Physics‐Embedded Machine Learning for Fatigue Cumulative Damage Prediction
ABSTRACT Fatigue damage accumulation is critical to the safety and reliability of mechanical structures, yet accurate prediction remains challenging, especially under small‐sample conditions. This study proposes an innovative physics‐embedded machine learning (ML) framework to enhance residual fatig...
Saved in:
| Published in: | Fatigue & fracture of engineering materials & structures Vol. 48; no. 10; pp. 4352 - 4374 |
|---|---|
| Main Authors: | , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Oxford
Wiley Subscription Services, Inc
01.10.2025
|
| Subjects: | |
| ISSN: | 8756-758X, 1460-2695 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | ABSTRACT
Fatigue damage accumulation is critical to the safety and reliability of mechanical structures, yet accurate prediction remains challenging, especially under small‐sample conditions. This study proposes an innovative physics‐embedded machine learning (ML) framework to enhance residual fatigue damage prediction by integrating the Manson–Halford (MH) physical model with data‐driven algorithms. The framework employs a dual‐regressor approach: One regressor embeds the MH model to predict the interaction coefficient, while the other is purely data driven to directly predict residual fatigue damage, with a customized loss function enforcing physical consistency between the two outputs. A compiled dataset of 14 materials demonstrates the framework's superiority over six baseline ML models. Notably, the model retains high accuracy even with 30% fewer training data, showcasing its robustness in data‐scarce scenarios. By harmonizing physical mechanisms with ML, this work provides a generalizable and efficient strategy for fatigue damage prediction.
Summary
A novel physics‐embedded ML framework for predicting fatigue damage was proposed.
A customized loss function was applied to embed physical mechanism.
The advantage of the model in small sample prediction was validated. |
|---|---|
| AbstractList | Fatigue damage accumulation is critical to the safety and reliability of mechanical structures, yet accurate prediction remains challenging, especially under small‐sample conditions. This study proposes an innovative physics‐embedded machine learning (ML) framework to enhance residual fatigue damage prediction by integrating the Manson–Halford (MH) physical model with data‐driven algorithms. The framework employs a dual‐regressor approach: One regressor embeds the MH model to predict the interaction coefficient, while the other is purely data driven to directly predict residual fatigue damage, with a customized loss function enforcing physical consistency between the two outputs. A compiled dataset of 14 materials demonstrates the framework's superiority over six baseline ML models. Notably, the model retains high accuracy even with 30% fewer training data, showcasing its robustness in data‐scarce scenarios. By harmonizing physical mechanisms with ML, this work provides a generalizable and efficient strategy for fatigue damage prediction.
A novel physics‐embedded ML framework for predicting fatigue damage was proposed. A customized loss function was applied to embed physical mechanism. The advantage of the model in small sample prediction was validated. ABSTRACT Fatigue damage accumulation is critical to the safety and reliability of mechanical structures, yet accurate prediction remains challenging, especially under small‐sample conditions. This study proposes an innovative physics‐embedded machine learning (ML) framework to enhance residual fatigue damage prediction by integrating the Manson–Halford (MH) physical model with data‐driven algorithms. The framework employs a dual‐regressor approach: One regressor embeds the MH model to predict the interaction coefficient, while the other is purely data driven to directly predict residual fatigue damage, with a customized loss function enforcing physical consistency between the two outputs. A compiled dataset of 14 materials demonstrates the framework's superiority over six baseline ML models. Notably, the model retains