Parameterized complexity of categorical clustering with size constraints
In the Categorical Clustering problem, we are given a set of vectors (matrix) A={a1,…,an} over Σm, where Σ is a finite alphabet, and integers k and B. The task is to partition A into k clusters such that the median objective of the clustering in the Hamming norm is at most B. Fomin, Golovach, and Pa...
Gespeichert in:
| Veröffentlicht in: | Journal of computer and system sciences Jg. 136; S. 171 - 194 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Elsevier Inc
01.09.2023
|
| Schlagworte: | |
| ISSN: | 0022-0000, 1090-2724 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | In the Categorical Clustering problem, we are given a set of vectors (matrix) A={a1,…,an} over Σm, where Σ is a finite alphabet, and integers k and B. The task is to partition A into k clusters such that the median objective of the clustering in the Hamming norm is at most B. Fomin, Golovach, and Panolan [ICALP 2018] proved that the problem is fixed-parameter tractable for the binary case Σ={0,1}. We extend this algorithmic result to a popular capacitated clustering model, where in addition the sizes of the clusters are lower and upper bounded by integer parameters p and q, respectively. Our main theorem is that the problem is solvable in time 2O(BlogB)|Σ|B⋅(mn)O(1). |
|---|---|
| ISSN: | 0022-0000 1090-2724 |
| DOI: | 10.1016/j.jcss.2023.03.006 |