Physics‐Embedded Machine Learning for Fatigue Cumulative Damage Prediction

ABSTRACT Fatigue damage accumulation is critical to the safety and reliability of mechanical structures, yet accurate prediction remains challenging, especially under small‐sample conditions. This study proposes an innovative physics‐embedded machine learning (ML) framework to enhance residual fatig...

Full description

Saved in:
Bibliographic Details
Published in:Fatigue & fracture of engineering materials & structures Vol. 48; no. 10; pp. 4352 - 4374
Main Authors: Gao, Zhiyuan, Jiang, Xiaomo, Guo, Yifan, Cui, Mingqing, Wang, Shengbo
Format: Journal Article
Language:English
Published: Oxford Wiley Subscription Services, Inc 01.10.2025
Subjects:
ISSN:8756-758X, 1460-2695
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract ABSTRACT Fatigue damage accumulation is critical to the safety and reliability of mechanical structures, yet accurate prediction remains challenging, especially under small‐sample conditions. This study proposes an innovative physics‐embedded machine learning (ML) framework to enhance residual fatigue damage prediction by integrating the Manson–Halford (MH) physical model with data‐driven algorithms. The framework employs a dual‐regressor approach: One regressor embeds the MH model to predict the interaction coefficient, while the other is purely data driven to directly predict residual fatigue damage, with a customized loss function enforcing physical consistency between the two outputs. A compiled dataset of 14 materials demonstrates the framework's superiority over six baseline ML models. Notably, the model retains high accuracy even with 30% fewer training data, showcasing its robustness in data‐scarce scenarios. By harmonizing physical mechanisms with ML, this work provides a generalizable and efficient strategy for fatigue damage prediction. Summary A novel physics‐embedded ML framework for predicting fatigue damage was proposed. A customized loss function was applied to embed physical mechanism. The advantage of the model in small sample prediction was validated.
AbstractList Fatigue damage accumulation is critical to the safety and reliability of mechanical structures, yet accurate prediction remains challenging, especially under small‐sample conditions. This study proposes an innovative physics‐embedded machine learning (ML) framework to enhance residual fatigue damage prediction by integrating the Manson–Halford (MH) physical model with data‐driven algorithms. The framework employs a dual‐regressor approach: One regressor embeds the MH model to predict the interaction coefficient, while the other is purely data driven to directly predict residual fatigue damage, with a customized loss function enforcing physical consistency between the two outputs. A compiled dataset of 14 materials demonstrates the framework's superiority over six baseline ML models. Notably, the model retains high accuracy even with 30% fewer training data, showcasing its robustness in data‐scarce scenarios. By harmonizing physical mechanisms with ML, this work provides a generalizable and efficient strategy for fatigue damage prediction. A novel physics‐embedded ML framework for predicting fatigue damage was proposed. A customized loss function was applied to embed physical mechanism. The advantage of the model in small sample prediction was validated.
ABSTRACT Fatigue damage accumulation is critical to the safety and reliability of mechanical structures, yet accurate prediction remains challenging, especially under small‐sample conditions. This study proposes an innovative physics‐embedded machine learning (ML) framework to enhance residual fatigue damage prediction by integrating the Manson–Halford (MH) physical model with data‐driven algorithms. The framework employs a dual‐regressor approach: One regressor embeds the MH model to predict the interaction coefficient, while the other is purely data driven to directly predict residual fatigue damage, with a customized loss function enforcing physical consistency between the two outputs. A compiled dataset of 14 materials demonstrates the framework's superiority over six baseline ML models. Notably, the model retains high accuracy even with 30% fewer training data, showcasing its robustness in data‐scarce scenarios. By harmonizing physical mechanisms with ML, this work provides a generalizable and efficient strategy for fatigue damage prediction. Summary A novel physics‐embedded ML framework for predicting fatigue damage was proposed. A customized loss function was applied to embed physical mechanism. The advantage of the model in small sample prediction was validated.
Fatigue damage accumulation is critical to the safety and reliability of mechanical structures, yet accurate prediction remains challenging, especially under small‐sample conditions. This study proposes an innovative physics‐embedded machine learning (ML) framework to enhance residual fatigue damage prediction by integrating the Manson–Halford (MH) physical model with data‐driven algorithms. The framework employs a dual‐regressor approach: One regressor embeds the MH model to predict the interaction coefficient, while the other is purely data driven to directly predict residual fatigue damage, with a customized loss function enforcing physical consistency between the two outputs. A compiled dataset of 14 materials demonstrates the framework's superiority over six baseline ML models. Notably, the model retains high accuracy even with 30% fewer training data, showcasing its robustness in data‐scarce scenarios. By harmonizing physical mechanisms with ML, this work provides a generalizable and efficient strategy for fatigue damage prediction.
