A multiscale environment for learning by diffusion
•We introduce the MELD data model: a diffusion framework for multiscale clustering.•We show how cluster coherence and separation interact with diffusion in MELD clusterings.•We introduce the M-LUND multiscale clustering algorithm and guarantee its performance.•We guarantee that M-LUND recovers the M...
Saved in:
| Published in: | Applied and computational harmonic analysis Vol. 57; pp. 58 - 100 |
|---|---|
| Main Authors: | , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Elsevier Inc
01.03.2022
|
| Subjects: | |
| ISSN: | 1063-5203 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | •We introduce the MELD data model: a diffusion framework for multiscale clustering.•We show how cluster coherence and separation interact with diffusion in MELD clusterings.•We introduce the M-LUND multiscale clustering algorithm and guarantee its performance.•We guarantee that M-LUND recovers the MELD data model from many datasets.•We show M-LUND extracts latent multiscale structure in synthetic and real datasets.
Clustering algorithms partition a dataset into groups of similar points. The clustering problem is very general, and different partitions of the same dataset could be considered correct and useful. To fully understand such data, it must be considered at a variety of scales, ranging from coarse to fine. We introduce the Multiscale Environment for Learning by Diffusion (MELD) data model, which is a family of clusterings parameterized by nonlinear diffusion on the dataset. We show that the MELD data model precisely captures latent multiscale structure in data and facilitates its analysis. To efficiently learn the multiscale structure observed in many real datasets, we introduce the Multiscale Learning by Unsupervised Nonlinear Diffusion (M-LUND) clustering algorithm, which is derived from a diffusion process at a range of temporal scales. We provide theoretical guarantees for the algorithm's performance and establish its computational efficiency. Finally, we show that the M-LUND clustering algorithm detects the latent structure in a range of synthetic and real datasets. |
|---|---|
| AbstractList | •We introduce the MELD data model: a diffusion framework for multiscale clustering.•We show how cluster coherence and separation interact with diffusion in MELD clusterings.•We introduce the M-LUND multiscale clustering algorithm and guarantee its performance.•We guarantee that M-LUND recovers the MELD data model from many datasets.•We show M-LUND extracts latent multiscale structure in synthetic and real datasets.
Clustering algorithms partition a dataset into groups of similar points. The clustering problem is very general, and different partitions of the same dataset could be considered correct and useful. To fully understand such data, it must be considered at a variety of scales, ranging from coarse to fine. We introduce the Multiscale Environment for Learning by Diffusion (MELD) data model, which is a family of clusterings parameterized by nonlinear diffusion on the dataset. We show that the MELD data model precisely captures latent multiscale structure in data and facilitates its analysis. To efficiently learn the multiscale structure observed in many real datasets, we introduce the Multiscale Learning by Unsupervised Nonlinear Diffusion (M-LUND) clustering algorithm, which is derived from a diffusion process at a range of temporal scales. We provide theoretical guarantees for the algorithm's performance and establish its computational efficiency. Finally, we show that the M-LUND clustering algorithm detects the latent structure in a range of synthetic and real datasets. |
| Author | Polk, Sam L. Murphy, James M. |
| Author_xml | – sequence: 1 givenname: James M. surname: Murphy fullname: Murphy, James M. email: JM.Murphy@Tufts.edu – sequence: 2 givenname: Sam L. orcidid: 0000-0002-9482-0258 surname: Polk fullname: Polk, Sam L. email: Samuel.Polk@Tufts.edu |
| BookMark | eNp9z71qwzAQwHENKTRJ-wKd_AJ2dZLsOtAlhH5BoEs7i5N0amUcuUhOIG9fh3TqkOng4H_cb8FmcYjE2B3wCjg0912F9hsrwQVUABXnasbmwBtZ1oLLa7bIueMcQNWrORPrYrfvx5At9lRQPIQ0xB3FsfBDKnrCFEP8KsyxcMH7fQ5DvGFXHvtMt39zyT6fnz42r-X2_eVts96WVtQrVRrOHVoJzQOZtsHW2NY79NwZ9K0CadEIkoRmWktELxSHGhWtGqOUk0oumTjftWnIOZHXPynsMB01cH2S6k6fpPok1QB6kk5R-y-yYcRxentMGPrL6eM5pQl1CJR0toGiJRcS2VG7IVzKfwEyx3Py |
| CitedBy_id | crossref_primary_10_1145_3766892 crossref_primary_10_3390_electronics14030481 crossref_primary_10_1109_TGRS_2024_3385202 crossref_primary_10_3390_rs15041053 crossref_primary_10_3390_rs13050955 |
| Cites_doi | 10.1109/TIT.2011.2104630 10.1080/01621459.1981.10477658 10.1016/0378-8733(83)90021-7 10.1371/journal.pcbi.1004574 10.1137/0218077 10.1214/11-EJS651 10.3390/rs13050955 10.1109/TNN.2005.845141 10.1109/TPAMI.2006.184 10.1214/11-AOS887 10.1016/0890-5401(89)90067-9 10.1088/1478-3975/8/5/055010 10.1016/j.jmva.2006.11.013 10.1109/TGRS.2018.2869723 10.1207/s15327906mbr0102_10 10.1016/S0031-3203(02)00060-2 10.1016/j.acha.2016.09.003 10.1088/1742-5468/2008/10/P10008 10.1017/S0963548317000463 10.1016/j.acha.2005.07.004 10.1109/TNSE.2016.2634322 10.1137/1031050 10.1109/LGRS.2019.2943001 10.1214/14-AOS1283 10.1137/20M1324089 10.1109/34.868688 10.1109/34.1000236 10.1007/s11222-007-9033-z 10.1016/j.acha.2006.04.006 10.1007/s41109-019-0248-7 10.1109/TNSE.2015.2391998 10.1038/nature09182 10.1109/TIT.1975.1055330 10.1016/j.eswa.2008.01.039 10.1073/pnas.0500334102 10.1126/science.1242072 |