high accuracy even with 30% fewer training data, showcasing its robustness in data‐scarce scenarios. By harmonizing physical mechanisms with ML, this work provides a generalizable and efficient strategy for fatigue damage prediction. Summary A novel physics‐embedded ML framework for predicting fatigue damage was proposed. A customized loss function was applied to embed physical mechanism. The advantage of the model in small sample prediction was validated. Fatigue damage accumulation is critical to the safety and reliability of mechanical structures, yet accurate prediction remains challenging, especially under small‐sample conditions. This study proposes an innovative physics‐embedded machine learning (ML) framework to enhance residual fatigue damage prediction by integrating the Manson–Halford (MH) physical model with data‐driven algorithms. The framework employs a dual‐regressor approach: One regressor embeds the MH model to predict the interaction coefficient, while the other is purely data driven to directly predict residual fatigue damage, with a customized loss function enforcing physical consistency between the two outputs. A compiled dataset of 14 materials demonstrates the framework's superiority over six baseline ML models. Notably, the model retains high accuracy even with 30% fewer training data, showcasing its robustness in data‐scarce scenarios. By harmonizing physical mechanisms with ML, this work provides a generalizable and efficient strategy for fatigue damage prediction. |
| Author | Guo, Yifan Cui, Mingqing Gao, Zhiyuan Jiang, Xiaomo Wang, Shengbo |
| Author_xml | – sequence: 1 givenname: Zhiyuan surname: Gao fullname: Gao, Zhiyuan organization: Dalian University of Technology – sequence: 2 givenname: Xiaomo orcidid: 0000-0003-1172-3397 surname: Jiang fullname: Jiang, Xiaomo email: xiaomojiang2019@dlut.edu.cn organization: Dalian University of Technology – sequence: 3 givenname: Yifan surname: Guo fullname: Guo, Yifan organization: Dalian University of Technology – sequence: 4 givenname: Mingqing surname: Cui fullname: Cui, Mingqing organization: Dalian University of Technology – sequence: 5 givenname: Shengbo surname: Wang fullname: Wang, Shengbo organization: Dalian University of Technology |
| BookMark | eNp1kLFOwzAQhi1UJNrCwBtEYmJIa8eJ7YyoNIAURAeQ2CzXPreumqTYTVE3HoFn5EkIhJVb_hu-_076RmhQNzUgdEnwhHQztRYmHGPKTtCQpAzHCcuzARoKnrGYZ-L1DI1C2GBMWErpEJWL9TE4Hb4-PufVEowBEz0qvXY1RCUoX7t6FdnGR4Xau1UL0ayt2m23HyC6VZVaQbTwYJzeu6Y-R6dWbQNc_OUYvRTz59l9XD7dPcxuylgnWc5iRojBwuQsEdxmmdEqJQKY4NQYTnJLqMJY5zwVVlmliGBCKEyJIJoTtkzoGF31d3e-eWsh7OWmaX3dvZQ0SUWe4a7RUdc9pX0Tggcrd95Vyh8lwfJHluxkyV9ZHTvt2Xe3heP_oCyKed_4BknVbHk |
| Cites_doi | 10.1016/j.ijfatigue.2022.107234 10.3221/IGF-ESIS.52.23 10.1016/j.ijmecsci.2024.109789 10.1016/j.dcan.2021.03.003 10.1016/j.ijfatigue.2005.05.001 10.1016/S0141-0296(02)00055-X 10.1016/j.ijfatigue.2024.108636 10.1016/j.ijfatigue.2020.105477 10.1016/j.ijfatigue.2023.107868 10.1016/j.ijmecsci.2023.108314 10.1177/1056789515605881 10.1016/j.ijfatigue.2023.107608 10.1007/BF00053519 10.1111/ffe.13246 10.1145/2939672.2939785 10.1016/j.ijmecsci.2022.107546 10.1016/j.ijfatigue.2023.108035 10.1177/1056789514544228 10.1016/j.engfracmech.2024.110214 10.1016/j.ijfatigue.2024.108519 10.1016/j.ijfatigue.2023.107658 10.1115/1.3443383 10.1002/widm.8 10.1115/1.4009458 10.1016/j.ijfatigue.2024.108454 10.1016/j.engfracmech.2021.107890 10.1016/j.ijfatigue.2021.106636 10.1016/j.ijfatigue.2021.106356 10.1016/j.ijfatigue.2024.108206 10.1016/j.engfracmech.2024.110556 10.1016/j.ijmecsci.2019.02.032 10.1016/j.engfracmech.2024.110676 10.1016/j.ijfatigue.2022.107086 10.1016/j.ijfatigue.2022.106836 10.1016/j.ijmecsci.2018.08.037 10.1016/j.ijfatigue.2017.01.039 10.1016/j.ijfatigue.2016.12.008 10.1016/j.ijfatigue.2023.108013 10.1016/j.ijfatigue.2023.107945 |
| ContentType | Journal Article |
| Copyright | 2025 John Wiley & Sons Ltd. 2025 John Wiley & Sons, Ltd. |
| Copyright_xml | – notice: 2025 John Wiley & Sons Ltd. – notice: 2025 John Wiley & Sons, Ltd. |
| DBID | AAYXX CITATION 7SR 7TB 8BQ 8FD FR3 JG9 KR7 |
| DOI | 10.1111/ffe.70036 |
