style transfer via neural architecture search
– start-page: 2414
  year: 2016
  end-page: 2423
  article-title: Image style transfer using convolutional neural networks
– start-page: 1301
  year: 2017
  end-page: 1310
  article-title: Cut, paste and learn: Surprisingly easy synthesis for instance detection
– start-page: 7535
  year: 2023
  end-page: 7544
  article-title: Learning global‐aware kernel for image harmonization
– year: 2017
  article-title: A learned representation for artistic style
– volume: 107
  start-page: 123
  issue: 1‐2
  year: 2007
  end-page: 137
  article-title: Automated colour grading using colour distribution transfer
  publication-title: Computer Vision and Image Understanding
– start-page: 1510
  year: 2017
  end-page: 1519
  article-title: Arbitrary style transfer in real‐time with adaptive instance normalization
– start-page: 453
  year: 2018
  end-page: 468
  article-title: A closed‐form solution to photorealistic image stylization
– start-page: 1130
  year: 2024
  end-page: 1134
  article-title: DiffHarmony: Latent diffusion model meets image harmonization
– volume: 16
  start-page: 566
  year: 2020
  end-page: 581
  article-title: Learning object placement by inpainting for compositional data augmentation
– start-page: 1597
  year: 2020
  end-page: 1607
  article-title: A simple framework for contrastive learning of visual representations
– start-page: 9361
  year: 2021
  end-page: 9370
  article-title: Region‐aware adaptive instance normalization for image harmonization
– start-page: 19710
  year: 2022
  end-page: 19719
  article-title: SCS‐Co: Self‐consistent style contrastive learning for image harmonization
– volume: 25
  start-page: 631
  issue: 3
  year: 2006
  end-page: 637
  article-title: Drag‐and‐drop pasting
  publication-title: ACM Transactions on Graphics
– volume: 14
  start-page: 694
  year: 2016
  end-page: 711
  article-title: Perceptual losses for real‐time style transfer and super‐resolution
– start-page: 16362
  year: 2021
  end-page: 16371
  article-title: Intrinsic image harmonization
– volume: 29
  start-page: 4759
  year: 2020
  end-page: 4771
  article-title: Improving the harmony of the composite image by spatial‐separated attention module
  publication-title: IEEE Transactions on Image Processing
– volume: 22
  start-page: 313
  issue: 3
  year: 2003
  end-page: 318
  article-title: Poisson image editing
  publication-title: ACM Transactions on Graphics (TOG)
– volume: 21
  start-page: 34
  issue: 5
  year: 2001
  end-page: 41
  article-title: Color transfer between images
  publication-title: IEEE Computer Graphics and Applications
– start-page: 1619
  year: 2021
  end-page: 1628
  article-title: Foreground‐aware semantic representations for image harmonization
– start-page: 14173
  year: 2023
  end-page: 14182
  article-title: Neural preset for color style transfer
– start-page: 6649
  year: 2021
  end-page: 6658
  article-title: AdaAttN: Revisit attention mechanism in arbitrary neural style transfer
– start-page: 4832
  year: 2021
  end-page: 4841
  article-title: SSH: A self‐supervised framework for image harmonization
– year: 2017
– year: 2018
  article-title: Video‐to‐video synthesis
– start-page: 2918