| ContentType | Journal Article |
| Copyright | 2021 Elsevier Inc. |
| Copyright_xml | – notice: 2021 Elsevier Inc. |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.acha.2021.11.004 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Mathematics |
| EndPage | 100 |
| ExternalDocumentID | 10_1016_j_acha_2021_11_004 S1063520321000944 |
| GroupedDBID | --K --M .~1 0R~ 1B1 1RT 1~. 1~5 23M 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AASFE AATTM AAXKI AAXUO ABAOU ABFNM ABJNI ABMAC ABWVN ABXDB ACDAQ ACGFS ACRLP ACRPL ADBBV ADEZE ADFGL ADMUD ADNMO ADVLN AEBSH AEIPS AEKER AENEX AEXQZ AFJKZ AFTJW AGHFR AGUBO AGYEJ AHHHB AIEXJ AIGVJ AIKHN AITUG AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ARUGR ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC BNPGV CAG COF CS3 DM4 EBS EFBJH EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE IXB J1W KOM LG5 M26 M41 MCRUF MHUIS MO0 N9A O-L O9- OAUVE OK1 OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SSH SSW SSZ T5K WUQ XPP ZMT ~G- 9DU AAYWO AAYXX ACLOT ACVFH ADCNI AEUPX AFPUW AGQPQ AIGII AIIUN AKBMS AKYEP APXCP CITATION EFKBS EFLBG ~HD |
| ID | FETCH-LOGICAL-c2594-b00dac3167eb86a8bc8fdaf0dbaf8413cab2e3eab8fd3aaf24015a4e96b44d343 |
| ISSN | 1063-5203 |
| IngestDate | Sat Nov 29 07:11:53 EST 2025 Tue Nov 18 21:40:02 EST 2025 Sun Apr 06 06:53:48 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Clustering Hierarchical clustering Spectral graph theory Diffusion geometry Machine learning |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c2594-b00dac3167eb86a8bc8fdaf0dbaf8413cab2e3eab8fd3aaf24015a4e96b44d343 |
| ORCID | 0000-0002-9482-0258 |
| OpenAccessLink | https://doi.org/10.1016/j.acha.2021.11.004 |
| PageCount | 43 |
| ParticipantIDs | crossref_primary_10_1016_j_acha_2021_11_004 crossref_citationtrail_10_1016_j_acha_2021_11_004 elsevier_sciencedirect_doi_10_1016_j_acha_2021_11_004 |
| PublicationCentury | 2000 |
| PublicationDate | March 2022 2022-03-00 |
| PublicationDateYYYYMMDD | 2022-03-01 |
| PublicationDate_xml | – month: 03 year: 2022 text: March 2022 |
| PublicationDecade | 2020 |
| PublicationTitle | Applied and computational harmonic analysis |
| PublicationYear | 2022 |
| Publisher | Elsevier Inc |
| Publisher_xml | – name: Elsevier Inc |
| References | Shi, Malik (br0590) 2000; 22 Sinclair, Jerrum (br0600) 1989; 82 Blondel, Guillaume, Lambiotte, Lefebvre (br0080) 2008; 2008 Little, Maggioni, Murphy (br0380) 2020; 21 Nadler, Lafon, Coifman, Kevrekidis (br0500) 2006; 21 Maggioni, Murphy (br0410) 2019; 20 McSherry (br0420) 2001 Ahn, Bagrow, Lehmann (br0010) 2010; 466 Hartigan (br0280) 1981; 76 Lafon, Lee (br0320) 2006; 28 Rohe, Chatterjee, Yu (br0570) 2011; 39 Fan, Yue, Sarkar, Wang (br0220) 2019 Arias-Castro, Lerman, Zhang (br0040) 2017; 18 Garcia Trillos, Slepčev (br0250) 2018; 45 Coifman, Lafon, Lee, Maggioni, Nadler, Warner, Zucker (br0150) 2005; 102 Vu (br0650) 2018; 27 Arias-Castro, Chen, Lerman (br0030) 2011; 5 Meilă, Shi (br0440) 2001 Xu, Wunsch (br0690) 2005; 16 Dal Maso (br0180) 2012; vol. 8 Von Luxburg (br0640) 2007; 17 Nadler, Galun (br0490) 2007 Jisu, Chen, Balakrishnan, Rinaldo, Wasserman (br0310) 2016 Mohar, Alavi, Chartrand, Oellermann (br0460) 1991 Beygelzimer, Kakade, Langford (br0070) 2006 Song, Zhang (br0610) 2015; 11 Rice (br0550) 2006 Comaniciu, Meer (br0160) 2002; 24 Dua, Graff (br0200) 2017 Park, Jun (br0530) 2009; 36 Wang, Slavakis, Lerman (br0680) 2015 Lyzinski, Tang, Athreya, Park, Priebe (br0400) 2016; 4 Chen, Atev, Lerman (br0120) 2009 Wang, Slavakis, Lerman (br0670) 2014 Rodriguez, Laio (br0560) 2014; 344 Szlam, Maggioni, Coifman, Bremer (br0620) 2005 Holland, Laskey, Leinhardt (br0290) 1983; 5 Murphy, Maggioni (br0480) 2020; 17 Cattell (br0100) 1966; 1 Gower, Ross (br0260) 1969; 18 Gualtieri, Chettri, Cromp, Johnson (br0270) 1999 Ng, Jordan, Weiss (br0520) 2002 Wagstaff, Cardie, Rogers, Schrödl (br0660) 2001 Meyer (br0450) 1989; 31 Arthur, Vassilvitskii (br0050) 2006 Azran, Ghahramani (br0060) 2006 Likas, Vlassis, Verbeek (br0360) 2003; 36 Meilă (br0430) 2007; 98 Lambiotte, Delvenne, Barahona (br0340) 2015; 1 Little, Byrd (br0370) 2015 Schiebinger, Wainwright, Yu (br0580) 2015; 43 Arias-Castro (br0020) 2011; 57 Peixoto (br0540) 2014; 4 Botelho-Andrade, Casazza, Cheng, Tran (br0090) 2019; 22 Chu, Miller, Walkington, Wang (br0130) 2020 Jerrum, Sinclair (br0300) 1989; 18 Murphy, Maggioni (br0470) 2019; 57 Lambiotte, Delvenne, Barahona (br0330) 2014; 1 Friedman, Hastie, Tibshirani (br0230) 2001 Fukunaga, Hostetler (br0240) 1975; 21 Coifman, Lafon (br0140) 2006; 21 Zhang, Murphy (br0710) 2021; 13 Ester, Kriegel, Sander, Xu (br0210) 1996 Liu, Barahona (br0390) 2020; 5 Trillos, Hoffmann, Hosseini (br0630) 2019 