Author Guo, Yifan
Cui, Mingqing
Gao, Zhiyuan
Jiang, Xiaomo
Wang, Shengbo
Author_xml – sequence: 1
  givenname: Zhiyuan
  surname: Gao
  fullname: Gao, Zhiyuan
  organization: Dalian University of Technology
– sequence: 2
  givenname: Xiaomo
  orcidid: 0000-0003-1172-3397
  surname: Jiang
  fullname: Jiang, Xiaomo
  email: xiaomojiang2019@dlut.edu.cn
  organization: Dalian University of Technology
– sequence: 3
  givenname: Yifan
  surname: Guo
  fullname: Guo, Yifan
  organization: Dalian University of Technology
– sequence: 4
  givenname: Mingqing
  surname: Cui
  fullname: Cui, Mingqing
  organization: Dalian University of Technology
– sequence: 5
  givenname: Shengbo
  surname: Wang
  fullname: Wang, Shengbo
  organization: Dalian University of Technology
BookMark eNp1kLFOwzAQhi1UJNrCwBtEYmJIa8eJ7YyoNIAURAeQ2CzXPreumqTYTVE3HoFn5EkIhJVb_hu-_076RmhQNzUgdEnwhHQztRYmHGPKTtCQpAzHCcuzARoKnrGYZ-L1DI1C2GBMWErpEJWL9TE4Hb4-PufVEowBEz0qvXY1RCUoX7t6FdnGR4Xau1UL0ayt2m23HyC6VZVaQbTwYJzeu6Y-R6dWbQNc_OUYvRTz59l9XD7dPcxuylgnWc5iRojBwuQsEdxmmdEqJQKY4NQYTnJLqMJY5zwVVlmliGBCKEyJIJoTtkzoGF31d3e-eWsh7OWmaX3dvZQ0SUWe4a7RUdc9pX0Tggcrd95Vyh8lwfJHluxkyV9ZHTvt2Xe3heP_oCyKed_4BknVbHk
Cites_doi 10.1016/j.ijfatigue.2022.107234
10.3221/IGF-ESIS.52.23
10.1016/j.ijmecsci.2024.109789
10.1016/j.dcan.2021.03.003
10.1016/j.ijfatigue.2005.05.001
10.1016/S0141-0296(02)00055-X
10.1016/j.ijfatigue.2024.108636
10.1016/j.ijfatigue.2020.105477
10.1016/j.ijfatigue.2023.107868
10.1016/j.ijmecsci.2023.108314
10.1177/1056789515605881
10.1016/j.ijfatigue.2023.107608
10.1007/BF00053519
10.1111/ffe.13246
10.1145/2939672.2939785
10.1016/j.ijmecsci.2022.107546
10.1016/j.ijfatigue.2023.108035
10.1177/1056789514544228
10.1016/j.engfracmech.2024.110214
10.1016/j.ijfatigue.2024.108519
10.1016/j.ijfatigue.2023.107658
10.1115/1.3443383
10.1002/widm.8
10.1115/1.4009458
10.1016/j.ijfatigue.2024.108454
10.1016/j.engfracmech.2021.107890
10.1016/j.ijfatigue.2021.106636
10.1016/j.ijfatigue.2021.106356
10.1016/j.ijfatigue.2024.108206
10.1016/j.engfracmech.2024.110556
10.1016/j.ijmecsci.2019.02.032
10.1016/j.engfracmech.2024.110676
10.1016/j.ijfatigue.2022.107086
10.1016/j.ijfatigue.2022.106836
10.1016/j.ijmecsci.2018.08.037
10.1016/j.ijfatigue.2017.01.039
10.1016/j.ijfatigue.2016.12.008
10.1016/j.ijfatigue.2023.108013
10.1016/j.ijfatigue.2023.107945
ContentType Journal Article
Copyright 2025 John Wiley & Sons Ltd.
2025 John Wiley & Sons, Ltd.
Copyright_xml – notice: 2025 John Wiley & Sons Ltd.
– notice: 2025 John Wiley & Sons, Ltd.
