Dual Diversity and Pseudo‐Label Correction Learning for Semi‐Supervised Medical Image Segmentation

ABSTRACT Semi‐supervised medical image segmentation has recently gained increasing research attention as it can reduce the need for large‐scale annotated data. Current mainstream methods usually adopt two sub‐networks and encourage the two models to make consistent predictions for the same segmentat...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:International journal of imaging systems and technology Ročník 35; číslo 5
Hlavní autoři: Du, Guangxing, Wu, Rui, Xu, Jinming, Zeng, Xiang, Xiong, Shengwu
Médium: Journal Article
Jazyk:angličtina
Vydáno: Hoboken, USA John Wiley & Sons, Inc 01.09.2025
Wiley Subscription Services, Inc
Témata:
ISSN:0899-9457, 1098-1098
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract ABSTRACT Semi‐supervised medical image segmentation has recently gained increasing research attention as it can reduce the need for large‐scale annotated data. Current mainstream methods usually adopt two sub‐networks and encourage the two models to make consistent predictions for the same segmentation task through consistency regularization. However, the scarcity of medical samples reduces the effectiveness of consistency constraints, and this problem may be further exacerbated by the influence of noisy pseudo‐labels. In this work, we propose a novel co‐training framework based on dual diversity and pseudo‐label correction learning (DDPCL) to address these challenges. Specifically, firstly, we design a dual diversity learning strategy, in which data diversity fully mines the potential information of limited training samples through the CutMix operation, and feature diversity promotes the model to learn complementary feature representations by minimizing the similarity between the features extracted by the two sub‐networks. Secondly, we propose a pseudo‐label correction learning strategy, which regards the inconsistent region where the pseudo‐labels predicted by the two sub‐networks are different as potential bias regions, and guides the models to correct the bias in these regions. Extensive experiments on three public datasets (ACDC, LA and Pancreas‐NIH datasets) validate that the proposed method outperforms the state‐of‐the‐art semi‐supervised medical image segmentation. The code is available at http://github.com/ddd0420/ddpcl.
AbstractList ABSTRACT Semi‐supervised medical image segmentation has recently gained increasing research attention as it can reduce the need for large‐scale annotated data. Current mainstream methods usually adopt two sub‐networks and encourage the two models to make consistent predictions for the same segmentation task through consistency regularization. However, the scarcity of medical samples reduces the effectiveness of consistency constraints, and this problem may be further exacerbated by the influence of noisy pseudo‐labels. In this work, we propose a novel co‐training framework based on dual diversity and pseudo‐label correction learning (DDPCL) to address these challenges. Specifically, firstly, we design a dual diversity learning strategy, in which data diversity fully mines the potential information of limited training samples through the CutMix operation, and feature diversity promotes the model to learn complementary feature representations by minimizing the similarity between the features extracted by the two sub‐networks. Secondly, we propose a pseudo‐label correction learning strategy, which regards the inconsistent region where the pseudo‐labels predicted by the two sub‐networks are different as potential bias regions, and guides the models to correct the bias in these regions. Extensive experiments on three public datasets (ACDC, LA and Pancreas‐NIH datasets) validate that the proposed method outperforms the state‐of‐the‐art semi‐supervised medical image segmentation. The code is available at http://github.com/ddd0420/ddpcl.
Semi‐supervised medical image segmentation has recently gained increasing research attention as it can reduce the need for large‐scale annotated data. Current mainstream methods usually adopt two sub‐networks and encourage the two models to make consistent predictions for the same segmentation task through consistency regularization. However, the scarcity of medical samples reduces the effectiveness of consistency constraints, and this problem may be further exacerbated by the influence of noisy pseudo‐labels. In this work, we propose a novel co‐training framework based on dual diversity and pseudo‐label correction learning (DDPCL) to address these challenges. Specifically, firstly, we design a dual diversity learning strategy, in which data diversity fully mines the potential information of limited training samples through the CutMix operation, and feature diversity promotes the model to learn complementary feature representations by minimizing the similarity between the features extracted by the two sub‐networks. Secondly, we propose a pseudo‐label correction learning strategy, which regards the inconsistent region where the pseudo‐labels predicted by the two sub‐networks are different as potential bias regions, and guides the models to correct the bias in these regions. Extensive experiments on three public datasets (ACDC, LA and Pancreas‐NIH datasets) validate that the proposed method outperforms the state‐of‐the‐art semi‐supervised medical image segmentation. The code is available at http://github.com/ddd0420/ddpcl.