Xu, Ester, Kriegel, Sander (br0700) 1998 Cowen, Devkota, Hu, Murphy, Wu (br0170) 2021; 3 Delmotte, Tate, Yaliraki, Barahona (br0190) 2011; 8 Cheeger (br0110) 1970 Nadler, Lafon, Kevrekidis, Coifman (br0510) 2006 Levin, Peres (br0350) 2017 Beygelzimer (10.1016/j.acha.2021.11.004_br0070) 2006 Nadler (10.1016/j.acha.2021.11.004_br0490) 2007 Chu (10.1016/j.acha.2021.11.004_br0130) Hartigan (10.1016/j.acha.2021.11.004_br0280) 1981; 76 Ahn (10.1016/j.acha.2021.11.004_br0010) 2010; 466 Fukunaga (10.1016/j.acha.2021.11.004_br0240) 1975; 21 Levin (10.1016/j.acha.2021.11.004_br0350) 2017 Lambiotte (10.1016/j.acha.2021.11.004_br0330) 2014; 1 Von Luxburg (10.1016/j.acha.2021.11.004_br0640) 2007; 17 Xu (10.1016/j.acha.2021.11.004_br0700) 1998 Park (10.1016/j.acha.2021.11.004_br0530) 2009; 36 Dal Maso (10.1016/j.acha.2021.11.004_br0180) 2012; vol. 8 Arias-Castro (10.1016/j.acha.2021.11.004_br0030) 2011; 5 Sinclair (10.1016/j.acha.2021.11.004_br0600) 1989; 82 Coifman (10.1016/j.acha.2021.11.004_br0150) 2005; 102 Delmotte (10.1016/j.acha.2021.11.004_br0190) 2011; 8 Wang (10.1016/j.acha.2021.11.004_br0670) Ng (10.1016/j.acha.2021.11.004_br0520) 2002 Vu (10.1016/j.acha.2021.11.004_br0650) 2018; 27 Botelho-Andrade (10.1016/j.acha.2021.11.004_br0090) 2019; 22 Lafon (10.1016/j.acha.2021.11.004_br0320) 2006; 28 Holland (10.1016/j.acha.2021.11.004_br0290) 1983; 5 Meilă (10.1016/j.acha.2021.11.004_br0440) 2001 Wagstaff (10.1016/j.acha.2021.11.004_br0660) 2001 Cattell (10.1016/j.acha.2021.11.004_br0100) 1966; 1 Friedman (10.1016/j.acha.2021.11.004_br0230) 2001 Shi (10.1016/j.acha.2021.11.004_br0590) 2000; 22 Comaniciu (10.1016/j.acha.2021.11.004_br0160) 2002; 24 Gower (10.1016/j.acha.2021.11.004_br0260) 1969; 18 Jisu (10.1016/j.acha.2021.11.004_br0310) 2016 Rohe (10.1016/j.acha.2021.11.004_br0570) 2011; 39 Arias-Castro (10.1016/j.acha.2021.11.004_br0040) 2017; 18 Maggioni (10.1016/j.acha.2021.11.004_br0410) 2019; 20 Rodriguez (10.1016/j.acha.2021.11.004_br0560) 2014; 344 Murphy (10.1016/j.acha.2021.11.004_br0470) 2019; 57 Schiebinger (10.1016/j.acha.2021.11.004_br0580) 2015; 43 Wang (10.1016/j.acha.2021.11.004_br0680) 2015 Xu (10.1016/j.acha.2021.11.004_br0690) 2005; 16 Arias-Castro (10.1016/j.acha.2021.11.004_br0020) 2011; 57 Dua (10.1016/j.acha.2021.11.004_br0200) Meilă (10.1016/j.acha.2021.11.004_br0430) 2007; 98 Meyer (10.1016/j.acha.2021.11.004_br0450) 1989; 31 Trillos (10.1016/j.acha.2021.11.004_br0630) Lambiotte (10.1016/j.acha.2021.11.004_br0340) 2015; 1 Chen (10.1016/j.acha.2021.11.004_br0120) 2009 Little (10.1016/j.acha.2021.11.004_br0370) 2015 Peixoto (10.1016/j.acha.2021.11.004_br0540) 2014; 4 Song (10.1016/j.acha.2021.11.004_br0610) 2015; 11 Zhang (10.1016/j.acha.2021.11.004_br0710) 2021; 13 Coifman (10.1016/j.acha.2021.11.004_br0140) 2006; 21 Mohar (10.1016/j.acha.2021.11.004_br0460) 1991 Little (10.1016/j.acha.2021.11.004_br0380) 2020; 21 Rice (10.1016/j.acha.2021.11.004_br0550) 2006 Blondel (10.1016/j.acha.2021.11.004_br0080) 2008; 2008 Nadler (10.1016/j.acha.2021.11.004_br0510) 2006 Lyzinski (10.1016/j.acha.2021.11.004_br0400) 2016; 4 Murphy (10.1016/j.acha.2021.11.004_br0480) 2020; 17 Fan (10.1016/j.acha.2021.11.004_br0220) Arthur (10.1016/j.acha.2021.11.004_br0050) 2006 Cheeger (10.1016/j.acha.2021.11.004_br0110) 1970 Likas (10.1016/j.acha.2021.11.004_br0360) 2003; 36 Azran (10.1016/j.acha.2021.11.004_br0060) 2006 Jerrum (10.1016/j.acha.2021.11.004_br0300) 1989; 18 Ester (10.1016/j.acha.2021.11.004_br0210) 1996 McSherry (10.1016/j.acha.2021.11.004_br0420) 2001 Cowen (10.1016/j.acha.2021.11.004_br0170) 2021; 3 Gualtieri (10.1016/j.acha.2021.11.004_br0270) 1999 Szlam (10.1016/j.acha.2021.11.004_br0620) 2005 Liu (10.1016/j.acha.2021.11.004_br0390) 2020; 5 Garcia Trillos (10.1016/j.acha.2021.11.004_br0250) 2018; 45 Nadler (10.1016/j.acha.2021.11.004_br0500) 2006; 21 |
| References_xml | – start-page: 457 year: 2015 end-page: 460 ident: br0370 article-title: A multiscale spectral method for learning number of clusters publication-title: Proc. Int. Conf. Mach. Learn. – volume: 3 start-page: 142 year: 2021 end-page: 170 ident: br0170 article-title: Diffusion state distances: multitemporal analysis, fast algorithms, and applications to biological networks publication-title: SIAM J. Math. Data Sci. – volume: vol. 8 year: 2012 ident: br0180 article-title: An Introduction to Γ-Convergence – volume: 22 start-page: 888 year: 2000 end-page: 905 ident: br0590 article-title: Normalized cuts and image segmentation publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 11 year: 2015 ident: br0610 article-title: Multiscale embedded gene co-expression network analysis publication-title: PLoS Comput. Biol. – start-page: 195 year: 1970 end-page: 200 ident: br0110 article-title: A lower bound for the smallest eigenvalue of the Laplacian publication-title: Problems in Analysis (Papers Dedicated To Salomon Bochner) – volume: 5 start-page: 3 year: 2020 ident: br0390 article-title: Graph-based data clustering via multiscale community detection publication-title: Appl. Netw. Sci. – volume: 43 start-page: 819 year: 2015 end-page: 