A multiscale environment for learning by diffusion

•We introduce the MELD data model: a diffusion framework for multiscale clustering.•We show how cluster coherence and separation interact with diffusion in MELD clusterings.•We introduce the M-LUND multiscale clustering algorithm and guarantee its performance.•We guarantee that M-LUND recovers the M...

Full description

Saved in:
Bibliographic Details
Published in:Applied and computational harmonic analysis Vol. 57; pp. 58 - 100
Main Authors: Murphy, James M., Polk, Sam L.
Format: Journal Article
Language:English
Published: Elsevier Inc 01.03.2022
Subjects:
ISSN:1063-5203
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract •We introduce the MELD data model: a diffusion framework for multiscale clustering.•We show how cluster coherence and separation interact with diffusion in MELD clusterings.•We introduce the M-LUND multiscale clustering algorithm and guarantee its performance.•We guarantee that M-LUND recovers the MELD data model from many datasets.•We show M-LUND extracts latent multiscale structure in synthetic and real datasets. Clustering algorithms partition a dataset into groups of similar points. The clustering problem is very general, and different partitions of the same dataset could be considered correct and useful. To fully understand such data, it must be considered at a variety of scales, ranging from coarse to fine. We introduce the Multiscale Environment for Learning by Diffusion (MELD) data model, which is a family of clusterings parameterized by nonlinear diffusion on the dataset. We show that the MELD data model precisely captures latent multiscale structure in data and facilitates its analysis. To efficiently learn the multiscale structure observed in many real datasets, we introduce the Multiscale Learning by Unsupervised Nonlinear Diffusion (M-LUND) clustering algorithm, which is derived from a diffusion process at a range of temporal scales. We provide theoretical guarantees for the algorithm's performance and establish its computational efficiency. Finally, we show that the M-LUND clustering algorithm detects the latent structure in a range of synthetic and real datasets.
AbstractList •We introduce the MELD data model: a diffusion framework for multiscale clustering.•We show how cluster coherence and separation interact with diffusion in MELD clusterings.•We introduce the M-LUND multiscale clustering algorithm and guarantee its performance.•We guarantee that M-LUND recovers the MELD data model from many datasets.•We show M-LUND extracts latent multiscale structure in synthetic and real datasets. Clustering algorithms partition a dataset into groups of similar points. The clustering problem is very general, and different partitions of the same dataset could be considered correct and useful. To fully understand such data, it must be considered at a variety of scales, ranging from coarse to fine. We introduce the Multiscale Environment for Learning by Diffusion (MELD) data model, which is a family of clusterings parameterized by nonlinear diffusion on the dataset. We show that the MELD data model precisely captures latent multiscale structure in data and facilitates its analysis. To efficiently learn the multiscale structure observed in many real datasets, we introduce the Multiscale Learning by Unsupervised Nonlinear Diffusion (M-LUND) clustering algorithm, which is derived from a diffusion process at a range of temporal scales. We provide theoretical guarantees for the algorithm's performance and establish its computational efficiency. Finally, we show that the M-LUND clustering algorithm detects the latent structure in a range of synthetic and real datasets.
Author Polk, Sam L.
Murphy, James M.
Author_xml – sequence: 1
  givenname: James M.
  surname: Murphy
  fullname: Murphy, James M.
  email: JM.Murphy@Tufts.edu
– sequence: 2
  givenname: Sam L.
  orcidid: 0000-0002-9482-0258
  surname: Polk
  fullname: Polk, Sam L.
  email: Samuel.Polk@Tufts.edu
BookMark eNp9z71qwzAQwHENKTRJ-wKd_AJ2dZLsOtAlhH5BoEs7i5N0amUcuUhOIG9fh3TqkOng4H_cb8FmcYjE2B3wCjg0912F9hsrwQVUABXnasbmwBtZ1oLLa7bIueMcQNWrORPrYrfvx5At9lRQPIQ0xB3FsfBDKnrCFEP8KsyxcMH7fQ5DvGFXHvtMt39zyT6fnz42r-X2_eVts96WVtQrVRrOHVoJzQOZtsHW2NY79NwZ9K0CadEIkoRmWktELxSHGhWtGqOUk0oumTjftWnIOZHXPynsMB01cH2S6k6fpPok1QB6kk5R-y-yYcRxentMGPrL6eM5pQl1CJR0toGiJRcS2VG7IVzKfwEyx3Py
CitedBy_id crossref_primary_10_1145_3766892
crossref_primary_10_3390_electronics14030481
crossref_primary_10_1109_TGRS_2024_3385202
crossref_primary_10_3390_rs15041053
crossref_primary_10_3390_rs13050955
Cites_doi 10.1109/TIT.2011.2104630
10.1080/01621459.1981.10477658
10.1016/0378-8733(83)90021-7
10.1371/journal.pcbi.1004574
10.1137/0218077
10.1214/11-EJS651
10.3390/rs13050955
10.1109/TNN.2005.845141
10.1109/TPAMI.2006.184
10.1214/11-AOS887
10.1016/0890-5401(89)90067-9
10.1088/1478-3975/8/5/055010
10.1016/j.jmva.2006.11.013
10.1109/TGRS.2018.2869723
10.1207/s15327906mbr0102_10
10.1016/S0031-3203(02)00060-2
10.1016/j.acha.2016.09.003
10.1088/1742-5468/2008/10/P10008
10.1017/S0963548317000463
10.1016/j.acha.2005.07.004
10.1109/TNSE.2016.2634322
10.1137/1031050
10.1109/LGRS.2019.2943001
10.1214/14-AOS1283
10.1137/20M1324089
10.1109/34.868688
10.1109/34.1000236
10.1007/s11222-007-9033-z
10.1016/j.acha.2006.04.006
10.1007/s41109-019-0248-7
10.1109/TNSE.2015.2391998
10.1038/nature09182
10.1109/TIT.1975.1055330
10.1016/j.eswa.2008.01.039
10.1073/pnas.0500334102
10.1126/science.1242072
ContentType Journal Article
Copyright 2021 Elsevier Inc.
Copyright_xml – notice: 2021 Elsevier Inc.