Author Xu, Jinming
Wu, Rui
Du, Guangxing
Zeng, Xiang
Xiong, Shengwu
Author_xml – sequence: 1
  givenname: Guangxing
  orcidid: 0000-0002-5164-619X
  surname: Du
  fullname: Du, Guangxing
  organization: Wuhan University of Technology
– sequence: 2
  givenname: Rui
  surname: Wu
  fullname: Wu, Rui
  organization: Wuhan University of Technology
– sequence: 3
  givenname: Jinming
  surname: Xu
  fullname: Xu, Jinming
  organization: Wuhan University of Technology
– sequence: 4
  givenname: Xiang
  surname: Zeng
  fullname: Zeng, Xiang
  organization: Wuhan University of Technology
– sequence: 5
  givenname: Shengwu
  surname: Xiong
  fullname: Xiong, Shengwu
  email: xiongsw@whut.edu.cn
  organization: Wuhan College
BookMark eNp1kM1KAzEUhYNUsK0ufIMBVy6mzc_8ZVlafwojCtV1mCY3JWVmUpNOpTsfwWf0SUwdt27u5XK_cw6cERq0tgWErgmeEIzp1DTVJMeEJ2doSDAv4tMYoCEuOI95kuYXaOT9FmNCUpwOkV50VR0tzAGcN_tjVLUqevHQKfv9-VVWa6ijuXUO5N7YNiqhcq1pN5G2LlpBYwK06nbgDsaDip5AGRnslk21gfDfNNDuq5PyEp3rqvZw9bfH6O3-7nX-GJfPD8v5rIwlTXkS51LxHEsNkoJKgbKcSEmlAp5Rnel1scaKpCzDSmGV5ZDzjBeFhIwxrjNM2Rjd9L47Z9878HuxtZ1rQ6RgNE1YwnKWBeq2p6Sz3jvQYudCce4oCBanGkW4xG-NgZ327Iep4fg_KJZPs17xA7NKeFE
Cites_doi 10.1109/TMI.2021.3123461
10.1016/j.patcog.2024.111028
10.1038/s42256-023-00682-w
10.1016/j.media.2024.103329
10.1016/j.media.2023.102880
10.1016/j.patcog.2020.107269
10.3390/app12178662
10.1109/TMI.2018.2837502
10.1145/3664647.3680699
10.1016/j.media.2020.101832
10.24963/ijcai.2023/467
10.1007/978-3-319-24553-9_68
10.1609/aaai.v35i10.17066
10.1109/TMI.2025.3556310
10.1109/CVPR46437.2021.00264
10.1109/CVPR52734.2025.00488
10.1016/j.media.2024.103302
10.1007/s11263-024-02328-9
10.1016/j.neucom.2025.129818
10.1109/CVPR52729.2023.01502
10.1109/TMI.2025.3540211
10.1007/s13534-025-00481-9
10.1016/j.media.2024.103111
ContentType Journal Article
Copyright 2025 Wiley Periodicals LLC.
2025 Wiley Periodicals, LLC.
Copyright_xml – notice: 2025 Wiley Periodicals LLC.
– notice: 2025 Wiley Periodicals, LLC.
DBID AAYXX
CITATION
DOI 10.1002/ima.70194
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1098-1098
EndPage n/a
ExternalDocumentID 10_1002_ima_70194
IMA70194
Genre researchArticle
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 62176194
– fundername: the Key Research and Development Program of Hubei Province
  funderid: 2024BAB030
– fundername: National Key Research and Development Program of China
  funderid: 2022ZD0160604
GroupedDBID .3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
31~
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHQN
AAIPD
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABIJN
ABJNI
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCZN
ACGFS
ACGOF
ACMXC
ACPOU
ACRPL
ACSCC
ACUHS
ACXBN
ACXQS
ACYXJ
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADMLS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AIACR
AIDQK
AIDYY
AIQQE
AITYG
AIURR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BY8
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
EBS
EJD
ESX
F00
F01
F04
F5P
FEDTE
FUBAC
G-S
G.N
GNP
GODZA
H.X
HDBZQ
HF~
HGLYW
HHY
HVGLF
HZ~
I-F
IX1
J0M
JPC
KBYEO
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M65
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RX1
RYL
SAMSI
SUPJJ
TUS
UB1
V2E
W8V
W99
WBKPD
WHWMO
WIB
WIH
WIJ
WIK
WOHZO
WQJ
WVDHM
WXI
WXSBR
XG1
XPP
XV2
ZZTAW
~02
~IA
~WT
AAYXX
CITATION
O8X
ID FETCH-LOGICAL-c2594-7cd970cfec2ed5e2371cc2cde962f6fb8b0d15360dd0d67e796988ce6339f6023
IEDL.DBID DRFUL
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001563881600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0899-9457
IngestDate Fri Sep 26 20:55:16 EDT 2025
Sat Nov 29 07:20:25 EST 2025
Fri Sep 26 10:30:32 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2594-7cd970cfec2ed5e2371cc2cde962f6fb8b0d15360dd0d67e796988ce6339f6023
Notes Funding
This work was in part supported by the National Key Research and Development Program of China (Grant No. 2022ZD0160604) and NSFC (Grant No. 62176194), and the Key Research and Development Program of Hubei Province (Grant No. 2024BAB030).