846 ident: br0580 article-title: The geometry of kernelized spectral clustering publication-title: Ann. Stat. – start-page: 1023 year: 2015 end-page: 1032 ident: br0680 article-title: Multi-manifold modeling in non-Euclidean spaces publication-title: Artificial Intelligence and Statistics – volume: 21 start-page: 1 year: 2020 end-page: 66 ident: br0380 article-title: Path-based spectral clustering: guarantees, robustness to outliers, and fast algorithms publication-title: J. Mach. Learn. Res. – year: 2019 ident: br0630 article-title: Geometric structure of graph Laplacian embeddings – volume: 45 start-page: 239 year: 2018 end-page: 281 ident: br0250 article-title: A variational approach to the consistency of spectral clustering publication-title: Appl. Comput. Harmon. Anal. – volume: 20 start-page: 1 year: 2019 end-page: 56 ident: br0410 article-title: Learning by unsupervised nonlinear diffusion publication-title: J. Mach. Learn. Res. – volume: 1 start-page: 76 year: 2014 end-page: 90 ident: br0330 article-title: Random walks, Markov processes and the multiscale modular organization of complex networks publication-title: IEEE Trans. Netw. Sci. Eng. – volume: 2008 year: 2008 ident: br0080 article-title: Fast unfolding of communities in large networks publication-title: J. Stat. Mech. Theory Exp. – start-page: 324 year: 1998 end-page: 331 ident: br0700 article-title: A distribution-based clustering algorithm for mining in large spatial databases publication-title: Proc. Int. Conf. Data – volume: 18 start-page: 253 year: 2017 end-page: 309 ident: br0040 article-title: Spectral clustering based on local PCA publication-title: J. Mach. Learn. Res. – volume: 31 start-page: 240 year: 1989 end-page: 272 ident: br0450 article-title: Stochastic complementation, uncoupling Markov chains, and the theory of nearly reducible systems publication-title: SIAM Rev. – volume: 82 start-page: 93 year: 1989 end-page: 133 ident: br0600 article-title: Approximate counting, uniform generation and rapidly mixing Markov chains publication-title: Inf. Comput. – year: 2020 ident: br0130 article-title: Weighted Cheeger-Buser inequalities, with applications to cutting probability densities-as easy as 1, 2, 3 – volume: 13 start-page: 955 year: 2021 ident: br0710 article-title: Hyperspectral image clustering with spatially-regularized ultrametrics publication-title: Remote Sens. – volume: 18 start-page: 1149 year: 1989 end-page: 1178 ident: br0300 article-title: Approximating the permanent publication-title: SIAM J. Comput. – volume: 466 start-page: 761 year: 2010 end-page: 764 ident: br0010 article-title: Link communities reveal multiscale complexity in networks publication-title: Nature – volume: 1 start-page: 76 year: 2015 end-page: 90 ident: br0340 article-title: Dynamics and modular structure in networks publication-title: IEEE Trans. Netw. Sci. Eng. – volume: 344 start-page: 1492 year: 2014 end-page: 1496 ident: br0560 article-title: Clustering by fast search and find of density peaks publication-title: Science – volume: 28 start-page: 1393 year: 2006 end-page: 1403 ident: br0320 article-title: Diffusion maps and coarse-graining: a unified framework for dimensionality reduction, graph partitioning, and data set parameterization publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 39 start-page: 1878 year: 2011 end-page: 1915 ident: br0570 article-title: Spectral clustering and the high-dimensional stochastic blockmodel publication-title: Ann. Stat. – volume: 4 year: 2014 ident: br0540 article-title: Hierarchical block structures and high-resolution model selection in large networks publication-title: Phys. Rev. X – year: 2019 ident: br0220 article-title: A unified framework for tuning hyperparameters in clustering problems – year: 2017 ident: br0200 article-title: UCI machine learning repository – start-page: 97 year: 2006 end-page: 104 ident: br0070 article-title: Cover trees for nearest neighbor publication-title: Proc. Int. Conf. Mach. Learn. – volume: 17 start-page: 1243 year: 2020 end-page: 1247 ident: br0480 article-title: Spectral-spatial diffusion geometry for hyperspectral image clustering publication-title: IEEE Geosci. Remote Sens. Lett. – year: 2006 ident: br0050 article-title: -means++: the advantages of careful seeding – start-page: 873 year: 2001 end-page: 879 ident: br0440 article-title: Learning segmentation by random walks publication-title: Adv. Neur. In. – start-page: 577 year: 2001 end-page: 584 ident: br0660 article-title: Constrained publication-title: Proc. Int. Conf. Mach. Learn. – volume: 5 start-page: 109 year: 1983 end-page: 137 ident: br0290 article-title: Stochastic blockmodels: first steps publication-title: Soc. Netw. – start-page: 217 year: 1999 end-page: 227 ident: br0270 article-title: Support vector machine classifiers as applied to AVIRIS data publication-title: JPL Airborne Geosci. – volume: 98 start-page: 873 year: 2007 end-page: 895 ident: br0430 article-title: Comparing clusterings–an information based distance publication-title: J. Multivar. Anal. – start-page: 849 year: 