| DatabaseName | CrossRef Engineered Materials Abstracts Mechanical & Transportation Engineering Abstracts METADEX Technology Research Database Engineering Research Database Materials Research Database Civil Engineering Abstracts |
| DatabaseTitle | CrossRef Materials Research Database Civil Engineering Abstracts Engineered Materials Abstracts Technology Research Database Mechanical & Transportation Engineering Abstracts Engineering Research Database METADEX |
| DatabaseTitleList | CrossRef Materials Research Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1460-2695 |
| EndPage | 4374 |
| ExternalDocumentID | 10_1111_ffe_70036 FFE70036 |
| Genre | article |
| GroupedDBID | -~X .3N .GA .Y3 05W 0R~ 10A 1OB 1OC 29H 31~ 33P 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5HH 5LA 5VS 66C 6KP 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHQN AAMMB AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABEFU ABEML ACAHQ ACBWZ ACCZN ACFBH ACGFS ACGOD ACIWK ACPOU ACRPL ACSCC ACUHS ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADMLS ADNMO ADOZA ADZMN AEFGJ AEGXH AEIGN AEIMD AENEX AEUYR AEYWJ AFBPY AFEBI AFFPM AFGKR AFWVQ AFZJQ AGHNM AGQPQ AGXDD AGYGG AHBTC AHEFC AIDQK AIDYY AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BNHUX BROTX BRXPI BY8 CAG COF CS3 D-E D-F DC6 DCZOG DPXWK DR2 DRFUL DRSTM EAD EAP EBS EJD EMK EST ESX F00 F01 F04 FEDTE FOJGT FZ0 G-S G.N GODZA H.T H.X HF~ HGLYW HVGLF HZI HZ~ I-F IHE IX1 J0M K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MK~ MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 NDZJH NF~ O66 O9- OIG P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 R.K RIWAO RJQFR ROL RX1 SAMSI SUPJJ TUS UB1 W8V W99 WBKPD WFSAM WIH WIK WOHZO WQJ WTY WXSBR WYISQ XG1 ZZTAW ~IA ~WT AAYXX AIQQE CITATION O8X 7SR 7TB 8BQ 8FD FR3 JG9 KR7 |
| ID | FETCH-LOGICAL-c2596-611d08d96287f55dca418e6873dd719f13a00c9748fafaa18688a03181c716b23 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001534603800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 8756-758X |
| IngestDate | Sun Nov 09 08:51:12 EST 2025 Sat Nov 29 07:35:45 EST 2025 Tue Sep 09 09:50:27 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 10 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c2596-611d08d96287f55dca418e6873dd719f13a00c9748fafaa18688a03181c716b23 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-1172-3397 |
| PQID | 3248950688 |
| PQPubID | 45644 |
| PageCount | 23 |
| ParticipantIDs | proquest_journals_3248950688 crossref_primary_10_1111_ffe_70036 wiley_primary_10_1111_ffe_70036_FFE70036 |
| PublicationCentury | 2000 |
| PublicationDate | October 2025 2025-10-00 20251001 |
| PublicationDateYYYYMMDD | 2025-10-01 |
| PublicationDate_xml | – month: 10 year: 2025 text: October 2025 |
| PublicationDecade | 2020 |
| PublicationPlace | Oxford |
| PublicationPlace_xml | – name: Oxford |
| PublicationTitle | Fatigue & fracture of engineering materials & structures |
| PublicationYear | 2025 |
| Publisher | Wiley Subscription Services, Inc |
| Publisher_xml | – name: Wiley Subscription Services, Inc |
| References | 2023; 381 2024; 306 2025; 190 2016; 100 2024; 187 2020; 14 2024; 188 2005; 28 2018; 42 2025; 314 2024; 182 2022; 163 1998; 19 2022; 160 2023; 250 2023; 172 2006; 28 2023; 177 2023; 176 2021; 151 2020; 134 2024; 311 2020; 43 2019; 155 2022; 156 2022; 230 2021; 7 2023; 13 2011; 1 2017; 26 2018; 148 2023; 166 2020; 39 2008; 14 1945; 12 2024; 285 2014; 2014 2009; 131 2003; 31 2015; 24 1976; 98 2023; 42 2023; 40 2020 2017; 98 2002; 24 2016 1994; 16 2024; 178 1981; 17 2024; 179 2021; 253 2024; 48 2014; 31 e_1_2_9_31_1 e_1_2_9_50_1 e_1_2_9_10_1 e_1_2_9_56_1 e_1_2_9_12_1 Tianguo Z. (e_1_2_9_18_1) 2023; 381 e_1_2_9_33_1 Haghgouei H. (e_1_2_9_38_1) 2020; 39 Huiying G. (e_1_2_9_36_1) 2014; 2014 e_1_2_9_39_1 e_1_2_9_16_1 e_1_2_9_37_1 Liyang X. (e_1_2_9_48_1) 1994; 16 Matthias S. (e_1_2_9_43_1) 2008; 14 e_1_2_9_41_1 e_1_2_9_20_1 e_1_2_9_22_1 e_1_2_9_24_1 e_1_2_9_8_1 Qiaobin L. (e_1_2_9_42_1) 2018; 42 e_1_2_9_6_1 e_1_2_9_4_1 Deguang S. (e_1_2_9_47_1) 1998; 19 e_1_2_9_2_1 e_1_2_9_26_1 e_1_2_9_28_1 e_1_2_9_30_1 e_1_2_9_53_1 Wang Y. (e_1_2_9_55_1) 2023; 42 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_13_1 e_1_2_9_32_1 Mingmin H. (e_1_2_9_52_1) 2003; 31 Kris H. (e_1_2_9_45_1) 2023; 13 e_1_2_9_15_1 e_1_2_9_17_1 He D. (e_1_2_9_54_1) 2023; 40 e_1_2_9_19_1 HamedEsmaeili M. A. (e_1_2_9_14_1) 2024; 48 e_1_2_9_40_1 e_1_2_9_21_1 e_1_2_9_46_1 e_1_2_9_23_1 e_1_2_9_44_1 e_1_2_9_7_1 e_1_2_9_5_1 e_1_2_9_3_1 Rong Y. (e_1_2_9_35_1) 2014; 31 Pereira H. F. (e_1_2_9_49_1) 2009; 131 e_1_2_9_9_1 e_1_2_9_25_1 Yiqing F. (e_1_2_9_51_1) 2006; 28 e_1_2_9_27_1 e_1_2_9_29_1 |