DBID AAYXX
CITATION
7SR
7TB
8BQ
8FD
FR3
JG9
KR7
DOI 10.1111/ffe.70036
DatabaseName CrossRef
Engineered Materials Abstracts
Mechanical & Transportation Engineering Abstracts
METADEX
Technology Research Database
Engineering Research Database
Materials Research Database
Civil Engineering Abstracts
DatabaseTitle CrossRef
Materials Research Database
Civil Engineering Abstracts
Engineered Materials Abstracts
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Engineering Research Database
METADEX
DatabaseTitleList CrossRef

Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1460-2695
EndPage 4374
ExternalDocumentID 10_1111_ffe_70036
FFE70036
Genre article
GroupedDBID -~X
.3N
.GA
.Y3
05W
0R~
10A
1OB
1OC
29H
31~
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5HH
5LA
5VS
66C
6KP
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHQN
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABEFU
ABEML
ACAHQ
ACBWZ
ACCZN
ACFBH
ACGFS
ACGOD
ACIWK
ACPOU
ACRPL
ACSCC
ACUHS
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADMLS
ADNMO
ADOZA
ADZMN
AEFGJ
AEGXH
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFEBI
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AHEFC
AIDQK
AIDYY
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BNHUX
BROTX
BRXPI
BY8
CAG
COF
CS3
D-E
D-F
DC6
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EAD
EAP
EBS
EJD
EMK
EST
ESX
F00
F01
F04
FEDTE
FOJGT
FZ0
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
I-F
IHE
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MK~
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
NDZJH
NF~
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
TUS
UB1
W8V
W99
WBKPD
WFSAM
WIH
WIK
WOHZO
WQJ
WTY
WXSBR
WYISQ
XG1
ZZTAW
~IA
~WT
AAYXX
AIQQE
CITATION
O8X
7SR
7TB
8BQ
8FD
FR3
JG9
KR7
ID FETCH-LOGICAL-c2596-611d08d96287f55dca418e6873dd719f13a00c9748fafaa18688a03181c716b23
IEDL.DBID DRFUL
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001534603800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 8756-758X
IngestDate Sun Nov 09 08:51:12 EST 2025
Sat Nov 29 07:35:45 EST 2025
Tue Sep 09 09:50:27 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2596-611d08d96287f55dca418e6873dd719f13a00c9748fafaa18688a03181c716b23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-1172-3397
PQID 3248950688
PQPubID 45644
PageCount 23
ParticipantIDs proquest_journals_3248950688
crossref_primary_10_1111_ffe_70036
wiley_primary_10_1111_ffe_70036_FFE70036
PublicationCentury 2000
PublicationDate October 2025
2025-10-00
20251001
PublicationDateYYYYMMDD 2025-10-01
PublicationDate_xml – month: 10
  year: 2025
  text: October 2025
PublicationDecade 2020
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Fatigue & fracture of engineering materials & structures
PublicationYear 2025
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2023; 381
2024; 306
2025; 190
2016; 100
2024; 187
2020; 14
2024; 188
2005; 28
2018; 42
2025; 314
2024; 182
2022; 163
1998; 19
2022; 160
2023; 250
2023; 172
2006; 28
2023; 177
2023; 176
2021; 151
2020; 134
2024; 311
2020; 43
2019; 155
2022; 156
2022; 230
2021; 7
2023; 13
2011; 1
2017; 26
2018; 148
2023; 166
2020; 39
2008; 14
1945; 12
2024; 285
2014; 2014
2009; 131
2003; 31
2015; 24
1976; 98
2023; 42
2023; 40
2020
2017; 98
2002; 24
2016
1994; 16
2024; 178
1981; 17
2024; 179
2021; 253
2024; 48
2014; 31
e_1_2_9_31_1
e_1_2_9_50_1
e_1_2_9_10_1
e_1_2_9_56_1
e_1_2_9_12_1
Tianguo Z. (e_1_2_9_18_1) 2023; 381
e_1_2_9_33_1
Haghgouei H. (e_1_2_9_38_1) 2020; 39
Huiying G. (e_1_2_9_36_1) 2014; 2014
e_1_2_9_39_1
e_1_2_9_16_1
e_1_2_9_37_1
Liyang X. (e_1_2_9_48_1) 1994; 16
Matthias S. (e_1_2_9_43_1) 2008; 14
e_1_2_9_41_1
e_1_2_9_20_1
e_1_2_9_22_1
e_1_2_9_24_1
e_1_2_9_8_1
Qiaobin L. (e_1_2_9_42_1) 2018; 42
e_1_2_9_6_1
e_1_2_9_4_1
Deguang S. (e_1_2_9_47_1) 1998; 19
e_1_2_9_2_1
e_1_2_9_26_1
e_1_2_9_28_1
e_1_2_9_30_1
e_1_2_9_53_1
Wang Y. (e_1_2_9_55_1) 2023; 42
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_13_1
e_1_2_9_32_1
Mingmin H. (e_1_2_9_52_1) 2003; 31
Kris H. (e_1_2_9_45_1) 2023; 13
e_1_2_9_15_1
e_1_2_9_17_1
He D. (e_1_2_9_54_1) 2023; 40
e_1_2_9_19_1
HamedEsmaeili M. A. (e_1_2_9_14_1) 2024; 48
e_1_2_9_40_1
e_1_2_9_21_1
e_1_2_9_46_1
e_1_2_9_23_1
e_1_2_9_44_1
e_1_2_9_7_1
e_1_2_9_5_1
e_1_2_9_3_1
Rong Y. (e_1_2_9_35_1) 2014; 31
Pereira H. F. (e_1_2_9_49_1) 2009; 131
e_1_2_9_9_1
e_1_2_9_25_1
Yiqing F. (e_1_2_9_51_1) 2006; 28
e_1_2_9_27_1
e_1_2_9_29_1
References_xml – volume: 39
  start-page: 1
  year: 2020
  end-page: 1962
  article-title: Variable Amplitude Fatigue Life Prediction of Rock Samples Under Completely Reversed Loading
  publication-title: Geotechnical and Geological Engineering
– volume: 163
  year: 2022
  article-title: Rate‐Dependent Multiaxial Life Prediction for Polyamide‐6 Considering Ratchetting: Semi‐Empirical and Physics‐Informed Machine Learning Models
  publication-title: International Journal of Fatigue
– volume: 42
  start-page: 324
  year: 2023
  end-page: 329
  article-title: Aero‐Engine Blade High and Low Circumference Composite Fatigue Life Prediction and Damage Mechanism Research
  publication-title: Journal of Inner Mongolia University of Technology (Natural Science Edition).