2002 end-page: 856 ident: br0520 article-title: On spectral clustering: analysis and an algorithm publication-title: Adv. Neur. In. – volume: 36 start-page: 451 year: 2003 end-page: 461 ident: br0360 article-title: The global publication-title: Pattern Recognit. – volume: 4 start-page: 13 year: 2016 end-page: 26 ident: br0400 article-title: Community detection and classification in hierarchical stochastic blockmodels publication-title: IEEE Trans. Netw. Sci. Eng. – year: 2017 ident: br0350 article-title: Markov Chains and Mixing Times – volume: 21 start-page: 113 year: 2006 end-page: 127 ident: br0500 article-title: Diffusion maps, spectral clustering and reaction coordinates of dynamical systems publication-title: Appl. Comput. Harmon. Anal. – volume: 21 start-page: 32 year: 1975 end-page: 40 ident: br0240 article-title: The estimation of the gradient of a density function, with applications in pattern recognition publication-title: IEEE Trans. Inf. Theory – volume: 16 start-page: 645 year: 2005 end-page: 678 ident: br0690 article-title: Survey of clustering algorithms publication-title: IEEE Trans. Neural Netw. – volume: 8 year: 2011 ident: br0190 article-title: Protein multi-scale organization through graph partitioning and robustness analysis: application to the myosin–myosin light chain interaction publication-title: Phys. Biol. – volume: 21 start-page: 5 year: 2006 end-page: 30 ident: br0140 article-title: Diffusion maps publication-title: Appl. Comput. Harmon. Anal. – start-page: 445 year: 2005 end-page: 455 ident: br0620 article-title: Diffusion-driven multiscale analysis on manifolds and graphs: top-down and bottom-up constructions publication-title: Wavelets XI – volume: 18 start-page: 54 year: 1969 end-page: 64 ident: br0260 article-title: Minimum spanning trees and single linkage cluster analysis publication-title: J. R. Stat. Soc., Ser. C, Appl. Stat. – year: 2006 ident: br0550 article-title: Mathematical Statistics and Data Analysis – volume: 5 start-page: 1537 year: 2011 end-page: 1587 ident: br0030 article-title: Spectral clustering based on local linear approximations publication-title: Electron. J. Stat. – start-page: 765 year: 2009 end-page: 772 ident: br0120 article-title: Kernel spectral curvature clustering (KSCC) publication-title: Int. Conf. Comput. Vis., ICCV Workshops – year: 2014 ident: br0670 article-title: Riemannian multi-manifold modeling – start-page: 226 year: 1996 end-page: 231 ident: br0210 article-title: A density-based algorithm for discovering clusters in large spatial databases with noise publication-title: KDD – start-page: 1017 year: 2007 end-page: 1024 ident: br0490 article-title: Fundamental limitations of spectral clustering publication-title: Adv. Neur. In. – start-page: 529 year: 2001 end-page: 537 ident: br0420 article-title: Spectral partitioning of random graphs publication-title: Ann. IEEE Symp. Found. – volume: 24 start-page: 603 year: 2002 end-page: 619 ident: br0160 article-title: Mean shift: a robust approach toward feature space analysis publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 36 start-page: 3336 year: 2009 end-page: 3341 ident: br0530 article-title: A simple and fast algorithm for publication-title: Expert Syst. Appl. – start-page: 190 year: 2006 end-page: 197 ident: br0060 article-title: Spectral methods for automatic multiscale data clustering publication-title: Proceedings CVPR – volume: 1 start-page: 245 year: 1966 end-page: 276 ident: br0100 article-title: The scree test for the number of factors publication-title: Multivar. Behav. Res. – volume: 76 start-page: 388 year: 1981 end-page: 394 ident: br0280 article-title: Consistency of single linkage for high-density clusters publication-title: J. Am. Stat. Assoc. – volume: 27 start-page: 124 year: 2018 end-page: 140 ident: br0650 article-title: A simple SVD algorithm for finding hidden partitions publication-title: Comb. Probab. Comput. – volume: 57 start-page: 1692 year: 2011 end-page: 1706 ident: br0020 article-title: Clustering based on pairwise distances when the data is of mixed dimensions publication-title: IEEE Trans. Inf. Theory – volume: 17 start-page: 395 year: 2007 end-page: 416 ident: br0640 article-title: A tutorial on spectral clustering publication-title: Stat. Comput. – volume: 22 start-page: 59 year: 2019 end-page: 64 ident: br0090 article-title: The exact constant for the publication-title: Math. Inequal. Appl. – year: 2001 ident: br0230 article-title: The Elements of Statistical Learning, vol. 1 publication-title: Springer Series in Statistics – start-page: 955 year: 2006 end-page: 962 ident: br0510 article-title: Diffusion maps, spectral clustering and eigenfunctions of Fokker-Planck operators publication-title: Adv. Neur. In. – volume: 102 start-page: 7426 year: 2005 end-page: 7431 ident: br0150 article-title: Geometric diffusions as a tool for harmonic analysis and structure definition of data: diffusion maps publication-title: Proc. Natl. Acad. Sci. USA – start-page: 871 year: 1991 end-page: 898 ident: br0460 article-title: The Laplacian