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-5164-619X
PQID 3254343736
PQPubID 1026352
PageCount 13
ParticipantIDs proquest_journals_3254343736
crossref_primary_10_1002_ima_70194
wiley_primary_10_1002_ima_70194_IMA70194
PublicationCentury 2000
PublicationDate September 2025
PublicationDateYYYYMMDD 2025-09-01
PublicationDate_xml – month: 09
  year: 2025
  text: September 2025
PublicationDecade 2020
PublicationPlace Hoboken, USA
PublicationPlace_xml – name: Hoboken, USA
– name: New York
PublicationTitle International journal of imaging systems and technology
PublicationYear 2025
Publisher John Wiley & Sons, Inc
Wiley Subscription Services, Inc
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley Subscription Services, Inc
References 2025; 158
2025; 133
2021; 67
2023; 5
2024; 94
2024; 97
2020; 107
2025; 15
2025
2020; 33
2024
2025; 99
2025; 633
2021; 35
2017; 30
2023; 88
2023
2022
2021
2022; 12
2019
2015
2025; 44
2021; 41
2018; 37
Wu Y. (e_1_2_10_11_1) 2021
e_1_2_10_23_1
e_1_2_10_24_1
e_1_2_10_21_1
Wang Z. (e_1_2_10_30_1) 2023
Wu Y. (e_1_2_10_7_1) 2022
e_1_2_10_22_1
Wang Y. (e_1_2_10_27_1) 2022
e_1_2_10_20_1
Yu L. (e_1_2_10_6_1) 2019
Wang H. (e_1_2_10_25_1) 2023
e_1_2_10_2_1
e_1_2_10_4_1
e_1_2_10_18_1
e_1_2_10_3_1
e_1_2_10_19_1
e_1_2_10_16_1
e_1_2_10_5_1
e_1_2_10_36_1
e_1_2_10_35_1
e_1_2_10_9_1
e_1_2_10_13_1
e_1_2_10_34_1
e_1_2_10_33_1
e_1_2_10_32_1
e_1_2_10_31_1
Bai Y. (e_1_2_10_12_1) 2023
Tarvainen A. (e_1_2_10_14_1) 2017; 30
e_1_2_10_29_1
Luo X. (e_1_2_10_10_1) 2021
Sohn K. (e_1_2_10_15_1) 2020; 33
e_1_2_10_28_1
Zeng X. (e_1_2_10_8_1) 2025
Zhao Z. (e_1_2_10_17_1) 2024
e_1_2_10_26_1
References_xml – volume: 44
  start-page: 2948
  year: 2025
  end-page: 2959
  article-title: Segment Together: A Versatile Paradigm for Semi‐Supervised Medical Image Segmentation
  publication-title: IEEE Transactions on Medical Imaging
– start-page: 297
  year: 2021
  end-page: 306
– volume: 30
  start-page: 1
  year: 2017
  end-page: 10
  article-title: Mean Teachers Are Better Role Models: Weight‐Averaged Consistency Targets Improve Semi‐Supervised Deep Learning Results
  publication-title: Advances in Neural Information Processing Systems
– volume: 35
  start-page: 8801
  year: 2021
  end-page: 8809
  article-title: Semi‐Supervised Medical Image Segmentation Through Dual‐Task Consistency
  publication-title: Proceedings of the AAAI Conference on Artificial Intelligence
– start-page: 227
  year: 2024
  end-page: 243
– volume: 5
  start-page: 724
  issue: 7
  year: 2023
  end-page: 738
  article-title: Uncertainty‐Guided Dual‐Views for Semi‐Supervised Volumetric Medical Image Segmentation
  publication-title: Nature Machine Intelligence
– volume: 67
  year: 2021
  article-title: A Global Benchmark of Algorithms for Segmenting the Left Atrium From Late Gadolinium‐Enhanced Cardiac Magnetic Resonance Imaging
  publication-title: Medical Image Analysis
– start-page: 9253
  year: 2024
  end-page: 9261
– start-page: 1
  year: 2025
– volume: 44
  start-page: 2541
  year: 2025
  end-page: 2552
  article-title: Dynamic Strip Convolution and Adaptive Morphology Perception Plugin for Medical Anatomy Segmentation
  publication-title: IEEE Transactions on Medical Imaging
– volume: 15
  start-page: 1
  year: 2025
  end-page: 11
  article-title: Ipnet: Informative Patches Learning for Semi‐Supervised Magnetic Resonance Image Segmentation