– volume: 190
  year: 2025
  article-title: Prediction of Multiaxial Fatigue Life With a Data‐Driven Knowledge Transfer Model
  publication-title: International Journal of Fatigue
– volume: 28
  start-page: 89
  year: 2005
  end-page: 95
  article-title: Fatigue Life Prediction Under Variable Loading Based on a New Non‐Linear Continuum Damage Mechanics Model
  publication-title: International Journal of Fatigue
– volume: 19
  start-page: 647
  year: 1998
  end-page: 656
  article-title: Study on Nonlinear Continuous Damage Cumulative Model for Uniaxial Fatigue
  publication-title: Acta Aeronautica et Astronautica Sinica.
– volume: 17
  start-page: 169
  issue: 2
  year: 1981
  end-page: 192
  article-title: Practical Implementation of the Double Linear Damage Rule and Damage Curve Approach for Treating Cumulative Fatigue Damage
  publication-title: International Journal of Fracture
– volume: 156
  year: 2022
  article-title: An Improved Fatigue Accumulation Damage Model Based on Load Interaction and Strength Degradation
  publication-title: International Journal of Fatigue
– volume: 14
  start-page: 69
  issue: 2
  year: 2008
  end-page: 106
  article-title: Gaussian Processes for Machine Learning
  publication-title: International Journal of Neural Systems
– volume: 253
  year: 2021
  article-title: Machine Learning Approaches to Rock Fracture Mechanics Problems: Mode‐I Fracture Toughness Determination
  publication-title: Engineering Fracture Mechanics
– volume: 24
  start-page: 1363
  year: 2002
  end-page: 1368
  article-title: A Phenomenological Fatigue Damage Accumulation Rule Based on Hardness Increasing, for the 2024‐T42 Aluminum
  publication-title: Engineering Structures
– volume: 31
  start-page: 60
  year: 2003
  end-page: 63
  article-title: SN Curve Movement‐Based Life Analytical Model
  publication-title: Journal of Hohai University (Natural Sciences).
– volume: 178
  year: 2024
  article-title: Ultra‐Long Life Fatigue Behavior of a High‐Entropy Alloy
  publication-title: International Journal of Fatigue
– volume: 172
  year: 2023
  article-title: Physics‐Guided Machine Learning Frameworks for Fatigue Life Prediction of AM Materials
  publication-title: International Journal of Fatigue
– volume: 28
  start-page: 582
  year: 2006
  end-page: 586
  article-title: New Continuous Fatigue Damage Model Based on Whole Damage Field Measurement
  publication-title: Journal of Mechanical Strength.
– volume: 311
  year: 2024
  article-title: Data‐Driven Fatigue Crack Propagation and Life Prediction of Tubular T‐Joint: A Fracture Mechanics Based Machine Learning Surrogate Model
  publication-title: Engineering Fracture Mechanics
– volume: 148
  start-page: 307
  year: 2018
  end-page: 315
  article-title: Load Sequence Effects and Variable Amplitude Fatigue of Superelastic NiTi
  publication-title: International Journal of Mechanical Sciences
– volume: 7
  start-page: 551
  year: 2021
  end-page: 558
  article-title: Machine Learning‐Based Real‐Time Visible Fatigue Crack Growth Detection
  publication-title: Digital Communications and Networks
– volume: 2014
  year: 2014
  article-title: A Modified Nonlinear Damage Accumulation Model for Fatigue Life Prediction Considering Load Interaction Effects
  publication-title: Scientific World Journal.
– volume: 134
  year: 2020
  article-title: Fatigue Life Prediction Under Variable Amplitude Loading Using a Microplasticity‐Based Constitutive Model
  publication-title: International Journal of Fatigue
– volume: 306
  year: 2024
  article-title: Data‐Driven Machine Learning Approach for Predicting Dwell Fatigue Life in Two Classes of Titanium Alloys
  publication-title: Engineering Fracture Mechanics
– volume: 1
  start-page: 14
  issue: 1
  year: 2011
  end-page: 23
  article-title: Classification and Regression Trees
  publication-title: Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery
– volume: 12
  start-page: A159
  issue: 3
  year: 1945
  end-page: A164
  article-title: Cumulative Damage in Fatigue
  publication-title: Journal of Applied Mechanics
– volume: 31
  start-page: 741
  year: 2014
  end-page: 743
  article-title: Reliability Analysis Based on a Nonlinear Fatigue Damage Accumulation Model
  publication-title: Journal of Donghua University (English Edition).