spectrum of graphs publication-title: Graph Theory, Combinatorics, and Applications, vol. 2 – volume: 57 start-page: 1829 year: 2019 end-page: 1845 ident: br0470 article-title: Unsupervised clustering and active learning of hyperspectral images with nonlinear diffusion publication-title: IEEE Trans. Geosci. Remote Sens. – start-page: 1839 year: 2016 end-page: 1847 ident: br0310 article-title: Statistical inference for cluster trees publication-title: Adv. Neur. In. – volume: 57 start-page: 1692 year: 2011 ident: 10.1016/j.acha.2021.11.004_br0020 article-title: Clustering based on pairwise distances when the data is of mixed dimensions publication-title: IEEE Trans. Inf. Theory doi: 10.1109/TIT.2011.2104630 – start-page: 217 year: 1999 ident: 10.1016/j.acha.2021.11.004_br0270 article-title: Support vector machine classifiers as applied to AVIRIS data – volume: 76 start-page: 388 year: 1981 ident: 10.1016/j.acha.2021.11.004_br0280 article-title: Consistency of single linkage for high-density clusters publication-title: J. Am. Stat. Assoc. doi: 10.1080/01621459.1981.10477658 – volume: 5 start-page: 109 year: 1983 ident: 10.1016/j.acha.2021.11.004_br0290 article-title: Stochastic blockmodels: first steps publication-title: Soc. Netw. doi: 10.1016/0378-8733(83)90021-7 – volume: 22 start-page: 59 year: 2019 ident: 10.1016/j.acha.2021.11.004_br0090 article-title: The exact constant for the ℓ1−ℓ2 norm inequality publication-title: Math. Inequal. Appl. – volume: 11 year: 2015 ident: 10.1016/j.acha.2021.11.004_br0610 article-title: Multiscale embedded gene co-expression network analysis publication-title: PLoS Comput. Biol. doi: 10.1371/journal.pcbi.1004574 – volume: 18 start-page: 1149 year: 1989 ident: 10.1016/j.acha.2021.11.004_br0300 article-title: Approximating the permanent publication-title: SIAM J. Comput. doi: 10.1137/0218077 – volume: 5 start-page: 1537 year: 2011 ident: 10.1016/j.acha.2021.11.004_br0030 article-title: Spectral clustering based on local linear approximations publication-title: Electron. J. Stat. doi: 10.1214/11-EJS651 – start-page: 195 year: 1970 ident: 10.1016/j.acha.2021.11.004_br0110 article-title: A lower bound for the smallest eigenvalue of the Laplacian – volume: 13 start-page: 955 year: 2021 ident: 10.1016/j.acha.2021.11.004_br0710 article-title: Hyperspectral image clustering with spatially-regularized ultrametrics publication-title: Remote Sens. doi: 10.3390/rs13050955 – volume: 16 start-page: 645 year: 2005 ident: 10.1016/j.acha.2021.11.004_br0690 article-title: Survey of clustering algorithms publication-title: IEEE Trans. Neural Netw. doi: 10.1109/TNN.2005.845141 – year: 2006 ident: 10.1016/j.acha.2021.11.004_br0550 – start-page: 873 year: 2001 ident: 10.1016/j.acha.2021.11.004_br0440 article-title: Learning segmentation by random walks – start-page: 955 year: 2006 ident: 10.1016/j.acha.2021.11.004_br0510 article-title: Diffusion maps, spectral clustering and eigenfunctions of Fokker-Planck operators – start-page: 226 year: 1996 ident: 10.1016/j.acha.2021.11.004_br0210 article-title: A density-based algorithm for discovering clusters in large spatial databases with noise – volume: 4 year: 2014 ident: 10.1016/j.acha.2021.11.004_br0540 article-title: Hierarchical block structures and high-resolution model selection in large networks publication-title: Phys. Rev. X – volume: 28 start-page: 1393 year: 2006 ident: 10.1016/j.acha.2021.11.004_br0320 article-title: Diffusion maps and coarse-graining: a unified framework for dimensionality reduction, graph partitioning, and data set parameterization publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2006.184 – start-page: 457 year: 2015 ident: 10.1016/j.acha.2021.11.004_br0370 article-title: A multiscale spectral method for learning number of clusters – volume: 20 start-page: 1 year: 2019 ident: 10.1016/j.acha.2021.11.004_br0410 article-title: Learning by unsupervised nonlinear diffusion publication-title: J. Mach. Learn. Res. – volume: 39 start-page: 1878 year: 2011 ident: 10.1016/j.acha.2021.11.004_br0570 article-title: Spectral clustering and the high-dimensional stochastic blockmodel publication-title: Ann. Stat. doi: 10.1214/11-AOS887 – volume: 82 start-page: 93 year: 1989 ident: 10.1016/j.acha.2021.11.004_br0600 article-title: Approximate counting, uniform generation and rapidly mixing Markov chains publication-title: Inf. Comput. doi: 10.1016/0890-5401(89)90067-9 – start-page: 190 year: 2006 ident: 10.1016/j.acha.2021.11.004_br0060 article-title: Spectral methods for automatic multiscale data clustering – volume: 8 year: 2011 ident: 10.1016/j.acha.2021.11.004_br0190 article-title: Protein multi-scale organization through graph partitioning and robustness analysis: application to the myosin–myosin light chain interaction publication-title: Phys. Biol. doi: 10.1088/1478-3975/8/5/055010 – ident: 10.1016/j.acha.2021.11.004_br0220 – volume: 98 start-page: 873 year: 2007 ident: 10.1016/j.acha.2021.11.004_br0430 article-title: Comparing clusterings–an information based distance publication-title: J. Multivar. Anal. doi: 