DBID AAYXX
CITATION
DOI 10.1016/j.acha.2021.11.004
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Mathematics
EndPage 100
ExternalDocumentID 10_1016_j_acha_2021_11_004
S1063520321000944
GroupedDBID --K
--M
.~1
0R~
1B1
1RT
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AASFE
AATTM
AAXKI
AAXUO
ABAOU
ABFNM
ABJNI
ABMAC
ABWVN
ABXDB
ACDAQ
ACGFS
ACRLP
ACRPL
ADBBV
ADEZE
ADFGL
ADMUD
ADNMO
ADVLN
AEBSH
AEIPS
AEKER
AENEX
AEXQZ
AFJKZ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGVJ
AIKHN
AITUG
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CAG
COF
CS3
DM4
EBS
EFBJH
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
IXB
J1W
KOM
LG5
M26
M41
MCRUF
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OK1
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSH
SSW
SSZ
T5K
WUQ
XPP
ZMT
~G-
9DU
AAYWO
AAYXX
ACLOT
ACVFH
ADCNI
AEUPX
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
APXCP
CITATION
EFKBS
EFLBG
~HD
ID FETCH-LOGICAL-c2594-b00dac3167eb86a8bc8fdaf0dbaf8413cab2e3eab8fd3aaf24015a4e96b44d343
ISSN 1063-5203
IngestDate Sat Nov 29 07:11:53 EST 2025
Tue Nov 18 21:40:02 EST 2025
Sun Apr 06 06:53:48 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Clustering
Hierarchical clustering
Spectral graph theory
Diffusion geometry
Machine learning
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c2594-b00dac3167eb86a8bc8fdaf0dbaf8413cab2e3eab8fd3aaf24015a4e96b44d343
ORCID 0000-0002-9482-0258
OpenAccessLink https://doi.org/10.1016/j.acha.2021.11.004
PageCount 43
ParticipantIDs crossref_primary_10_1016_j_acha_2021_11_004
crossref_citationtrail_10_1016_j_acha_2021_11_004
elsevier_sciencedirect_doi_10_1016_j_acha_2021_11_004
PublicationCentury 2000
PublicationDate March 2022
2022-03-00
PublicationDateYYYYMMDD 2022-03-01
PublicationDate_xml – month: 03
  year: 2022
  text: March 2022
PublicationDecade 2020
PublicationTitle Applied and computational harmonic analysis
PublicationYear 2022
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Shi, Malik (br0590) 2000; 22
Sinclair, Jerrum (br0600) 1989; 82
Blondel, Guillaume, Lambiotte, Lefebvre (br0080) 2008; 2008
Little, Maggioni, Murphy (br0380) 2020; 21
Nadler, Lafon, Coifman, Kevrekidis (br0500) 2006; 21
Maggioni, Murphy (br0410) 2019; 20
McSherry (br0420) 2001
Ahn, Bagrow, Lehmann (br0010) 2010; 466
Hartigan (br0280) 1981; 76
Lafon, Lee (br0320) 2006; 28
Rohe, Chatterjee, Yu (br0570) 2011; 39
Fan, Yue, Sarkar, Wang (br0220) 2019
Arias-Castro, Lerman, Zhang (br0040) 2017; 18
Garcia Trillos, Slepčev (br0250) 2018; 45
Coifman, Lafon, Lee, Maggioni, Nadler, Warner, Zucker (br0150) 2005; 102
Vu (br0650) 2018; 27
Arias-Castro, Chen, Lerman (br0030) 2011; 5
Meilă, Shi (br0440) 2001
Xu, Wunsch (br0690) 2005; 16
Dal Maso (br0180) 2012; vol. 8
Von Luxburg (br0640) 2007; 17
Nadler, Galun (br0490) 2007
Jisu, Chen, Balakrishnan, Rinaldo, Wasserman (br0310) 2016
Mohar, Alavi, Chartrand, Oellermann (br0460) 1991
Beygelzimer, Kakade, Langford (br0070) 2006
Song, Zhang (br0610) 2015; 11
Rice (br0550) 2006
Comaniciu, Meer (br0160) 2002; 24
Dua, Graff (br0200) 2017
Park, Jun (br0530) 2009; 36
Wang, Slavakis, Lerman (br0680) 2015
Lyzinski, Tang, Athreya, Park, Priebe (br0400) 2016; 4
Chen, Atev, Lerman (br0120) 2009
Wang, Slavakis, Lerman (br0670) 2014
Rodriguez, Laio (br0560) 2014; 344
Szlam, Maggioni, Coifman, Bremer (br0620) 2005
Holland, Laskey, Leinhardt (br0290) 1983; 5
Murphy, Maggioni (br0480) 2020; 17
Cattell (br0100) 1966; 1
Gower, Ross (br0260) 1969; 18
Gualtieri, Chettri, Cromp, Johnson (br0270) 1999
Ng, Jordan, Weiss (br0520) 2002
Wagstaff, Cardie, Rogers, Schrödl (br0660) 2001
Meyer (br0450) 1989; 31
Arthur, Vassilvitskii (br0050) 2006
Azran, Ghahramani (br0060) 2006
Likas, Vlassis, Verbeek (br0360) 2003; 36
Meilă (br0430) 2007; 98
Lambiotte, Delvenne, Barahona (br0340) 2015; 1
Little, Byrd (br0370) 2015
Schiebinger, Wainwright, Yu (br0580) 2015; 43
Arias-Castro (br0020) 2011; 57
Peixoto (br0540) 2014; 4
Botelho-Andrade, Casazza, Cheng, Tran (br0090) 2019; 22
Chu, Miller, Walkington, Wang (br0130) 2020
Jerrum, Sinclair (br0300) 1989; 18
Murphy, Maggioni (br0470) 2019; 57
Lambiotte, Delvenne, Barahona (br0330) 2014; 1
Friedman, Hastie, Tibshirani (br0230) 2001
Fukunaga, Hostetler (br0240) 1975; 21