  year: 2021
  end-page: 2928
  article-title: Simple copy‐paste is a strong data augmentation method for instance segmentation
– start-page: 592
  year: 2020
  end-page: 608
  article-title: In‐domain GAN inversion for real image editing
– start-page: 2868
  year: 2022
  end-page: 2877
  article-title: PhotoWCT2: Compact autoencoder for photorealistic style transfer resulting from blockwise training and skip connections of high‐frequency residuals
– ident: e_1_2_7_26_2
  doi: 10.1109/CVPR52729.2023.01754
– start-page: 31
  volume-title: ECCV'10: Proceedings of the 11th European Conference on Computer Vision: Part I
  year: 2010
  ident: e_1_2_7_42_2
– ident: e_1_2_7_8_2
  doi: 10.1109/TIP.2020.2975979
– ident: e_1_2_7_41_2
– ident: e_1_2_7_16_2
  doi: 10.1109/CVPR46437.2021.01610
– ident: e_1_2_7_46_2
  doi: 10.1109/TIP.2003.819861
– ident: e_1_2_7_52_2
  doi: 10.1109/CVPR.2018.00068
– ident: e_1_2_7_39_2
  doi: 10.1109/WACV48630.2021.00166
– ident: e_1_2_7_21_2
  doi: 10.1145/1141911.1141934
– ident: e_1_2_7_23_2
  doi: 10.1109/CVPR52729.2023.01362
– ident: e_1_2_7_25_2
  doi: 10.1109/ICCV.2007.4409107
– ident: e_1_2_7_17_2
  doi: 10.1109/ICCV.2017.167
– ident: e_1_2_7_19_2
  doi: 10.1109/CVPR52688.2022.01909
– ident: e_1_2_7_20_2
  doi: 10.1007/978-3-319-46475-6_43
– ident: e_1_2_7_36_2
  doi: 10.1109/CVPR.2019.00603
– ident: e_1_2_7_53_2
  doi: 10.1007/978-3-030-58520-4_35
– ident: e_1_2_7_11_2
  doi: 10.1109/ICCV.2017.146
– ident: e_1_2_7_28_2
  doi: 10.1109/ICCV48922.2021.00658
– ident: e_1_2_7_48_2
– ident: e_1_2_7_15_2
  doi: 10.1109/CVPR.2016.265
– ident: e_1_2_7_7_2
  doi: 10.1109/ICME51207.2021.9428394
– ident: e_1_2_7_14_2
  doi: 10.1109/CVPR46437.2021.00294
– ident: e_1_2_7_33_2
  doi: 10.1145/882262.882269
– ident: e_1_2_7_6_2
  doi: 10.1109/ICME51207.2021.9428394
– ident: e_1_2_7_9_2
  doi: 10.1109/CVPR52688.2022.01792
– ident: e_1_2_7_31_2
  doi: 10.1109/CVPR46437.2021.00924
– ident: e_1_2_7_30_2
  doi: 10.1109/CVPR.2019.01030
– ident: e_1_2_7_47_2
  doi: 10.1109/CVPR52729.2023.00574
– volume-title: Advances in Neural Information Processing Systems
  year: 2017
  ident: e_1_2_7_45_2
– ident: e_1_2_7_5_2
– ident: e_1_2_7_43_2
  doi: 10.1145/3581783.3612404
– ident: e_1_2_7_10_2
  doi: 10.1109/CVPR42600.2020.00842
– ident: e_1_2_7_37_2
  doi: 10.1109/38.946629
– ident: e_1_2_7_50_2
  doi: 10.1109/ICCV.2019.00913
– ident: e_1_2_7_29_2
  doi: 10.1007/978-3-030-01219-9_28
– ident: e_1_2_7_3_2
  doi: 10.1109/WACV51458.2022.00303
– ident: e_1_2_7_18_2
  doi: 10.1109/CVPR42600.2020.00975
– ident: e_1_2_7_49_2
  doi: 10.1145/2185520.2185580
– ident: e_1_2_7_4_2
  doi: 10.1145/3581783.3611747
– ident: e_1_2_7_12_2
– ident: e_1_2_7_51_2
  doi: 10.1145/3652583.3657616
– ident: e_1_2_7_13_2
  doi: 10.1109/CVPR52688.2022.01104
– ident: e_1_2_7_38_2
  doi: 10.1145/1778765.1778862
– ident: e_1_2_7_54_2
  doi: 10.1007/978-3-030-58601-0_34
– ident: e_1_2_7_24_2
  doi: 10.1109/ICCV51070.2023.00371
– ident: e_1_2_7_22_2
– ident: e_1_2_7_35_2
  doi: 10.1016/j.cviu.2006.11.011
– ident: e_1_2_7_27_2
  doi: 10.1109/ICCV48922.2021.00986
– ident: e_1_2_7_32_2
  doi: 10.1109/ICCV51070.2023.00688
– ident: e_1_2_7_40_2
  doi: 10.1109/ICCV.2015.314
– ident: e_1_2_7_34_2
  doi: 10.1109/ICCV.2005.166