10.1016/j.jmva.2006.11.013 – volume: 57 start-page: 1829 year: 2019 ident: 10.1016/j.acha.2021.11.004_br0470 article-title: Unsupervised clustering and active learning of hyperspectral images with nonlinear diffusion publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2018.2869723 – ident: 10.1016/j.acha.2021.11.004_br0670 – volume: 1 start-page: 245 year: 1966 ident: 10.1016/j.acha.2021.11.004_br0100 article-title: The scree test for the number of factors publication-title: Multivar. Behav. Res. doi: 10.1207/s15327906mbr0102_10 – volume: 36 start-page: 451 year: 2003 ident: 10.1016/j.acha.2021.11.004_br0360 article-title: The global K-means clustering algorithm publication-title: Pattern Recognit. doi: 10.1016/S0031-3203(02)00060-2 – volume: 45 start-page: 239 year: 2018 ident: 10.1016/j.acha.2021.11.004_br0250 article-title: A variational approach to the consistency of spectral clustering publication-title: Appl. Comput. Harmon. Anal. doi: 10.1016/j.acha.2016.09.003 – volume: 2008 year: 2008 ident: 10.1016/j.acha.2021.11.004_br0080 article-title: Fast unfolding of communities in large networks publication-title: J. Stat. Mech. Theory Exp. doi: 10.1088/1742-5468/2008/10/P10008 – volume: 18 start-page: 253 year: 2017 ident: 10.1016/j.acha.2021.11.004_br0040 article-title: Spectral clustering based on local PCA publication-title: J. Mach. Learn. Res. – year: 2001 ident: 10.1016/j.acha.2021.11.004_br0230 article-title: The Elements of Statistical Learning, vol. 1 – volume: 27 start-page: 124 year: 2018 ident: 10.1016/j.acha.2021.11.004_br0650 article-title: A simple SVD algorithm for finding hidden partitions publication-title: Comb. Probab. Comput. doi: 10.1017/S0963548317000463 – volume: 21 start-page: 113 year: 2006 ident: 10.1016/j.acha.2021.11.004_br0500 article-title: Diffusion maps, spectral clustering and reaction coordinates of dynamical systems publication-title: Appl. Comput. Harmon. Anal. doi: 10.1016/j.acha.2005.07.004 – start-page: 849 year: 2002 ident: 10.1016/j.acha.2021.11.004_br0520 article-title: On spectral clustering: analysis and an algorithm – volume: 4 start-page: 13 year: 2016 ident: 10.1016/j.acha.2021.11.004_br0400 article-title: Community detection and classification in hierarchical stochastic blockmodels publication-title: IEEE Trans. Netw. Sci. Eng. doi: 10.1109/TNSE.2016.2634322 – start-page: 871 year: 1991 ident: 10.1016/j.acha.2021.11.004_br0460 article-title: The Laplacian spectrum of graphs – ident: 10.1016/j.acha.2021.11.004_br0630 – volume: 31 start-page: 240 year: 1989 ident: 10.1016/j.acha.2021.11.004_br0450 article-title: Stochastic complementation, uncoupling Markov chains, and the theory of nearly reducible systems publication-title: SIAM Rev. doi: 10.1137/1031050 – volume: 17 start-page: 1243 year: 2020 ident: 10.1016/j.acha.2021.11.004_br0480 article-title: Spectral-spatial diffusion geometry for hyperspectral image clustering publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2019.2943001 – volume: vol. 8 year: 2012 ident: 10.1016/j.acha.2021.11.004_br0180 – volume: 43 start-page: 819 year: 2015 ident: 10.1016/j.acha.2021.11.004_br0580 article-title: The geometry of kernelized spectral clustering publication-title: Ann. Stat. doi: 10.1214/14-AOS1283 – start-page: 1839 year: 2016 ident: 10.1016/j.acha.2021.11.004_br0310 article-title: Statistical inference for cluster trees – year: 2017 ident: 10.1016/j.acha.2021.11.004_br0350 – start-page: 97 year: 2006 ident: 10.1016/j.acha.2021.11.004_br0070 article-title: Cover trees for nearest neighbor – volume: 3 start-page: 142 year: 2021 ident: 10.1016/j.acha.2021.11.004_br0170 article-title: Diffusion state distances: multitemporal analysis, fast algorithms, and applications to biological networks publication-title: SIAM J. Math. Data Sci. doi: 10.1137/20M1324089 – volume: 22 start-page: 888 year: 2000 ident: 10.1016/j.acha.2021.11.004_br0590 article-title: Normalized cuts and image segmentation publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/34.868688 – volume: 24 start-page: 603 year: 2002 ident: 10.1016/j.acha.2021.11.004_br0160 article-title: Mean shift: a robust approach toward feature space analysis publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/34.1000236 – volume: 18 start-page: 54 year: 1969 ident: 10.1016/j.acha.2021.11.004_br0260 article-title: Minimum spanning trees and single linkage cluster analysis publication-title: J. R. Stat. Soc., Ser. C, Appl. Stat. – volume: 21 start-page: 1 year: 2020 ident: 10.1016/j.acha.2021.11.004_br0380 article-title: Path-based spectral clustering: guarantees, robustness to outliers, and fast algorithms publication-title: J. Mach. Learn. Res. – volume: 17 start-page: 395 year: 2007 ident: 10.1016/j.acha.2021.11.004_br0640 article-title: A tutorial on spectral clustering publication-title: Stat. Comput. doi: 10.1007/s11222-007-9033-z – volume: 21 start-page: 5 year: 2006 ident: 10.1016/j.acha.2021.11.004_br0140 article-title: Diffusion maps publication-title: Appl. Comput. Harmon. Anal. doi: 10.1016/j.acha.2006.04.006 – volume: 