| References_xml | – volume: 39 start-page: 1 year: 2020 end-page: 1962 article-title: Variable Amplitude Fatigue Life Prediction of Rock Samples Under Completely Reversed Loading publication-title: Geotechnical and Geological Engineering – volume: 163 year: 2022 article-title: Rate‐Dependent Multiaxial Life Prediction for Polyamide‐6 Considering Ratchetting: Semi‐Empirical and Physics‐Informed Machine Learning Models publication-title: International Journal of Fatigue – volume: 42 start-page: 324 year: 2023 end-page: 329 article-title: Aero‐Engine Blade High and Low Circumference Composite Fatigue Life Prediction and Damage Mechanism Research publication-title: Journal of Inner Mongolia University of Technology (Natural Science Edition). – volume: 190 year: 2025 article-title: Prediction of Multiaxial Fatigue Life With a Data‐Driven Knowledge Transfer Model publication-title: International Journal of Fatigue – volume: 28 start-page: 89 year: 2005 end-page: 95 article-title: Fatigue Life Prediction Under Variable Loading Based on a New Non‐Linear Continuum Damage Mechanics Model publication-title: International Journal of Fatigue – volume: 19 start-page: 647 year: 1998 end-page: 656 article-title: Study on Nonlinear Continuous Damage Cumulative Model for Uniaxial Fatigue publication-title: Acta Aeronautica et Astronautica Sinica. – volume: 17 start-page: 169 issue: 2 year: 1981 end-page: 192 article-title: Practical Implementation of the Double Linear Damage Rule and Damage Curve Approach for Treating Cumulative Fatigue Damage publication-title: International Journal of Fracture – volume: 156 year: 2022 article-title: An Improved Fatigue Accumulation Damage Model Based on Load Interaction and Strength Degradation publication-title: International Journal of Fatigue – volume: 14 start-page: 69 issue: 2 year: 2008 end-page: 106 article-title: Gaussian Processes for Machine Learning publication-title: International Journal of Neural Systems – volume: 253 year: 2021 article-title: Machine Learning Approaches to Rock Fracture Mechanics Problems: Mode‐I Fracture Toughness Determination publication-title: Engineering Fracture Mechanics – volume: 24 start-page: 1363 year: 2002 end-page: 1368 article-title: A Phenomenological Fatigue Damage Accumulation Rule Based on Hardness Increasing, for the 2024‐T42 Aluminum publication-title: Engineering Structures – volume: 31 start-page: 60 year: 2003 end-page: 63 article-title: SN Curve Movement‐Based Life Analytical Model publication-title: Journal of Hohai University (Natural Sciences). – volume: 178 year: 2024 article-title: Ultra‐Long Life Fatigue Behavior of a High‐Entropy Alloy publication-title: International Journal of Fatigue – volume: 172 year: 2023 article-title: Physics‐Guided Machine Learning Frameworks for Fatigue Life Prediction of AM Materials publication-title: International Journal of Fatigue – volume: 28 start-page: 582 year: 2006 end-page: 586 article-title: New Continuous Fatigue Damage Model Based on Whole Damage Field Measurement publication-title: Journal of Mechanical Strength. – volume: 311 year: 2024 article-title: Data‐Driven Fatigue Crack Propagation and Life Prediction of Tubular T‐Joint: A Fracture Mechanics Based Machine Learning Surrogate Model publication-title: Engineering Fracture Mechanics – volume: 148 start-page: 307 year: 2018 end-page: 315 article-title: Load Sequence Effects and Variable Amplitude Fatigue of Superelastic NiTi publication-title: International Journal of Mechanical Sciences – volume: 7 start-page: 551 year: 2021 end-page: 558 article-title: Machine Learning‐Based Real‐Time Visible Fatigue Crack Growth Detection publication-title: Digital Communications