– volume: 155
  start-page: 110
  year: 2019
  end-page: 124
  article-title: Development of a Novel Fatigue Damage Model With AM Effects for Life Prediction of Commonly‐Used Alloys in Aerospace
  publication-title: International Journal of Mechanical Sciences
– volume: 381
  issue: 2260
  year: 2023
  article-title: A Physics‐Guided Modelling Method of Artificial Neural Network for Multiaxial Fatigue Life Prediction Under Irregular Loading
  publication-title: Philosophical Transactions. Series A, Mathematical, Physical, and Engineering Sciences
– volume: 166
  year: 2023
  article-title: A Physically Consistent Framework for Fatigue Life Prediction Using Probabilistic Physics‐Informed Neural Network
  publication-title: International Journal of Fatigue
– volume: 26
  start-page: 463
  issue: 3
  year: 2017
  end-page: 479
  article-title: Validation of Linear Damage Rules Using Random Loading
  publication-title: International Journal of Damage Mechanics
– volume: 314
  year: 2025
  article-title: Fatigue Life Prediction of Selective Laser Melted Titanium Alloy Based on a Machine Learning Approach
  publication-title: Engineering Fracture Mechanics
– volume: 179
  year: 2024
  article-title: A New Fatigue Cumulative Damage Model Based on Material Parameters and Stress Interaction
  publication-title: International Journal of Fatigue
– volume: 100
  start-page: 502
  year: 2016
  end-page: 511
  article-title: Non‐Linear Incremental Fatigue Damage Calculation for Multiaxial Non‐Proportional Histories
  publication-title: International Journal of Fatigue
– volume: 160
  year: 2022
  article-title: On the Development of Error‐Trained BP‐ANN Technique with CDM Model for the HCF Life Prediction of Aluminum Alloy
  publication-title: International Journal of Fatigue
– year: 2016
– volume: 172
  year: 2023
  article-title: Notch Fatigue Behavior of a Titanium Alloy in the VHCF Regime Based on a Vibration Fatigue Test
  publication-title: International Journal of Fatigue
– volume: 176
  year: 2023
  article-title: A Multiaxial low‐Cycle Fatigue Prediction Method Under Irregular Loading by ANN Model With Knowledge‐Based Features
  publication-title: International Journal of Fatigue
– volume: 187
  year: 2024
  article-title: Low‐Cycle Fatigue Life Prediction of Austenitic Stainless Steel Alloys: A Data‐Driven Approach With Identification of Key Features
  publication-title: International Journal of Fatigue
– volume: 48
  start-page: 44
  issue: 1
  year: 2024
  end-page: 59
  article-title: A Hybrid Framework for Characterizing and Benchmarking Fatigue S‐N Curves in Aluminum Alloys by Integrating Empirical and Data‐Driven Approaches
  publication-title: Fatigue and Fracture of Engineering Materials and Structures
– volume: 131
  start-page: 71
  year: 2009
  end-page: 79
  article-title: Fatigue Damage Behavior of a Structural Component Made of P355NL1 Steel Under Block Loading
  publication-title: Journal of Pressure Vessel Technology
– volume: 13
  start-page: 621
  year: 2023
  end-page: 631
  article-title: Open‐Access Experiment Dataset for Fatigue Damage Accumulation and Life Prediction Models
  publication-title: Meta
– volume: 182
  year: 2024
  article-title: High Cycle Fatigue Life Prediction of Titanium Alloys Based on a Novel Deep Learning Approach
  publication-title: International Journal of Fatigue
– volume: 188
  year: 2024
  article-title: A Novel Nonlinear Fatigue Cumulative Damage Model Based on Machine Learning
  publication-title: International Journal of Fatigue
– volume: 43
  start-page: 1880
  year: 2020
  end-page: 1892
  article-title: A Fatigue Damage Accumulation Model for Reliability Analysis of Engine Components Under Combined Cycle Loadings
  publication-title: Fatigue and Fracture of Engineering Materials and Structures
– volume: 230
  year: 2022
  article-title: Fatigue Analysis of High‐Carbon Steel at Different Environmental Temperatures Considering the Blue Brittleness Effect
  publication-title: International Journal of Mechanical Sciences
– volume: 16
  start-page: 52
  year: 1994
  end-page: 54