  publication-title: Biomedical Engineering Letters
– volume: 94
  year: 2024
  article-title: Mutual Learning With Reliable Pseudo Label for Semi‐Supervised Medical Image Segmentation
  publication-title: Medical Image Analysis
– start-page: 19585
  year: 2023
  end-page: 19595
– volume: 97
  year: 2024
  article-title: Diversity Matters: Cross‐Head Mutual Mean‐Teaching for Semi‐Supervised Medical Image Segmentation
  publication-title: Medical Image Analysis
– start-page: 556
  year: 2015
  end-page: 564
– volume: 12
  issue: 17
  year: 2022
  article-title: Zero‐Shot Emotion Detection for Semi‐Supervised Sentiment Analysis Using Sentence Transformers and Ensemble Learning
  publication-title: Applied Sciences
– volume: 37
  start-page: 2514
  issue: 11
  year: 2018
  end-page: 2525
  article-title: Deep Learning Techniques for Automatic Mri Cardiac Multi‐Structures Segmentation and Diagnosis: Is the Problem Solved?
  publication-title: IEEE Transactions on Medical Imaging
– start-page: 318
  year: 2021
  end-page: 329
– volume: 88
  year: 2023
  article-title: Ambiguity‐Selective Consistency Regularization for Mean‐Teacher Semi‐Supervised Medical Image Segmentation
  publication-title: Medical Image Analysis
– volume: 633
  year: 2025
  article-title: Correlation‐Based Switching Mean Teacher for Semi‐Supervised Medical Image Segmentation
  publication-title: Neurocomputing
– volume: 41
  start-page: 702
  issue: 3
  year: 2021
  end-page: 714
  article-title: Deep Interpretable Classification and Weakly‐Supervised Segmentation of Histology Images via Max‐Min Uncertainty
  publication-title: IEEE Transactions on Medical Imaging
– volume: 133
  start-page: 1
  issue: 6
  year: 2025
  end-page: 3311
  article-title: Pick: Predict and Mask for Semi‐Supervised Medical Image Segmentation
  publication-title: International Journal of Computer Vision
– volume: 107
  year: 2020
  article-title: Deep Co‐Training for Semi‐Supervised Image Segmentation
  publication-title: Pattern Recognition
– start-page: 5175
  year: 2025
  end-page: 5185
– start-page: 15651
  year: 2023
  end-page: 15660
– start-page: 34
  year: 2022
  end-page: 43
– volume: 33
  start-page: 596
  year: 2020
  end-page: 608
  article-title: Fixmatch: Simplifying Semi‐Supervised Learning With Consistency and Confidence
  publication-title: Advances in Neural Information Processing Systems
– volume: 99
  year: 2025
  article-title: Cross‐View Discrepancy‐Dependency Network for Volumetric Medical Image Segmentation
  publication-title: Medical Image Analysis
– start-page: 605
  year: 2019
  end-page: 613
– start-page: 4248
  year: 2022
  end-page: 4257
– volume: 158
  year: 2025
  article-title: Tbconvl‐Net: A Hybrid Deep Learning Architecture for Robust Medical Image Segmentation
  publication-title: Pattern Recognition
– start-page: 582
  year: 2023
  end-page: 591
– start-page: 11514
  year: 2023
  end-page: 11524
– start-page: 582
  volume-title: International Conference on Medical Image Computing and Computer‐Assisted Intervention
  year: 2023
  ident: e_1_2_10_25_1
– start-page: 297
  volume-title: Medical Image Computing and Computer Assisted Intervention–MICCAI 2021: 24th International Conference, Strasbourg, France, September 27–October 1, 2021, Proceedings, Part II 24
  year: 2021
  ident: e_1_2_10_11_1