and Networks – volume: 2014 year: 2014 article-title: A Modified Nonlinear Damage Accumulation Model for Fatigue Life Prediction Considering Load Interaction Effects publication-title: Scientific World Journal. – volume: 134 year: 2020 article-title: Fatigue Life Prediction Under Variable Amplitude Loading Using a Microplasticity‐Based Constitutive Model publication-title: International Journal of Fatigue – volume: 306 year: 2024 article-title: Data‐Driven Machine Learning Approach for Predicting Dwell Fatigue Life in Two Classes of Titanium Alloys publication-title: Engineering Fracture Mechanics – volume: 1 start-page: 14 issue: 1 year: 2011 end-page: 23 article-title: Classification and Regression Trees publication-title: Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery – volume: 12 start-page: A159 issue: 3 year: 1945 end-page: A164 article-title: Cumulative Damage in Fatigue publication-title: Journal of Applied Mechanics – volume: 31 start-page: 741 year: 2014 end-page: 743 article-title: Reliability Analysis Based on a Nonlinear Fatigue Damage Accumulation Model publication-title: Journal of Donghua University (English Edition). – volume: 155 start-page: 110 year: 2019 end-page: 124 article-title: Development of a Novel Fatigue Damage Model With AM Effects for Life Prediction of Commonly‐Used Alloys in Aerospace publication-title: International Journal of Mechanical Sciences – volume: 381 issue: 2260 year: 2023 article-title: A Physics‐Guided Modelling Method of Artificial Neural Network for Multiaxial Fatigue Life Prediction Under Irregular Loading publication-title: Philosophical Transactions. Series A, Mathematical, Physical, and Engineering Sciences – volume: 166 year: 2023 article-title: A Physically Consistent Framework for Fatigue Life Prediction Using Probabilistic Physics‐Informed Neural Network publication-title: International Journal of Fatigue – volume: 26 start-page: 463 issue: 3 year: 2017 end-page: 479 article-title: Validation of Linear Damage Rules Using Random Loading publication-title: International Journal of Damage Mechanics – volume: 314 year: 2025 article-title: Fatigue Life Prediction of Selective Laser Melted Titanium Alloy Based on a Machine Learning Approach publication-title: Engineering Fracture Mechanics – volume: 179 year: 2024 article-title: A New Fatigue Cumulative Damage Model Based on Material Parameters and Stress Interaction publication-title: International Journal of Fatigue – volume: 100 start-page: 502 year: 2016 end-page: 511 article-title: Non‐Linear Incremental Fatigue Damage Calculation for Multiaxial Non‐Proportional Histories publication-title: International Journal of Fatigue – volume: 160 year: 2022 article-title: On the Development of Error‐Trained BP‐ANN Technique with CDM Model for the HCF Life Prediction of Aluminum Alloy publication-title: International Journal of Fatigue – year: 2016 – volume: 172 year: 2023 article-title: Notch Fatigue Behavior of a Titanium Alloy in the VHCF Regime Based on a Vibration Fatigue Test publication-title: International Journal of Fatigue – volume: 176 year: 2023 article-title: A Multiaxial low‐Cycle Fatigue Prediction Method Under Irregular Loading by ANN Model With Knowledge‐Based Features publication-title: International Journal of Fatigue – volume: 187 year: 2024 article-title: Low‐Cycle Fatigue Life Prediction of Austenitic Stainless Steel Alloys: A Data‐Driven Approach With Identification of Key Features publication-title: International Journal of Fatigue – volume: 48 start-page: 44 issue: 1 year: 2024 end-page: 59 article-title: A Hybrid Framework for Characterizing and Benchmarking Fatigue S‐N Curves in Aluminum Alloys by Integrating Empirical and Data‐Driven Approaches publication-title: Fatigue and Fracture of Engineering Materials and Structures – volume: 131 start-page: 71 year: 2009 end-page: 79 article-title: Fatigue Damage Behavior of a Structural Component Made of P355NL1 Steel Under Block Loading publication-title: Journal of Pressure Vessel Technology – volume: 13 start-page: 621 year: 2023 end-page: 631 article-title: Open‐Access Experiment Dataset for Fatigue