  article-title: Experimental Study on Fatigue Damage Under Two Level Loading
  publication-title: Journal of Mechanical Strength
– volume: 177
  year: 2023
  article-title: A Nonlinear Fatigue Damage Accumulation Model Under Variable Amplitude Loading Considering the Loading Sequence Effect
  publication-title: International Journal of Fatigue
– volume: 42
  start-page: 710
  year: 2018
  end-page: 718
  article-title: Fatigue Life Prediction for Vibration Isolation Rubber Based on Parameter‐Optimized Support Vector Machine Model
  publication-title: Fatigue & Fracture of Engineering Materials & Structures
– volume: 98
  start-page: 316
  year: 1976
  end-page: 321
  article-title: A Cumulative Damage Rule Based on the Knee Point of the S‐N Curve
  publication-title: Journal of Engineering Materials and Technology
– year: 2020
– volume: 98
  start-page: 234
  year: 2017
  end-page: 246
  article-title: A One‐Parameter Nonlinear Fatigue Damage Accumulation Model
  publication-title: International Journal of Fatigue
– volume: 40
  start-page: 522
  year: 2023
  end-page: 528
  article-title: Experimental Study on Vibration Fatigue Damage Accumulation Under High‐Low Load
  publication-title: Chinese Journal of Applied Mechanics
– volume: 24
  start-page: 646
  issue: 5
  year: 2015
  end-page: 662
  article-title: A Nonlinear Fatigue Damage Accumulation Model Considering Strength Degradation and Its Applications to Fatigue Reliability Analysis
  publication-title: International Journal of Damage Mechanics
– volume: 285
  year: 2024
  article-title: Fatigue Life Prediction of Film‐Cooling Hole Specimens With Initial Damage
  publication-title: International Journal of Mechanical Sciences
– volume: 250
  year: 2023
  article-title: Physics‐Based Probabilistic Assessment of Creep‐Fatigue Failure for Pressurized Components
  publication-title: International Journal of Mechanical Sciences
– volume: 14
  start-page: 299
  issue: 52
  year: 2020
  end-page: 309
  article-title: Crack Growth Rate Prediction Based on Damage Accumulation Functions for Creep‐Fatigue Interaction
  publication-title: Fracture and Structural Integrity
– volume: 151
  year: 2021
  article-title: A Novel Method of Multiaxial Fatigue Life Prediction Based on Deep Learning
  publication-title: International Journal of Fatigue
– ident: e_1_2_9_22_1
  doi: 10.1016/j.ijfatigue.2022.107234
– ident: e_1_2_9_31_1
  doi: 10.3221/IGF-ESIS.52.23
– ident: e_1_2_9_56_1
– volume: 31
  start-page: 60
  year: 2003
  ident: e_1_2_9_52_1
  article-title: SN Curve Movement‐Based Life Analytical Model
  publication-title: Journal of Hohai University (Natural Sciences).
– ident: e_1_2_9_3_1
  doi: 10.1016/j.ijmecsci.2024.109789
– ident: e_1_2_9_8_1
  doi: 10.1016/j.dcan.2021.03.003
– ident: e_1_2_9_46_1
  doi: 10.1016/j.ijfatigue.2005.05.001
– ident: e_1_2_9_53_1
  doi: 10.1016/S0141-0296(02)00055-X
– ident: e_1_2_9_13_1
  doi: 10.1016/j.ijfatigue.2024.108636
– ident: e_1_2_9_27_1
  doi: 10.1016/j.ijfatigue.2020.105477
– ident: e_1_2_9_17_1
  doi: 10.1016/j.ijfatigue.2023.107868
– volume: 13
  start-page: 621
  year: 2023
  ident: e_1_2_9_45_1
  article-title: Open‐Access Experiment Dataset for Fatigue Damage Accumulation and Life Prediction Models
  publication-title: Meta
– ident: e_1_2_9_19_1
  doi: 10.1016/j.ijmecsci.2023.108314
– volume: 40
  start-page: 522
  year: 2023
  ident: e_1_2_9_54_1
  article-title: Experimental Study on Vibration Fatigue Damage Accumulation Under High‐Low Load
  publication-title: Chinese Journal of Applied Mechanics
– volume: 39
  start-page: 1
  year: 2020
  ident: e_1_2_9_38_1
  article-title: Variable Amplitude Fatigue Life Prediction of Rock Samples Under Completely Reversed Loading
  publication-title: Geotechnical and Geological Engineering
– ident: e_1_2_9_24_1
  doi: 10.1177/1056789515605881
– ident: e_1_2_9_2_1
  doi: 10.1016/j.ijfatigue.2023.107608
– volume: 28
  start-page: 582
  year: 2006
  ident: e_1_2_9_51_1
  article-title: New Continuous Fatigue Damage Model Based on Whole Damage Field Measurement
  publication-title: Journal of Mechanical Strength.