Coifman, Lafon (br0140) 2006; 21
Zhang, Murphy (br0710) 2021; 13
Ester, Kriegel, Sander, Xu (br0210) 1996
Liu, Barahona (br0390) 2020; 5
Trillos, Hoffmann, Hosseini (br0630) 2019
Xu, Ester, Kriegel, Sander (br0700) 1998
Cowen, Devkota, Hu, Murphy, Wu (br0170) 2021; 3
Delmotte, Tate, Yaliraki, Barahona (br0190) 2011; 8
Cheeger (br0110) 1970
Nadler, Lafon, Kevrekidis, Coifman (br0510) 2006
Levin, Peres (br0350) 2017
Beygelzimer (10.1016/j.acha.2021.11.004_br0070) 2006
Nadler (10.1016/j.acha.2021.11.004_br0490) 2007
Chu (10.1016/j.acha.2021.11.004_br0130)
Hartigan (10.1016/j.acha.2021.11.004_br0280) 1981; 76
Ahn (10.1016/j.acha.2021.11.004_br0010) 2010; 466
Fukunaga (10.1016/j.acha.2021.11.004_br0240) 1975; 21
Levin (10.1016/j.acha.2021.11.004_br0350) 2017
Lambiotte (10.1016/j.acha.2021.11.004_br0330) 2014; 1
Von Luxburg (10.1016/j.acha.2021.11.004_br0640) 2007; 17
Xu (10.1016/j.acha.2021.11.004_br0700) 1998
Park (10.1016/j.acha.2021.11.004_br0530) 2009; 36
Dal Maso (10.1016/j.acha.2021.11.004_br0180) 2012; vol. 8
Arias-Castro (10.1016/j.acha.2021.11.004_br0030) 2011; 5
Sinclair (10.1016/j.acha.2021.11.004_br0600) 1989; 82
Coifman (10.1016/j.acha.2021.11.004_br0150) 2005; 102
Delmotte (10.1016/j.acha.2021.11.004_br0190) 2011; 8
Wang (10.1016/j.acha.2021.11.004_br0670)
Ng (10.1016/j.acha.2021.11.004_br0520) 2002
Vu (10.1016/j.acha.2021.11.004_br0650) 2018; 27
Botelho-Andrade (10.1016/j.acha.2021.11.004_br0090) 2019; 22
Lafon (10.1016/j.acha.2021.11.004_br0320) 2006; 28
Holland (10.1016/j.acha.2021.11.004_br0290) 1983; 5
Meilă (10.1016/j.acha.2021.11.004_br0440) 2001
Wagstaff (10.1016/j.acha.2021.11.004_br0660) 2001
Cattell (10.1016/j.acha.2021.11.004_br0100) 1966; 1
Friedman (10.1016/j.acha.2021.11.004_br0230) 2001
Shi (10.1016/j.acha.2021.11.004_br0590) 2000; 22
Comaniciu (10.1016/j.acha.2021.11.004_br0160) 2002; 24
Gower (10.1016/j.acha.2021.11.004_br0260) 1969; 18
Jisu (10.1016/j.acha.2021.11.004_br0310) 2016
Rohe (10.1016/j.acha.2021.11.004_br0570) 2011; 39
Arias-Castro (10.1016/j.acha.2021.11.004_br0040) 2017; 18
Maggioni (10.1016/j.acha.2021.11.004_br0410) 2019; 20
Rodriguez (10.1016/j.acha.2021.11.004_br0560) 2014; 344
Murphy (10.1016/j.acha.2021.11.004_br0470) 2019; 57
Schiebinger (10.1016/j.acha.2021.11.004_br0580) 2015; 43
Wang (10.1016/j.acha.2021.11.004_br0680) 2015
Xu (10.1016/j.acha.2021.11.004_br0690) 2005; 16
Arias-Castro (10.1016/j.acha.2021.11.004_br0020) 2011; 57
Dua (10.1016/j.acha.2021.11.004_br0200)
Meilă (10.1016/j.acha.2021.11.004_br0430) 2007; 98
Meyer (10.1016/j.acha.2021.11.004_br0450) 1989; 31
Trillos (10.1016/j.acha.2021.11.004_br0630)
Lambiotte (10.1016/j.acha.2021.11.004_br0340) 2015; 1
Chen (10.1016/j.acha.2021.11.004_br0120) 2009
Little (10.1016/j.acha.2021.11.004_br0370) 2015
Peixoto (10.1016/j.acha.2021.11.004_br0540) 2014; 4
Song (10.1016/j.acha.2021.11.004_br0610) 2015; 11
Zhang (10.1016/j.acha.2021.11.004_br0710) 2021; 13
Coifman (10.1016/j.acha.2021.11.004_br0140) 2006; 21
Mohar (10.1016/j.acha.2021.11.004_br0460) 1991
Little (10.1016/j.acha.2021.11.004_br0380) 2020; 21
Rice (10.1016/j.acha.2021.11.004_br0550) 2006
Blondel (10.1016/j.acha.2021.11.004_br0080) 2008; 2008
Nadler (10.1016/j.acha.2021.11.004_br0510) 2006
Lyzinski (10.1016/j.acha.2021.11.004_br0400) 2016; 4
Murphy (10.1016/j.acha.2021.11.004_br0480) 2020; 17
Fan (10.1016/j.acha.2021.11.004_br0220)
Arthur (10.1016/j.acha.2021.11.004_br0050) 2006
Cheeger (10.1016/j.acha.2021.11.004_br0110) 1970
Likas (10.1016/j.acha.2021.11.004_br0360) 2003; 36
Azran (10.1016/j.acha.2021.11.004_br0060) 2006
Jerrum (10.1016/j.acha.2021.11.004_br0300) 1989; 18
Ester (10.1016/j.acha.2021.11.004_br0210) 1996
McSherry (10.1016/j.acha.2021.11.004_br0420) 2001
Cowen (10.1016/j.acha.2021.11.004_br0170) 2021; 3
Gualtieri (10.1016/j.acha.2021.11.004_br0270) 1999
Szlam (10.1016/j.acha.2021.11.004_br0620) 2005
Liu (10.1016/j.acha.2021.11.004_br0390) 2020; 5
Garcia Trillos (10.1016/j.acha.2021.11.004_br0250) 2018; 45
Nadler (10.1016/j.acha.2021.11.004_br0500) 2006; 21
References_xml – start-page: 457
  year: 2015
  end-page: 460
  ident: br0370
  article-title: A multiscale spectral method for learning number of clusters
  publication-title: Proc. Int. Conf. Mach. Learn.