– ident: e_1_2_7_2_2
  doi: 10.1609/aaai.v34i07.6614
– ident: e_1_2_7_44_2
SSID ssj0004765
Score 2.4446306
Snippet Image harmonization is a widely used technique in image composition, which aims to adjust the appearance of the composited foreground object according to the...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Index Database
Publisher
SubjectTerms image and video processing
Title Self‐Supervised Image Harmonization via Region‐Aware Harmony Classification
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fcgf.70157
https://www.proquest.com/docview/3253506822
Volume 44
WOSCitedRecordID wos001499813100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1467-8659
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004765
  issn: 0167-7055
  databaseCode: DRFUL
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NS8NAEB1q60EPfovVKkE8eIkkmyabxVOpxgpSpbXQW9hsZqWgtSRtxZs_wd_oL3E3Tdp6EARvOUyW8JiPt2HmDcCZr2uSiCyT1QmaquK7JuMYm2gLpHbMLYazZRO03fb7ffZQgstiFmamDzH_4aYjI8vXOsB5lC4FuXiSF1QVM7oCFaL8tl6GylUn6N0txiKp5xbS3lo0JhcW0o0885d_lqMFx1xmqlmpCTb_9ZFbsJEzTKMxc4ltKOFwB9aXdAd34b6Lz_Lr47M7GelUkWJs3L6oxGK0eKLcMh_NNKYDbnRQNywr28YbTwqDdyPbpam7jDLLPegF14_NlplvVjCFuu5oaQbBbO7EAl1pS8_nPtrUsR3ORMQ9SRTvQkKpFHFUl4pRcUIZl0JYbuTzyENnH8rD1yEegOErPiYUzSS2IHW0BHcVpSCSCybR9pmowmkBcDiaCWiExcVDoRNm6FShVkAf5jGUhg5xHdfyFIOpwnkG8u8HhM2bIHs4_LvpEawRvcw3axirQXmcTPAYVsV0PEiTk9yZvgHncs74
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB5qK6gH32K1ahAPXiLJpslmwUup1hZrlT7AW9hsZqWgtfQl3vwJ_kZ_ibtp0taDIHjLYRLCxzy-XWa-ATjzdU0SoWWyIkFTVXzXZBwjE22B1I64xXC6bII2Gv7jI3vIwGU6CzPVh5hduOnIiPO1DnB9Ib0Q5eJJXlBVzegS5IrKjdws5K6alU59PhdJPTfV9taqMYmykO7kmb38sx7NSeYiVY1rTWXjf3-5CesJxzRKU6fYggz2tmFtQXlwB-5b-Cy_Pj5b475OFkOMjNqLSi1GlQ-UYybDmcaky40m6pZlZVt644PU4N2It2nqPqPYchc6let2uWomuxVMoQ48WpxBMJs7kUBX2tLzuY82dWyHMxFyTxLFvJBQKkUUFqXiVJxQxqUQlhv6PPTQ2YNs77WH-2D4ipEJRTSJLUgRLcFdRSqI5IJJtH0m8nCaIhz0pxIaQXr0UOgEMTp5KKTYB0kUDQOHuI5reYrD5OE8Rvn3DwTlm0r8cPB30xNYqbbv6kG91rg9hFWiV_vG7WMFyI4GYzyCZTEZdYeD48SzvgFPo9Lo
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NS8NAEB1qK6IHv8Vq1SAevESSTZPNgpfSGi2WWloFb2GzmZWC1tIv8eZP8Df6S9xNk7YeBMFbDpMlDDPz3oaZNwBnvsYkEVkmKxM0FeK7JuMYm2gLpHbMLYbTZRO02fQfH1krB5fZLMxUH2L2w01nRlKvdYJjP5YLWS6e5AVVaEaXoFB2mafSslBrBw-N-Vwk9dxM21urxqTKQrqTZ_byTzyak8xFqppgTbDxv6_chPWUYxqVaVBsQQ5727C2oDy4A3cdfJZfH5-dcV8XiyHGRv1FlRbjhg9UYKbDmcaky4026pZlZVt544PM4N1ItmnqPqPEchcegqv76o2Z7lYwhbrwaHEGwWzuxAJdaUvP5z7a1LEdzkTEPUkU80JCqRRxVJaKU3FCGZdCWG7k88hDZw_yvdce7oPhK0YmFNEktiBltAR3Fakgkgsm0faZKMJp5uGwP5XQCLOrh_JOmHinCKXM92GaRcPQIa7jWp7iMEU4T7z8-wFh9TpIHg7-bnoCK61aEDbqzdtDWCV6s2_SPVaC_GgwxiNYFpNRdzg4TgPrGx4h0mM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Self%E2%80%90Supervised+Image+Harmonization+via+Region%E2%80%90Aware+Harmony+Classification&rft.jtitle=Computer+graphics+forum&rft.au=Tian%2C+Chenyang&rft.au=Wang%2C+Xinbo&rft.au=Zhang%2C+Qing&rft.date=2025-09-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=0167-7055&rft.eissn=1467-8659&rft.volume=44&rft.issue=6&rft_id=info:doi/10.1111%2Fcgf.70157&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-7055&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-7055&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-7055&client=summon