– ident: e_1_2_9_32_1
  doi: 10.1007/BF00053519
– volume: 381
  issue: 2260
  year: 2023
  ident: e_1_2_9_18_1
  article-title: A Physics‐Guided Modelling Method of Artificial Neural Network for Multiaxial Fatigue Life Prediction Under Irregular Loading
  publication-title: Philosophical Transactions. Series A, Mathematical, Physical, and Engineering Sciences
– ident: e_1_2_9_37_1
  doi: 10.1111/ffe.13246
– volume: 48
  start-page: 44
  issue: 1
  year: 2024
  ident: e_1_2_9_14_1
  article-title: A Hybrid Framework for Characterizing and Benchmarking Fatigue S‐N Curves in Aluminum Alloys by Integrating Empirical and Data‐Driven Approaches
  publication-title: Fatigue and Fracture of Engineering Materials and Structures
– ident: e_1_2_9_41_1
  doi: 10.1145/2939672.2939785
– volume: 42
  start-page: 710
  year: 2018
  ident: e_1_2_9_42_1
  article-title: Fatigue Life Prediction for Vibration Isolation Rubber Based on Parameter‐Optimized Support Vector Machine Model
  publication-title: Fatigue & Fracture of Engineering Materials & Structures
– ident: e_1_2_9_4_1
  doi: 10.1016/j.ijmecsci.2022.107546
– ident: e_1_2_9_33_1
  doi: 10.1016/j.ijfatigue.2023.108035
– ident: e_1_2_9_34_1
  doi: 10.1177/1056789514544228
– ident: e_1_2_9_15_1
  doi: 10.1016/j.engfracmech.2024.110214
– ident: e_1_2_9_23_1
  doi: 10.1016/j.ijfatigue.2024.108519
– ident: e_1_2_9_20_1
  doi: 10.1016/j.ijfatigue.2023.107658
– ident: e_1_2_9_50_1
  doi: 10.1115/1.3443383
– ident: e_1_2_9_39_1
  doi: 10.1002/widm.8
– volume: 131
  start-page: 71
  year: 2009
  ident: e_1_2_9_49_1
  article-title: Fatigue Damage Behavior of a Structural Component Made of P355NL1 Steel Under Block Loading
  publication-title: Journal of Pressure Vessel Technology
– ident: e_1_2_9_26_1
  doi: 10.1115/1.4009458
– ident: e_1_2_9_16_1
  doi: 10.1016/j.ijfatigue.2024.108454
– volume: 42
  start-page: 324
  year: 2023
  ident: e_1_2_9_55_1
  article-title: Aero‐Engine Blade High and Low Circumference Composite Fatigue Life Prediction and Damage Mechanism Research
  publication-title: Journal of Inner Mongolia University of Technology (Natural Science Edition).
– volume: 31
  start-page: 741
  year: 2014
  ident: e_1_2_9_35_1
  article-title: Reliability Analysis Based on a Nonlinear Fatigue Damage Accumulation Model
  publication-title: Journal of Donghua University (English Edition).
– ident: e_1_2_9_40_1
  doi: 10.1016/j.engfracmech.2021.107890
– ident: e_1_2_9_29_1
  doi: 10.1016/j.ijfatigue.2021.106636
– ident: e_1_2_9_9_1
  doi: 10.1016/j.ijfatigue.2021.106356
– ident: e_1_2_9_10_1
  doi: 10.1016/j.ijfatigue.2024.108206
– volume: 19
  start-page: 647
  year: 1998
  ident: e_1_2_9_47_1
  article-title: Study on Nonlinear Continuous Damage Cumulative Model for Uniaxial Fatigue
  publication-title: Acta Aeronautica et Astronautica Sinica.
– ident: e_1_2_9_11_1
  doi: 10.1016/j.engfracmech.2024.110556
– ident: e_1_2_9_5_1
  doi: 10.1016/j.ijmecsci.2019.02.032
– ident: e_1_2_9_12_1
  doi: 10.1016/j.engfracmech.2024.110676
– ident: e_1_2_9_21_1
  doi: 10.1016/j.ijfatigue.2022.107086
– ident: e_1_2_9_30_1
  doi: 10.1016/j.ijfatigue.2022.106836
– ident: e_1_2_9_6_1
  doi: 10.1016/j.ijmecsci.2018.08.037
– ident: e_1_2_9_28_1
  doi: 10.1016/j.ijfatigue.2017.01.039
– volume: 16
  start-page: 52
  year: 1994
  ident: e_1_2_9_48_1
  article-title: Experimental Study on Fatigue Damage Under Two Level Loading
  publication-title: Journal of Mechanical Strength
– volume: 14
  start-page: 69
  issue: 2
  year: 2008
  ident: e_1_2_9_43_1
  article-title: Gaussian Processes for Machine Learning
  publication-title: International Journal of Neural Systems
– ident: e_1_2_9_25_1
  doi: 10.1016/j.ijfatigue.2016.12.008
– ident: e_1_2_9_7_1
  doi: 10.1016/j.ijfatigue.2023.108013
– volume: 2014
  year: 2014
  ident: e_1_2_9_36_1
  article-title: A Modified Nonlinear Damage Accumulation Model for Fatigue Life Prediction Considering Load Interaction Effects
  publication-title: Scientific World Journal.
– ident: e_1_2_9_44_1
  doi: 10.1016/j.ijfatigue.2023.107945
SSID ssj0016433
Score 2.4247396
Snippet ABSTRACT Fatigue damage accumulation is critical to the safety and reliability of mechanical structures, yet accurate prediction remains challenging,...