– volume: 3
  start-page: 142
  year: 2021
  end-page: 170
  ident: br0170
  article-title: Diffusion state distances: multitemporal analysis, fast algorithms, and applications to biological networks
  publication-title: SIAM J. Math. Data Sci.
– volume: vol. 8
  year: 2012
  ident: br0180
  article-title: An Introduction to Γ-Convergence
– volume: 22
  start-page: 888
  year: 2000
  end-page: 905
  ident: br0590
  article-title: Normalized cuts and image segmentation
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 11
  year: 2015
  ident: br0610
  article-title: Multiscale embedded gene co-expression network analysis
  publication-title: PLoS Comput. Biol.
– start-page: 195
  year: 1970
  end-page: 200
  ident: br0110
  article-title: A lower bound for the smallest eigenvalue of the Laplacian
  publication-title: Problems in Analysis (Papers Dedicated To Salomon Bochner)
– volume: 5
  start-page: 3
  year: 2020
  ident: br0390
  article-title: Graph-based data clustering via multiscale community detection
  publication-title: Appl. Netw. Sci.
– volume: 43
  start-page: 819
  year: 2015
  end-page: 846
  ident: br0580
  article-title: The geometry of kernelized spectral clustering
  publication-title: Ann. Stat.
– start-page: 1023
  year: 2015
  end-page: 1032
  ident: br0680
  article-title: Multi-manifold modeling in non-Euclidean spaces
  publication-title: Artificial Intelligence and Statistics
– volume: 21
  start-page: 1
  year: 2020
  end-page: 66
  ident: br0380
  article-title: Path-based spectral clustering: guarantees, robustness to outliers, and fast algorithms
  publication-title: J. Mach. Learn. Res.
– year: 2019
  ident: br0630
  article-title: Geometric structure of graph Laplacian embeddings
– volume: 45
  start-page: 239
  year: 2018
  end-page: 281
  ident: br0250
  article-title: A variational approach to the consistency of spectral clustering
  publication-title: Appl. Comput. Harmon. Anal.
– volume: 20
  start-page: 1
  year: 2019
  end-page: 56
  ident: br0410
  article-title: Learning by unsupervised nonlinear diffusion
  publication-title: J. Mach. Learn. Res.
– volume: 1
  start-page: 76
  year: 2014
  end-page: 90
  ident: br0330
  article-title: Random walks, Markov processes and the multiscale modular organization of complex networks
  publication-title: IEEE Trans. Netw. Sci. Eng.
– volume: 2008
  year: 2008
  ident: br0080
  article-title: Fast unfolding of communities in large networks
  publication-title: J. Stat. Mech. Theory Exp.
– start-page: 324
  year: 1998
  end-page: 331
  ident: br0700
  article-title: A distribution-based clustering algorithm for mining in large spatial databases
  publication-title: Proc. Int. Conf. Data
– volume: 18
  start-page: 253
  year: 2017
  end-page: 309
  ident: br0040
  article-title: Spectral clustering based on local PCA
  publication-title: J. Mach. Learn. Res.
– volume: 31
  start-page: 240
  year: 1989
  end-page: 272
  ident: br0450
  article-title: Stochastic complementation, uncoupling Markov chains, and the theory of nearly reducible systems
  publication-title: SIAM Rev.
– volume: 82
  start-page: 93
  year: 1989
  end-page: 133
  ident: br0600
  article-title: Approximate counting, uniform generation and rapidly mixing Markov chains
  publication-title: Inf. Comput.
– year: 2020
  ident: br0130
  article-title: Weighted Cheeger-Buser inequalities, with applications to cutting probability densities-as easy as 1, 2, 3
– volume: 13
  start-page: 955
  year: 2021
  ident: br0710
  article-title: Hyperspectral image clustering with spatially-regularized ultrametrics
  publication-title: Remote Sens.
– volume: 18
  start-page: 1149
  year: 1989
  end-page: 1178
  ident: br0300
  article-title: Approximating the permanent
  publication-title: SIAM J. Comput.
– volume: 466
  start-page: 761
  year: 2010
  end-page: 764
  ident: br0010
  article-title: Link communities reveal multiscale complexity in networks
  publication-title: Nature
– volume: 1
  start-page: 76
  year: 2015
  end-page: 90
  ident: br0340
  article-title: Dynamics and modular structure in networks
  publication-title: IEEE Trans. Netw. Sci. Eng.
– volume: 344
  start-page: 1492
  year: 2014
  end-page: 1496
  ident: br0560
  article-title: Clustering by fast search and find of density peaks
  publication-title: Science
– volume: 28
  start-page: 1393
  year: 2006
  end-page: 1403
  ident: br0320
  article-title: Diffusion maps and coarse-graining: a unified framework for dimensionality reduction, graph partitioning, and data set parameterization
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 39
  start-page: 1878
  year: 2011
  end-page: 1915
  ident: br0570
  article-title: Spectral clustering and the high-dimensional stochastic blockmodel
  publication-title: Ann. Stat.
– volume: 4
  year: 2014
  ident: br0540
  article-title: Hierarchical block structures and high-resolution model selection in large networks
  publication-title: Phys. Rev. X
– year: 2019
  ident: br0220
  article-title: A unified framework for tuning hyperparameters in clustering problems
– year: 2017
  ident: br0200
  article-title: UCI machine learning repository
– start-page: 97
  year: 2006
  end-page: 104
  ident: br0070
  article-title: Cover trees for nearest neighbor
  publication-title: Proc. Int. Conf. Mach. Learn.
– volume: 17
  start-page: 1243
  year: 2020
  end-page: 1247
  ident: br0480
  article-title: Spectral-spatial diffusion geometry for hyperspectral image clustering
  publication-title: IEEE Geosci. Remote Sens. Lett.
– year: 2006
  ident: br0050
  article-title: -means++: the advantages of careful seeding
– start-page: 873
  year: 2001
  end-page: 879
  ident: br0440
  article-title: Learning segmentation by random walks
  publication-title: Adv. Neur. In.