Damage Accumulation and Life Prediction Models publication-title: Meta – volume: 182 year: 2024 article-title: High Cycle Fatigue Life Prediction of Titanium Alloys Based on a Novel Deep Learning Approach publication-title: International Journal of Fatigue – volume: 188 year: 2024 article-title: A Novel Nonlinear Fatigue Cumulative Damage Model Based on Machine Learning publication-title: International Journal of Fatigue – volume: 43 start-page: 1880 year: 2020 end-page: 1892 article-title: A Fatigue Damage Accumulation Model for Reliability Analysis of Engine Components Under Combined Cycle Loadings publication-title: Fatigue and Fracture of Engineering Materials and Structures – volume: 230 year: 2022 article-title: Fatigue Analysis of High‐Carbon Steel at Different Environmental Temperatures Considering the Blue Brittleness Effect publication-title: International Journal of Mechanical Sciences – volume: 16 start-page: 52 year: 1994 end-page: 54 article-title: Experimental Study on Fatigue Damage Under Two Level Loading publication-title: Journal of Mechanical Strength – volume: 177 year: 2023 article-title: A Nonlinear Fatigue Damage Accumulation Model Under Variable Amplitude Loading Considering the Loading Sequence Effect publication-title: International Journal of Fatigue – volume: 42 start-page: 710 year: 2018 end-page: 718 article-title: Fatigue Life Prediction for Vibration Isolation Rubber Based on Parameter‐Optimized Support Vector Machine Model publication-title: Fatigue & Fracture of Engineering Materials & Structures – volume: 98 start-page: 316 year: 1976 end-page: 321 article-title: A Cumulative Damage Rule Based on the Knee Point of the S‐N Curve publication-title: Journal of Engineering Materials and Technology – year: 2020 – volume: 98 start-page: 234 year: 2017 end-page: 246 article-title: A One‐Parameter Nonlinear Fatigue Damage Accumulation Model publication-title: International Journal of Fatigue – volume: 40 start-page: 522 year: 2023 end-page: 528 article-title: Experimental Study on Vibration Fatigue Damage Accumulation Under High‐Low Load publication-title: Chinese Journal of Applied Mechanics – volume: 24 start-page: 646 issue: 5 year: 2015 end-page: 662 article-title: A Nonlinear Fatigue Damage Accumulation Model Considering Strength Degradation and Its Applications to Fatigue Reliability Analysis publication-title: International Journal of Damage Mechanics – volume: 285 year: 2024 article-title: Fatigue Life Prediction of Film‐Cooling Hole Specimens With Initial Damage publication-title: International Journal of Mechanical Sciences – volume: 250 year: 2023 article-title: Physics‐Based Probabilistic Assessment of Creep‐Fatigue Failure for Pressurized Components publication-title: International Journal of Mechanical Sciences – volume: 14 start-page: 299 issue: 52 year: 2020 end-page: 309 article-title: Crack Growth Rate Prediction Based on Damage Accumulation Functions for Creep‐Fatigue Interaction publication-title: Fracture and Structural Integrity – volume: 151 year: 2021 article-title: A Novel Method of Multiaxial Fatigue Life Prediction Based on Deep Learning publication-title: International Journal of Fatigue – ident: e_1_2_9_22_1 doi: 10.1016/j.ijfatigue.2022.107234 – ident: e_1_2_9_31_1 doi: 10.3221/IGF-ESIS.52.23 – ident: e_1_2_9_56_1 – volume: 31 start-page: 60 year: 2003 ident: e_1_2_9_52_1 article-title: SN Curve Movement‐Based Life Analytical Model publication-title: Journal of Hohai University (Natural Sciences). – ident: e_1_2_9_3_1 doi: 10.1016/j.ijmecsci.2024.109789 – ident: e_1_2_9_8_1 doi: 10.1016/j.dcan.2021.03.003 – ident: e_1_2_9_46_1 doi: 10.1016/j.ijfatigue.2005.05.001 – ident: e_1_2_9_53_1 doi: 10.1016/S0141-0296(02)00055-X – ident: e_1_2_9_13_1 doi: 10.1016/j.ijfatigue.2024.108636 – ident: e_1_2_9_27_1 doi: 10.1016/j.ijfatigue.2020.105477 – ident: e_1_2_9_17_1 doi: 10.1016/j.ijfatigue.2023.107868 – volume: 13 start-page: 621 year: 2023 ident: e_1_2_9_45_1 article-title: Open‐Access Experiment Dataset for Fatigue Damage Accumulation and Life Prediction Models publication-title: Meta – ident: e_1_2_9_19_1 doi: 10.1016/j.ijmecsci.2023.108314 – volume: 40 start-page: 522 year: 2023 ident: e_1_2_9_54_1 article-title: Experimental Study on Vibration Fatigue Damage Accumulation Under High‐Low Load publication-title: Chinese Journal of Applied Mechanics – volume: 39 start-page: 1 year: 2020 ident: e_1_2_9_38_1 article-title: Variable Amplitude Fatigue Life Prediction of Rock Samples Under Completely Reversed Loading publication-title: Geotechnical and Geological Engineering – ident: e_1_2_9_24_1 doi: 10.1177/1056789515605881 – ident: e_1_2_9_2_1 doi: 10.1016/j.ijfatigue.2023.107608 – volume: 28 start-page: 582 year: 2006 ident: e_1_2_9_51_1 article-title: New Continuous Fatigue Damage Model Based on Whole Damage Field Measurement publication-title: Journal of Mechanical Strength. – ident: e_1_2_9_32_1 doi: 10.1007/BF00053519 – volume: 381 issue: 2260 year: 2023 ident: e_1_2_9_18_1 article-title: A Physics‐Guided Modelling Method of Artificial Neural Network for Multiaxial Fatigue Life Prediction Under Irregular Loading publication-title: Philosophical Transactions. Series A, Mathematical, Physical, and Engineering Sciences – ident: e_1_2_9_37_1 doi: 10.1111/ffe.13246 – volume: 48 start-page: 44 issue: 1 year: 2024 ident: e_1_2_9_14_1 article-title: A Hybrid Framework for Characterizing and Benchmarking Fatigue S‐N Curves in Aluminum Alloys by Integrating Empirical and Data‐Driven Approaches publication-title: Fatigue and Fracture of Engineering Materials and Structures – ident: e_1_2_9_41_1 doi: 10.1145/2939672.2939785 – volume: 42 start-page: 710 year: 2018 ident: e_1_2_9_42_1 article-title: Fatigue Life Prediction for Vibration Isolation Rubber Based on Parameter‐Optimized Support Vector Machine Model publication-title: Fatigue & Fracture of Engineering Materials & Structures – ident: e_1_2_9_4_1 doi: 10.1016/j.ijmecsci.2022.107546 – ident: e_1_2_9_33_1 doi: 10.1016/j.ijfatigue.2023.108035 – ident: e_1_2_9_34_1 doi: 10.1177/1056789514544228 – ident: e_1_2_9_15_1 doi: 10.1016/j.engfracmech.2024.110214 – ident: e_1_2_9_23_1 doi: 10.1016/j.ijfatigue.2024.108519 – ident: e_1_2_9_20_1 doi: 10.1016/j.ijfatigue.2023.107658 – ident: e_1_2_9_50_1 doi: 10.1115/1.3443383 – ident: e_1_2_9_39_1 doi: 10.1002/widm.8 – volume: 131 start-page: 71 year: 2009 ident: e_1_2_9_49_1 article-title: Fatigue Damage Behavior of a Structural Component Made of P355NL1 Steel Under Block Loading publication-title: Journal of Pressure Vessel Technology – ident: e_1_2_9_26_1 doi: 10.1115/1.4009458 – ident: e_1_2_9_16_1 doi: 10.1016/j.ijfatigue.2024.108454 – volume: 42 start-page: 324 year: 2023 ident: e_1_2_9_55_1 article-title: Aero‐Engine Blade High and Low Circumference Composite Fatigue Life Prediction and Damage Mechanism Research publication-title: Journal of Inner Mongolia University of Technology (Natural Science Edition). – volume: 31 start-page: 741 year: 2014 ident: e_1_2_9_35_1 article-title: Reliability Analysis Based on a Nonlinear Fatigue Damage Accumulation Model publication-title: Journal of Donghua University (English Edition). – ident: e_1_2_9_40_1 doi: 10.1016/j.engfracmech.2021.107890 – ident: e_1_2_9_29_1 doi: 10.1016/j.ijfatigue.2021.106636 – ident: e_1_2_9_9_1 doi: 10.1016/j.ijfatigue.2021.106356 – ident: e_1_2_9_10_1 doi: 10.1016/j.ijfatigue.2024.108206 – volume: 19 start-page: 647 year: 1998 ident: e_1_2_9_47_1 article-title: Study on Nonlinear Continuous Damage Cumulative Model for Uniaxial Fatigue publication-title: Acta Aeronautica et Astronautica Sinica. – ident: e_1_2_9_11_1 doi: 10.1016/j.engfracmech.2024.110556 – ident: e_1_2_9_5_1 doi: 10.1016/j.ijmecsci.2019.02.032 – ident: e_1_2_9_12_1 doi: 10.1016/j.engfracmech.2024.110676 – ident: e_1_2_9_21_1 doi: 10.1016/j.ijfatigue.2022.107086 – ident: e_1_2_9_30_1 doi: 10.1016/j.ijfatigue.2022.106836 – ident: e_1_2_9_6_1 doi: 10.1016/j.ijmecsci.2018.08.037 – ident: e_1_2_9_28_1 doi: 10.1016/j.ijfatigue.2017.01.039 – volume: 16 start-page: 52 year: 1994 ident: e_1_2_9_48_1 article-title: Experimental Study on Fatigue Damage Under Two Level Loading publication-title: Journal of Mechanical Strength – volume: 14 start-page: 69 issue: 2 year: 2008 ident: e_1_2_9_43_1 article-title: Gaussian Processes for Machine Learning publication-title: International Journal of Neural Systems – ident: e_1_2_9_25_1 doi: 10.1016/j.ijfatigue.2016.12.008 – ident: e_1_2_9_7_1 doi: 10.1016/j.ijfatigue.2023.108013 – volume: 2014 year: 2014 ident: e_1_2_9_36_1 article-title: A Modified Nonlinear Damage Accumulation Model for Fatigue Life Prediction Considering Load Interaction Effects publication-title: Scientific World Journal. – ident: e_1_2_9_44_1 doi: 10.1016/j.ijfatigue.2023.107945 |