Fatigue damage accumulation is critical to the safety and reliability of mechanical structures, yet accurate prediction remains challenging, especially under...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Index Database
Publisher
StartPage 4352
SubjectTerms Cumulative damage
Damage accumulation
damage equivalence
fatigue cumulative damage
Fatigue failure
Machine learning
physics‐embedded machine learning
small‐sample prediction
two‐level loading
Title Physics‐Embedded Machine Learning for Fatigue Cumulative Damage Prediction
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fffe.70036
https://www.proquest.com/docview/3248950688
Volume 48
WOSCitedRecordID wos001534603800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1460-2695
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0016433
  issn: 8756-758X
  databaseCode: DRFUL
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB5q60EPvsVqlUU8eInk1WSDJ6kNHmopYqG3MNlH8dAqfZ39Cf5Gf4mzm7TWgyB4CTkkIczOzH7f7uw3AFfYzBUnXOF4vvCdUOmYQgrRcbXnYuS7UoZom03E3S4fDJJeBW6XZ2EKfYjVgpuJDJuvTYBjPl0Lcq3VTWzkVDagZg5VEfOq3T-l_c5qE4Em26BY3oscgsWDUljIFPKsXv45HX1jzHWkaqeadPdfP7kHOyXCZHeFS-xDRY0PYHtNd_AQOrbuU0w_3z_ao1xR7pHs0VZVKlYKrg4ZoVmW0rgN54q15iPb5muh2D2OKAWx3sTs8JhRPYJ-2n5uPThlWwVHENeJiCx60uUyiYgs6WZTCgw9riIeB1LGXqK9AF1XEM_gGjWi0dPnaGLfE0Sucj84hur4daxOgPkREjxTdFFuKIXmwkUvjCXmCZJ3JHW4XFo3eyvUM7Il6yDTZNY0dWgs7Z6VATTNCOfxpGk64tTh2lr49w9kadq2N6d_f_QMtnzTydeW5TWgOpvM1TlsisXsZTq5KD3pC_bky-0
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB5qK6gH32K16iIevETyarIBL9I2VExLkRZ6C9t9FA-t0tfZn-Bv9Jc4u01qPQiCl5BDEsLsPL6Znf0G4IZVB5IirrAcl7uWL1WIJsWYZSvHZoFrC-EzM2wibLdpvx91CnCfn4VZ8kOsCm7aMoy_1gauC9JrVq6UvAs1n8oGlPzAC2kRSvXnuJesdhEw2nrL-l5gIS7uZ8xCupNn9fLPePQNMtehqok18d7__nIfdjOMSR6WSnEABTk-hJ015sEjSEznJ59-vn80RgOJ3keQlumrlCSjXB0SxLMkxpUbziWpzUdm0NdCkjoboRMinYne49Hregy9uNGtNa1ssILFMdsJMF10hE1FFGC6pKpVwZnvUBnQ0BMidCLleMy2OWYaVDHFmGbUp0xbv8MxvRq43gkUx69jeQrEDRgCNIkXafuCK8pt5vihYIOIoX5EZbjOxZu-Lfkz0jzvQNGkRjRlqOSCTzMTmqaI9GhU1TNxynBrRPz7B9I4bpibs78_egVbzW4rSZPH9tM5bLt6rq9p0qtAcTaZywvY5IvZy3RymanVFzhXz90
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB5qK6IH32K16iIevETyzga8SNugWEsRC72F7T6Kh9bS19mf4G_0lzi7SWo9CIKXkEMSwux8s9_szn4DcMWCvqTIKyzH5a7lSxUhpBizbOXYLHRtIXxmmk1E7Tbt9eJOCW6LszCZPsRywU0jw8RrDXA5FmoF5UrJm0jrqaxBxQ_iwC9DpfGcdFvLXQScbb1sfS-0kBf3cmUhXcmzfPnnfPRNMlepqplrkp3__eUubOcck9xlTrEHJTnah60V5cEDaJnKTz79fP9oDvsSo48gT6auUpJccnVAkM-SBEduMJekPh-aRl8LSRpsiEGIdCZ6j0eP6yF0k-ZL_d7KGytYHLOdENNFR9hUxCGmSyoIBGe-Q2VII0-IyImV4zHb5phpUMUUY1pRnzKNfodjetV3vSMoj95G8hiIGzIkaBIv0vYFV5TbzPEjwfoxQ_-Iq3BZmDcdZ_oZaZF3oGlSY5oq1ArDpzmEpikyPRoHuidOFa6NiX__QJokTXNz8vdHL2Cj00jS1kP78RQ2Xd3W19To1aA8m8zlGazzxex1OjnPveoLClPPWA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Physics%E2%80%90Embedded+Machine+Learning+for+Fatigue+Cumulative+Damage+Prediction&rft.jtitle=Fatigue+%26+fracture+of+engineering+materials+%26+structures&rft.au=Gao%2C+Zhiyuan&rft.au=Jiang%2C+Xiaomo&rft.au=Guo%2C+Yifan&rft.au=Cui%2C+Mingqing&rft.date=2025-10-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=8756-758X&rft.eissn=1460-2695&rft.volume=48&rft.issue=10&rft.spage=4352&rft.epage=4374&rft_id=info:doi/10.1111%2Fffe.70036&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=8756-758X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=8756-758X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=8756-758X&client=summon