– start-page: 577
  year: 2001
  end-page: 584
  ident: br0660
  article-title: Constrained
  publication-title: Proc. Int. Conf. Mach. Learn.
– volume: 5
  start-page: 109
  year: 1983
  end-page: 137
  ident: br0290
  article-title: Stochastic blockmodels: first steps
  publication-title: Soc. Netw.
– start-page: 217
  year: 1999
  end-page: 227
  ident: br0270
  article-title: Support vector machine classifiers as applied to AVIRIS data
  publication-title: JPL Airborne Geosci.
– volume: 98
  start-page: 873
  year: 2007
  end-page: 895
  ident: br0430
  article-title: Comparing clusterings–an information based distance
  publication-title: J. Multivar. Anal.
– start-page: 849
  year: 2002
  end-page: 856
  ident: br0520
  article-title: On spectral clustering: analysis and an algorithm
  publication-title: Adv. Neur. In.
– volume: 36
  start-page: 451
  year: 2003
  end-page: 461
  ident: br0360
  article-title: The global
  publication-title: Pattern Recognit.
– volume: 4
  start-page: 13
  year: 2016
  end-page: 26
  ident: br0400
  article-title: Community detection and classification in hierarchical stochastic blockmodels
  publication-title: IEEE Trans. Netw. Sci. Eng.
– year: 2017
  ident: br0350
  article-title: Markov Chains and Mixing Times
– volume: 21
  start-page: 113
  year: 2006
  end-page: 127
  ident: br0500
  article-title: Diffusion maps, spectral clustering and reaction coordinates of dynamical systems
  publication-title: Appl. Comput. Harmon. Anal.
– volume: 21
  start-page: 32
  year: 1975
  end-page: 40
  ident: br0240
  article-title: The estimation of the gradient of a density function, with applications in pattern recognition
  publication-title: IEEE Trans. Inf. Theory
– volume: 16
  start-page: 645
  year: 2005
  end-page: 678
  ident: br0690
  article-title: Survey of clustering algorithms
  publication-title: IEEE Trans. Neural Netw.
– volume: 8
  year: 2011
  ident: br0190
  article-title: Protein multi-scale organization through graph partitioning and robustness analysis: application to the myosin–myosin light chain interaction
  publication-title: Phys. Biol.
– volume: 21
  start-page: 5
  year: 2006
  end-page: 30
  ident: br0140
  article-title: Diffusion maps
  publication-title: Appl. Comput. Harmon. Anal.
– start-page: 445
  year: 2005
  end-page: 455
  ident: br0620
  article-title: Diffusion-driven multiscale analysis on manifolds and graphs: top-down and bottom-up constructions
  publication-title: Wavelets XI
– volume: 18
  start-page: 54
  year: 1969
  end-page: 64
  ident: br0260
  article-title: Minimum spanning trees and single linkage cluster analysis
  publication-title: J. R. Stat. Soc., Ser. C, Appl. Stat.
– year: 2006
  ident: br0550
  article-title: Mathematical Statistics and Data Analysis
– volume: 5
  start-page: 1537
  year: 2011
  end-page: 1587
  ident: br0030
  article-title: Spectral clustering based on local linear approximations
  publication-title: Electron. J. Stat.
– start-page: 765
  year: 2009
  end-page: 772
  ident: br0120
  article-title: Kernel spectral curvature clustering (KSCC)
  publication-title: Int. Conf. Comput. Vis., ICCV Workshops
– year: 2014
  ident: br0670
  article-title: Riemannian multi-manifold modeling
– start-page: 226
  year: 1996
  end-page: 231
  ident: br0210
  article-title: A density-based algorithm for discovering clusters in large spatial databases with noise
  publication-title: KDD
– start-page: 1017
  year: 2007
  end-page: 1024
  ident: br0490
  article-title: Fundamental limitations of spectral clustering
  publication-title: Adv. Neur. In.
– start-page: 529
  year: 2001
  end-page: 537
  ident: br0420
  article-title: Spectral partitioning of random graphs
  publication-title: Ann. IEEE Symp. Found.
– volume: 24
  start-page: 603
  year: 2002
  end-page: 619
  ident: br0160
  article-title: Mean shift: a robust approach toward feature space analysis
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 36
  start-page: 3336
  year: 2009
  end-page: 3341
  ident: br0530
  article-title: A simple and fast algorithm for
  publication-title: Expert Syst. Appl.
– start-page: 190
  year: 2006
  end-page: 197
  ident: br0060
  article-title: Spectral methods for automatic multiscale data clustering
  publication-title: Proceedings CVPR
– volume: 1
  start-page: 245
  year: 1966
  end-page: 276
  ident: br0100
  article-title: The scree test for the number of factors
  publication-title: Multivar. Behav. Res.
– volume: 76
  start-page: 388
  year: 1981
  end-page: 394
  ident: br0280
  article-title: Consistency of single linkage for high-density clusters
  publication-title: J. Am. Stat. Assoc.
– volume: 27
  start-page: 124
  year: 2018
  end-page: 140
  ident: br0650
  article-title: A simple SVD algorithm for finding hidden partitions
  publication-title: Comb. Probab. Comput.
– volume: 57
  start-page: 1692
  year: 2011
  end-page: 1706
  ident: br0020
  article-title: Clustering based on pairwise distances when the data is of mixed dimensions
  publication-title: IEEE Trans. Inf. Theory
– volume: 17
  start-page: 395
  year: 2007
  end-page: 416
  ident: br0640
  article-title: A tutorial on spectral clustering
  publication-title: Stat. Comput.
– volume: 22
  start-page: 59
  year: 2019
  end-page: 64
  ident: br0090
  article-title: The exact constant for the
  publication-title: Math. Inequal. Appl.
– year: 2001
  ident: br0230
  article-title: The Elements of Statistical Learning, vol. 1
  publication-title: Springer Series in Statistics
– start-page: 955
  year: 2006
  end-page: 962
  ident: br0510
  article-title: Diffusion maps, spectral clustering and eigenfunctions of Fokker-Planck operators
  publication-title: Adv. Neur. In.