| SSID | ssj0016433 |
| Score | 2.4247396 |
| Snippet | ABSTRACT
Fatigue damage accumulation is critical to the safety and reliability of mechanical structures, yet accurate prediction remains challenging,... Fatigue damage accumulation is critical to the safety and reliability of mechanical structures, yet accurate prediction remains challenging, especially under... |
| SourceID | proquest crossref wiley |
| SourceType | Aggregation Database Index Database Publisher |
| StartPage | 4352 |
| SubjectTerms | Cumulative damage Damage accumulation damage equivalence fatigue cumulative damage Fatigue failure Machine learning physics‐embedded machine learning small‐sample prediction two‐level loading |
| Title | Physics‐Embedded Machine Learning for Fatigue Cumulative Damage Prediction |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fffe.70036 https://www.proquest.com/docview/3248950688 |
| Volume | 48 |
| WOSCitedRecordID | wos001534603800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1460-2695 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0016433 issn: 8756-758X databaseCode: DRFUL dateStart: 19970101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB5q60EPvsVqlUU8eInk1WSDJ6kNHmopYqG3MNlH8dAqfZ39Cf5Gf4mzm7TWgyB4CTkkIczOzH7f7uw3AFfYzBUnXOF4vvCdUOmYQgrRcbXnYuS7UoZom03E3S4fDJJeBW6XZ2EKfYjVgpuJDJuvTYBjPl0Lcq3VTWzkVDagZg5VEfOq3T-l_c5qE4Em26BY3oscgsWDUljIFPKsXv45HX1jzHWkaqeadPdfP7kHOyXCZHeFS-xDRY0PYHtNd_AQOrbuU0w_3z_ao1xR7pHs0VZVKlYKrg4ZoVmW0rgN54q15iPb5muh2D2OKAWx3sTs8JhRPYJ-2n5uPThlWwVHENeJiCx60uUyiYgs6WZTCgw9riIeB1LGXqK9AF1XEM_gGjWi0dPnaGLfE0Sucj84hur4daxOgPkREjxTdFFuKIXmwkUvjCXmCZJ3JHW4XFo3eyvUM7Il6yDTZNY0dWgs7Z6VATTNCOfxpGk64tTh2lr49w9kadq2N6d_f_QMtnzTydeW5TWgOpvM1TlsisXsZTq5KD3pC_bky-0 |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB5qK6gH32K16iIevETyarIBL9I2VExLkRZ6C9t9FA-t0tfZn-Bv9Jc4u01qPQiCl5BDEsLsPL6Znf0G4IZVB5IirrAcl7uWL1WIJsWYZSvHZoFrC-EzM2wibLdpvx91CnCfn4VZ8kOsCm7aMoy_1gauC9JrVq6UvAs1n8oGlPzAC2kRSvXnuJesdhEw2nrL-l5gIS7uZ8xCupNn9fLPePQNMtehqok18d7__nIfdjOMSR6WSnEABTk-hJ015sEjSEznJ59-vn80RgOJ3keQlumrlCSjXB0SxLMkxpUbziWpzUdm0NdCkjoboRMinYne49Hregy9uNGtNa1ssILFMdsJMF10hE1FFGC6pKpVwZnvUBnQ0BMidCLleMy2OWYaVDHFmGbUp0xbv8MxvRq43gkUx69jeQrEDRgCNIkXafuCK8pt5vihYIOIoX5EZbjOxZu-Lfkz0jzvQNGkRjRlqOSCTzMTmqaI9GhU1TNxynBrRPz7B9I4bpibs78_egVbzW4rSZPH9tM5bLt6rq9p0qtAcTaZywvY5IvZy3RymanVFzhXz90 |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB5qK6IH32K16iIevETyzga8SNugWEsRC72F7T6Kh9bS19mf4G_0lzi7SWo9CIKXkEMSwux8s9_szn4DcMWCvqTIKyzH5a7lSxUhpBizbOXYLHRtIXxmmk1E7Tbt9eJOCW6LszCZPsRywU0jw8RrDXA5FmoF5UrJm0jrqaxBxQ_iwC9DpfGcdFvLXQScbb1sfS-0kBf3cmUhXcmzfPnnfPRNMlepqplrkp3__eUubOcck9xlTrEHJTnah60V5cEDaJnKTz79fP9oDvsSo48gT6auUpJccnVAkM-SBEduMJekPh-aRl8LSRpsiEGIdCZ6j0eP6yF0k-ZL_d7KGytYHLOdENNFR9hUxCGmSyoIBGe-Q2VII0-IyImV4zHb5phpUMUUY1pRnzKNfodjetV3vSMoj95G8hiIGzIkaBIv0vYFV5TbzPEjwfoxQ_-Iq3BZmDcdZ_oZaZF3oGlSY5oq1ArDpzmEpikyPRoHuidOFa6NiX__QJokTXNz8vdHL2Cj00jS1kP78RQ2Xd3W19To1aA8m8zlGazzxex1OjnPveoLClPPWA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Physics%E2%80%90Embedded+Machine+Learning+for+Fatigue+Cumulative+Damage+Prediction&rft.jtitle=Fatigue+%26+fracture+of+engineering+materials+%26+structures&rft.au=Gao%2C+Zhiyuan&rft.au=Jiang%2C+Xiaomo&rft.au=Guo%2C+Yifan&rft.au=Cui%2C+Mingqing&rft.date=2025-10-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=8756-758X&rft.eissn=1460-2695&rft.volume=48&rft.issue=10&rft.spage=4352&rft.epage=4374&rft_id=info:doi/10.1111%2Fffe.70036&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=8756-758X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=8756-758X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=8756-758X&client=summon |