5 start-page: 3 year: 2020 ident: 10.1016/j.acha.2021.11.004_br0390 article-title: Graph-based data clustering via multiscale community detection publication-title: Appl. Netw. Sci. doi: 10.1007/s41109-019-0248-7 – start-page: 577 year: 2001 ident: 10.1016/j.acha.2021.11.004_br0660 article-title: Constrained K-means clustering with background knowledge – start-page: 765 year: 2009 ident: 10.1016/j.acha.2021.11.004_br0120 article-title: Kernel spectral curvature clustering (KSCC) – volume: 1 start-page: 76 year: 2014 ident: 10.1016/j.acha.2021.11.004_br0330 article-title: Random walks, Markov processes and the multiscale modular organization of complex networks publication-title: IEEE Trans. Netw. Sci. Eng. doi: 10.1109/TNSE.2015.2391998 – volume: 466 start-page: 761 year: 2010 ident: 10.1016/j.acha.2021.11.004_br0010 article-title: Link communities reveal multiscale complexity in networks publication-title: Nature doi: 10.1038/nature09182 – year: 2006 ident: 10.1016/j.acha.2021.11.004_br0050 – start-page: 445 year: 2005 ident: 10.1016/j.acha.2021.11.004_br0620 article-title: Diffusion-driven multiscale analysis on manifolds and graphs: top-down and bottom-up constructions – start-page: 1023 year: 2015 ident: 10.1016/j.acha.2021.11.004_br0680 article-title: Multi-manifold modeling in non-Euclidean spaces – ident: 10.1016/j.acha.2021.11.004_br0200 – volume: 21 start-page: 32 year: 1975 ident: 10.1016/j.acha.2021.11.004_br0240 article-title: The estimation of the gradient of a density function, with applications in pattern recognition publication-title: IEEE Trans. Inf. Theory doi: 10.1109/TIT.1975.1055330 – start-page: 529 year: 2001 ident: 10.1016/j.acha.2021.11.004_br0420 article-title: Spectral partitioning of random graphs – volume: 36 start-page: 3336 year: 2009 ident: 10.1016/j.acha.2021.11.004_br0530 article-title: A simple and fast algorithm for K-medoids clustering publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2008.01.039 – start-page: 324 year: 1998 ident: 10.1016/j.acha.2021.11.004_br0700 article-title: A distribution-based clustering algorithm for mining in large spatial databases – ident: 10.1016/j.acha.2021.11.004_br0130 – volume: 102 start-page: 7426 year: 2005 ident: 10.1016/j.acha.2021.11.004_br0150 article-title: Geometric diffusions as a tool for harmonic analysis and structure definition of data: diffusion maps publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0500334102 – start-page: 1017 year: 2007 ident: 10.1016/j.acha.2021.11.004_br0490 article-title: Fundamental limitations of spectral clustering – volume: 344 start-page: 1492 year: 2014 ident: 10.1016/j.acha.2021.11.004_br0560 article-title: Clustering by fast search and find of density peaks publication-title: Science doi: 10.1126/science.1242072 – volume: 1 start-page: 76 year: 2015 ident: 10.1016/j.acha.2021.11.004_br0340 article-title: Dynamics and modular structure in networks publication-title: IEEE Trans. Netw. Sci. Eng. doi: 10.1109/TNSE.2015.2391998 |
| SSID | ssj0011459 |
| Score | 2.4147267 |
| Snippet | •We introduce the MELD data model: a diffusion framework for multiscale clustering.•We show how cluster coherence and separation interact with diffusion in... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 58 |
| SubjectTerms | Clustering Diffusion geometry Hierarchical clustering Machine learning Spectral graph theory |
| Title | A multiscale environment for learning by diffusion |
| URI | https://dx.doi.org/10.1016/j.acha.2021.11.004 |
| Volume | 57 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: ScienceDirect database issn: 1063-5203 databaseCode: AIEXJ dateStart: 20211207 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: false ssIdentifier: ssj0011459 providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV07T8MwELYqYIAB8RTlpQxsVaokdtJkQaoQCBAghoK6RbZjC0FJq5Yi-Pec4weBAoKBJWqtxm38uZfvLnffIXSAYxYwxrifqb8bSTDxaRoHPiGZzHjBOa5yc24vOldXab-fXTcah7YW5nnQKcv05SUb_SvUMAZgq9LZP8DtJoUBeA2gwxFgh-OvgO_qJMEJLL6o17FVCYUDGwkB1ql6o0wnFherRGtYqSl3G02fbLRQaVxX7XKo0TGZxapKuW1dtp29HQ4edNj5sXXRrgcYwDd1GVbGJgKLAX81wHWjqVWljdXT4uvm_hlWyqOzpllHCe5hm9wpvacobCv1VN17-KMO9qf7k8satAlp97maI1dzgAOTV3Kw81EnzsCqzXfPjvvn7jlSSKp2ee4STNmUzvD7_Eu-piY1utFbQcvGT_C6Gt9V1BDlGlqqqUfCu0snuTtZR1HXe8fdq-HuAe6exd1jr57DfQPdnBz3jk590xDD5-ClEtUsqaBcaRcIliY0ZTyVBZVBwahMgY1wyiKBBWUwjCmVwNbCmBKRJYyQAhO8iebKYSm2kIcTzOMiFHEoMUlESmUW0KgjApnQRAa4iUK7Fjk3avGqackg_x6FJmq5c0ZaK-XHT8d2iXPD9jSLy2HH_HDe9p--ZQctvu_pXTT3NJ6KPbTAnwGP8b7ZLm9AC3T1 |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+multiscale+environment+for+learning+by+diffusion&rft.jtitle=Applied+and+computational+harmonic+analysis&rft.au=Murphy%2C+James+M.&rft.au=Polk%2C+Sam+L.&rft.date=2022-03-01&rft.issn=1063-5203&rft.volume=57&rft.spage=58&rft.epage=100&rft_id=info:doi/10.1016%2Fj.acha.2021.11.004&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_acha_2021_11_004 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-5203&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-5203&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-5203&client=summon |