– volume: 102
  start-page: 7426
  year: 2005
  end-page: 7431
  ident: br0150
  article-title: Geometric diffusions as a tool for harmonic analysis and structure definition of data: diffusion maps
  publication-title: Proc. Natl. Acad. Sci. USA
– start-page: 871
  year: 1991
  end-page: 898
  ident: br0460
  article-title: The Laplacian spectrum of graphs
  publication-title: Graph Theory, Combinatorics, and Applications, vol. 2
– volume: 57
  start-page: 1829
  year: 2019
  end-page: 1845
  ident: br0470
  article-title: Unsupervised clustering and active learning of hyperspectral images with nonlinear diffusion
  publication-title: IEEE Trans. Geosci. Remote Sens.
– start-page: 1839
  year: 2016
  end-page: 1847
  ident: br0310
  article-title: Statistical inference for cluster trees
  publication-title: Adv. Neur. In.
– volume: 57
  start-page: 1692
  year: 2011
  ident: 10.1016/j.acha.2021.11.004_br0020
  article-title: Clustering based on pairwise distances when the data is of mixed dimensions
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/TIT.2011.2104630
– start-page: 217
  year: 1999
  ident: 10.1016/j.acha.2021.11.004_br0270
  article-title: Support vector machine classifiers as applied to AVIRIS data
– volume: 76
  start-page: 388
  year: 1981
  ident: 10.1016/j.acha.2021.11.004_br0280
  article-title: Consistency of single linkage for high-density clusters
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1080/01621459.1981.10477658
– volume: 5
  start-page: 109
  year: 1983
  ident: 10.1016/j.acha.2021.11.004_br0290
  article-title: Stochastic blockmodels: first steps
  publication-title: Soc. Netw.
  doi: 10.1016/0378-8733(83)90021-7
– volume: 22
  start-page: 59
  year: 2019
  ident: 10.1016/j.acha.2021.11.004_br0090
  article-title: The exact constant for the ℓ1−ℓ2 norm inequality
  publication-title: Math. Inequal. Appl.
– volume: 11
  year: 2015
  ident: 10.1016/j.acha.2021.11.004_br0610
  article-title: Multiscale embedded gene co-expression network analysis
  publication-title: PLoS Comput. Biol.
  doi: 10.1371/journal.pcbi.1004574
– volume: 18
  start-page: 1149
  year: 1989
  ident: 10.1016/j.acha.2021.11.004_br0300
  article-title: Approximating the permanent
  publication-title: SIAM J. Comput.
  doi: 10.1137/0218077
– volume: 5
  start-page: 1537
  year: 2011
  ident: 10.1016/j.acha.2021.11.004_br0030
  article-title: Spectral clustering based on local linear approximations
  publication-title: Electron. J. Stat.
  doi: 10.1214/11-EJS651
– start-page: 195
  year: 1970
  ident: 10.1016/j.acha.2021.11.004_br0110
  article-title: A lower bound for the smallest eigenvalue of the Laplacian
– volume: 13
  start-page: 955
  year: 2021
  ident: 10.1016/j.acha.2021.11.004_br0710
  article-title: Hyperspectral image clustering with spatially-regularized ultrametrics
  publication-title: Remote Sens.
  doi: 10.3390/rs13050955
– volume: 16
  start-page: 645
  year: 2005
  ident: 10.1016/j.acha.2021.11.004_br0690
  article-title: Survey of clustering algorithms
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/TNN.2005.845141
– year: 2006
  ident: 10.1016/j.acha.2021.11.004_br0550
– start-page: 873
  year: 2001
  ident: 10.1016/j.acha.2021.11.004_br0440
  article-title: Learning segmentation by random walks
– start-page: 955
  year: 2006
  ident: 10.1016/j.acha.2021.11.004_br0510
  article-title: Diffusion maps, spectral clustering and eigenfunctions of Fokker-Planck operators
– start-page: 226
  year: 1996
  ident: 10.1016/j.acha.2021.11.004_br0210
  article-title: A density-based algorithm for discovering clusters in large spatial databases with noise
– volume: 4
  year: 2014
  ident: 10.1016/j.acha.2021.11.004_br0540
  article-title: Hierarchical block structures and high-resolution model selection in large networks
  publication-title: Phys. Rev. X
– volume: 28
  start-page: 1393
  year: 2006
  ident: 10.1016/j.acha.2021.11.004_br0320
  article-title: Diffusion maps and coarse-graining: a unified framework for dimensionality reduction, graph partitioning, and data set parameterization
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2006.184
– start-page: 457
  year: 2015
  ident: 10.1016/j.acha.2021.11.004_br0370
  article-title: A multiscale spectral method for learning number of clusters
– volume: 20
  start-page: 1
  year: 2019
  ident: 10.1016/j.acha.2021.11.004_br0410
  article-title: Learning by unsupervised nonlinear diffusion
  publication-title: J. Mach. Learn. Res.
– volume: 39
  start-page: 1878
  year: 2011
  ident: 10.1016/j.acha.2021.11.004_br0570
  article-title: Spectral clustering and the high-dimensional stochastic blockmodel
  publication-title: Ann. Stat.
  doi: 10.1214/11-AOS887
– volume: 82
  start-page: 93
  year: 1989
  ident: 10.1016/j.acha.2021.11.004_br0600
  article-title: Approximate counting, uniform generation and rapidly mixing Markov chains
  publication-title: Inf. Comput.
  doi: 10.1016/0890-5401(89)90067-9
– start-page: 190
  year: 2006
  ident: 10.1016/j.acha.2021.11.004_br0060
  article-title: Spectral methods for automatic multiscale data clustering
– volume: 8
  year: 2011
  ident: 10.1016/j.acha.2021.11.004_br0190
  article-title: Protein multi-scale organization through graph partitioning and robustness analysis: application to the myosin–myosin light chain interaction
  publication-title: Phys. Biol.
  doi: 10.1088/1478-3975/8/5/055010
– ident: 10.1016/j.acha.2021.11.004_br0220
– volume: 98
  start-page: 873
  year: 2007
  ident: 10.1016/j.acha.2021.11.004_br0430
  article-title: Comparing clusterings–an information based distance
  publication-title: J. Multivar. Anal.
  doi: 10.1016/j.jmva.2006.11.013
– volume: 57
  start-page: 1829
  year: 2019
  ident: 10.1016/j.acha.2021.11.004_br0470
  article-title: Unsupervised clustering and active learning of hyperspectral images with nonlinear diffusion
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2018.2869723
– ident: 10.1016/j.acha.2021.11.004_br0670
– volume: 1
  start-page: 245
  year: 1966
  ident: 10.1016/j.acha.2021.11.004_br0100
  article-title: The scree test for the number of factors
  publication-title: Multivar. Behav. Res.
  doi: 10.1207/s15327906mbr0102_10
– volume: 36
  start-page: 451
  year: 2003
  ident: 10.1016/j.acha.2021.11.004_br0360
  article-title: The global K-means clustering algorithm
  publication-title: Pattern Recognit.
  doi: 10.1016/S0031-3203(02)00060-2
– volume: 45
  start-page: 239
  year: 2018
  ident: 10.1016/j.acha.2021.11.004_br0250
  article-title: A variational approach to the consistency of spectral clustering
  publication-title: Appl. Comput. Harmon. Anal.
  doi: 10.1016/j.acha.2016.09.003
– volume: 2008
  year: 2008
  ident: 10.1016/j.acha.2021.11.004_br0080
  article-title: Fast unfolding of communities in large networks
  publication-title: J. Stat. Mech. Theory Exp.
  doi: 10.1088/1742-5468/2008/10/P10008
– volume: 18
  start-page: 253
  year: 2017
  ident: 10.1016/j.acha.2021.11.004_br0040
  article-title: Spectral clustering based on local PCA
  publication-title: J. Mach. Learn. Res.
– year: 2001
  ident: 10.1016/j.acha.2021.11.004_br0230
  article-title: The Elements of Statistical Learning, vol. 1
– volume: 27
  start-page: 124
  year: 2018
  ident: 10.1016/j.acha.2021.11.004_br0650
  article-title: A simple SVD algorithm for finding hidden partitions
  publication-title: Comb. Probab. Comput.
  doi: 10.1017/S0963548317000463
– volume: 21
  start-page: 113
  year: 2006
  ident: 10.1016/j.acha.2021.11.004_br0500
  article-title: Diffusion maps, spectral clustering and reaction coordinates of dynamical systems
  publication-title: Appl. Comput. Harmon. Anal.
  doi: 10.1016/j.acha.2005.07.004
– start-page: 849
  year: 2002
  ident: 10.1016/j.acha.2021.11.004_br0520
  article-title: On spectral clustering: analysis and an algorithm
– volume: 4
  start-page: 13
  year: 2016
  ident: 10.1016/j.acha.2021.11.004_br0400
  article-title: Community detection and classification in hierarchical stochastic blockmodels
  publication-title: IEEE Trans. Netw. Sci. Eng.
  doi: 10.1109/TNSE.2016.2634322
– start-page: 871
  year: 1991
  ident: 10.1016/j.acha.2021.11.004_br0460
  article-title: The Laplacian spectrum of graphs
– ident: 10.1016/j.acha.2021.11.004_br0630
– volume: 31
  start-page: 240
  year: 1989
  ident: 10.1016/j.acha.2021.11.004_br0450
  article-title: Stochastic complementation, uncoupling Markov chains, and the theory of nearly reducible systems
  publication-title: SIAM Rev.
  doi: 10.1137/1031050
– volume: 17
  start-page: 1243
  year: 2020
  ident: 10.1016/j.acha.2021.11.004_br0480
  article-title: Spectral-spatial diffusion geometry for hyperspectral image clustering
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2019.2943001
– volume: vol. 8
  year: 2012
  ident: 10.1016/j.acha.2021.11.004_br0180
– volume: 43
  start-page: 819
  year: 2015
  ident: 10.1016/j.acha.2021.11.004_br0580
  article-title: The geometry of kernelized spectral clustering
  publication-title: Ann. Stat.
  doi: 10.1214/14-AOS1283
– start-page: 1839
  year: 2016
  ident: 10.1016/j.acha.2021.11.004_br0310
  article-title: Statistical inference for cluster trees
– year: 2017
  ident: 10.1016/j.acha.2021.11.004_br0350
– start-page: 97
  year: 2006
  ident: 10.1016/j.acha.2021.11.004_br0070
  article-title: Cover trees for nearest neighbor
– volume: 3
  start-page: 142
  year: 2021
  ident: 10.1016/j.acha.2021.11.004_br0170
  article-title: Diffusion state distances: multitemporal analysis, fast algorithms, and applications to biological networks
  publication-title: SIAM J. Math. Data Sci.
  doi: 10.1137/20M1324089
– volume: 22
  start-page: 888
  year: 2000
  ident: 10.1016/j.acha.2021.11.004_br0590
  article-title: Normalized cuts and image segmentation
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/34.868688
– volume: 24
  start-page: 603
  year: 2002
  ident: 10.1016/j.acha.2021.11.004_br0160
  article-title: Mean shift: a robust approach toward feature space analysis
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/34.1000236
– volume: 18
  start-page: 54
  year: 1969
  ident: 10.1016/j.acha.2021.11.004_br0260
  article-title: Minimum spanning trees and single linkage cluster analysis
  publication-title: J. R. Stat. Soc., Ser. C, Appl. Stat.
– volume: 21
  start-page: 1
  year: 2020
  ident: 10.1016/j.acha.2021.11.004_br0380
  article-title: Path-based spectral clustering: guarantees, robustness to outliers, and fast algorithms
  publication-title: J. Mach. Learn. Res.
– volume: 17
  start-page: 395
  year: 2007
  ident: 10.1016/j.acha.2021.11.004_br0640
  article-title: A tutorial on spectral clustering
  publication-title: Stat. Comput.
  doi: 10.1007/s11222-007-9033-z
– volume: 21
  start-page: 5
  year: 2006
  ident: 10.1016/j.acha.2021.11.004_br0140
  article-title: Diffusion maps
  publication-title: Appl. Comput. Harmon. Anal.
  doi: 10.1016/j.acha.2006.04.006
– volume: 5
  start-page: 3
  year: 2020
  ident: 10.1016/j.acha.2021.11.004_br0390
  article-title: Graph-based data clustering via multiscale community detection
  publication-title: Appl. Netw. Sci.
  doi: 10.1007/s41109-019-0248-7
– start-page: 577
  year: 2001
  ident: 10.1016/j.acha.2021.11.004_br0660
  article-title: Constrained K-means clustering with background knowledge
– start-page: 765
  year: 2009
  ident: 10.1016/j.acha.2021.11.004_br0120
  article-title: Kernel spectral curvature clustering (KSCC)
– volume: 1
  start-page: 76
  year: 2014
  ident: 10.1016/j.acha.2021.11.004_br0330
  article-title: Random walks, Markov processes and the multiscale modular organization of complex networks
  publication-title: IEEE Trans. Netw. Sci. Eng.
  doi: 10.1109/TNSE.2015.2391998
– volume: 466
  start-page: 761
  year: 2010
  ident: 10.1016/j.acha.2021.11.004_br0010
  article-title: Link communities reveal multiscale complexity in networks
  publication-title: Nature
  doi: 10.1038/nature09182
– year: 2006
  ident: 10.1016/j.acha.2021.11.004_br0050
– start-page: 445
  year: 2005
  ident: 10.1016/j.acha.2021.11.004_br0620
  article-title: Diffusion-driven multiscale analysis on manifolds and graphs: top-down and bottom-up constructions
– start-page: 1023
  year: 2015
  ident: 10.1016/j.acha.2021.11.004_br0680
  article-title: Multi-manifold modeling in non-Euclidean spaces
– ident: 10.1016/j.acha.2021.11.004_br0200
– volume: 21
  start-page: 32
  year: 1975
  ident: 10.1016/j.acha.2021.11.004_br0240
  article-title: The estimation of the gradient of a density function, with applications in pattern recognition
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/TIT.1975.1055330
– start-page: 529
  year: 2001
  ident: 10.1016/j.acha.2021.11.004_br0420
  article-title: Spectral partitioning of random graphs
– volume: 36
  start-page: 3336
  year: 2009
  ident: 10.1016/j.acha.2021.11.004_br0530
  article-title: A simple and fast algorithm for K-medoids clustering
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2008.01.039
– start-page: 324
  year: 1998
  ident: 10.1016/j.acha.2021.11.004_br0700
  article-title: A distribution-based clustering algorithm for mining in large spatial databases
– ident: 10.1016/j.acha.2021.11.004_br0130
– volume: 102
  start-page: 7426
  year: 2005
  ident: 10.1016/j.acha.2021.11.004_br0150
  article-title: Geometric diffusions as a tool for harmonic analysis and structure definition of data: diffusion maps
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0500334102
– start-page: 1017
  year: 2007
  ident: 10.1016/j.acha.2021.11.004_br0490
  article-title: Fundamental limitations of spectral clustering
– volume: 344
  start-page: 1492
  year: 2014
  ident: 10.1016/j.acha.2021.11.004_br0560
  article-title: Clustering by fast search and find of density peaks
  publication-title: Science
  doi: 10.1126/science.1242072
– volume: 1
  start-page: 76
  year: 2015
  ident: 10.1016/j.acha.2021.11.004_br0340
  article-title: Dynamics and modular structure in networks
  publication-title: IEEE Trans. Netw. Sci. Eng.
  doi: 10.1109/TNSE.2015.2391998
SSID ssj0011459
Score 2.4147267
Snippet •We introduce the MELD data model: a diffusion framework for multiscale clustering.•We show how cluster coherence and separation interact with diffusion in...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 58
SubjectTerms Clustering
Diffusion geometry
Hierarchical clustering
Machine learning
Spectral graph theory
Title A multiscale environment for learning by diffusion
URI https://dx.doi.org/10.1016/j.acha.2021.11.004
Volume 57
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: ScienceDirect database
  issn: 1063-5203
  databaseCode: AIEXJ
  dateStart: 20211207
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0011459
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV07T8MwELYqYIAB8RTlpQxsVaokdtJkQaoQCBAghoK6RbZjC0FJq5Yi-Pec4weBAoKBJWqtxm38uZfvLnffIXSAYxYwxrifqb8bSTDxaRoHPiGZzHjBOa5yc24vOldXab-fXTcah7YW5nnQKcv05SUb_SvUMAZgq9LZP8DtJoUBeA2gwxFgh-OvgO_qJMEJLL6o17FVCYUDGwkB1ql6o0wnFherRGtYqSl3G02fbLRQaVxX7XKo0TGZxapKuW1dtp29HQ4edNj5sXXRrgcYwDd1GVbGJgKLAX81wHWjqVWljdXT4uvm_hlWyqOzpllHCe5hm9wpvacobCv1VN17-KMO9qf7k8satAlp97maI1dzgAOTV3Kw81EnzsCqzXfPjvvn7jlSSKp2ee4STNmUzvD7_Eu-piY1utFbQcvGT_C6Gt9V1BDlGlqqqUfCu0snuTtZR1HXe8fdq-HuAe6exd1jr57DfQPdnBz3jk590xDD5-ClEtUsqaBcaRcIliY0ZTyVBZVBwahMgY1wyiKBBWUwjCmVwNbCmBKRJYyQAhO8iebKYSm2kIcTzOMiFHEoMUlESmUW0KgjApnQRAa4iUK7Fjk3avGqackg_x6FJmq5c0ZaK-XHT8d2iXPD9jSLy2HH_HDe9p--ZQctvu_pXTT3NJ6KPbTAnwGP8b7ZLm9AC3T1
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+multiscale+environment+for+learning+by+diffusion&rft.jtitle=Applied+and+computational+harmonic+analysis&rft.au=Murphy%2C+James+M.&rft.au=Polk%2C+Sam+L.&rft.date=2022-03-01&rft.issn=1063-5203&rft.volume=57&rft.spage=58&rft.epage=100&rft_id=info:doi/10.1016%2Fj.acha.2021.11.004&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_acha_2021_11_004
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-5203&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-5203&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-5203&client=summon