– ident: e_1_2_10_31_1
  doi: 10.1109/TMI.2021.3123461
– ident: e_1_2_10_4_1
  doi: 10.1016/j.patcog.2024.111028
– start-page: 227
  volume-title: European Conference on Computer Vision
  year: 2024
  ident: e_1_2_10_17_1
– start-page: 11514
  volume-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
  year: 2023
  ident: e_1_2_10_12_1
– ident: e_1_2_10_19_1
  doi: 10.1038/s42256-023-00682-w
– ident: e_1_2_10_5_1
  doi: 10.1016/j.media.2024.103329
– ident: e_1_2_10_16_1
  doi: 10.1016/j.media.2023.102880
– ident: e_1_2_10_23_1
  doi: 10.1016/j.patcog.2020.107269
– volume: 30
  start-page: 1
  year: 2017
  ident: e_1_2_10_14_1
  article-title: Mean Teachers Are Better Role Models: Weight‐Averaged Consistency Targets Improve Semi‐Supervised Deep Learning Results
  publication-title: Advances in Neural Information Processing Systems
– ident: e_1_2_10_9_1
  doi: 10.3390/app12178662
– ident: e_1_2_10_32_1
  doi: 10.1109/TMI.2018.2837502
– ident: e_1_2_10_20_1
  doi: 10.1145/3664647.3680699
– volume: 33
  start-page: 596
  year: 2020
  ident: e_1_2_10_15_1
  article-title: Fixmatch: Simplifying Semi‐Supervised Learning With Consistency and Confidence
  publication-title: Advances in Neural Information Processing Systems
– ident: e_1_2_10_33_1
  doi: 10.1016/j.media.2020.101832
– start-page: 34
  volume-title: International Conference on Medical Image Computing and Computer‐Assisted Intervention
  year: 2022
  ident: e_1_2_10_7_1
– ident: e_1_2_10_24_1
  doi: 10.24963/ijcai.2023/467
– ident: e_1_2_10_34_1
  doi: 10.1007/978-3-319-24553-9_68
– start-page: 605
  volume-title: Medical Image Computing and Computer Assisted Intervention–MICCAI 2019: 22nd International Conference, Shenzhen, China, October 13–17, 2019, Proceedings, Part II 22
  year: 2019
  ident: e_1_2_10_6_1
– ident: e_1_2_10_35_1
  doi: 10.1609/aaai.v35i10.17066
– start-page: 1
  volume-title: IEEE Transactions on Medical Imaging
  year: 2025
  ident: e_1_2_10_8_1
– ident: e_1_2_10_3_1
  doi: 10.1109/TMI.2025.3556310
– start-page: 19585
  volume-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
  year: 2023
  ident: e_1_2_10_30_1
– ident: e_1_2_10_18_1
  doi: 10.1109/CVPR46437.2021.00264
– ident: e_1_2_10_36_1
  doi: 10.1109/CVPR52734.2025.00488
– ident: e_1_2_10_21_1
  doi: 10.1016/j.media.2024.103302
– ident: e_1_2_10_28_1
  doi: 10.1007/s11263-024-02328-9
– ident: e_1_2_10_22_1
  doi: 10.1016/j.neucom.2025.129818
– ident: e_1_2_10_26_1
  doi: 10.1109/CVPR52729.2023.01502
– ident: e_1_2_10_2_1
  doi: 10.1109/TMI.2025.3540211
– start-page: 318
  volume-title: Medical Image Computing and Computer Assisted Intervention–MICCAI 2021: 24th International Conference, Strasbourg, France, September 27–October 1, 2021, Proceedings, Part II 24
  year: 2021
  ident: e_1_2_10_10_1
– ident: e_1_2_10_13_1
  doi: 10.1007/s13534-025-00481-9
– start-page: 4248
  volume-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
  year: 2022
  ident: e_1_2_10_27_1
– ident: e_1_2_10_29_1
  doi: 10.1016/j.media.2024.103111
SSID ssj0011505
Score 2.3927748
Snippet ABSTRACT Semi‐supervised medical image segmentation has recently gained increasing research attention as it can reduce the need for large‐scale annotated data....
Semi‐supervised medical image segmentation has recently gained increasing research attention as it can reduce the need for large‐scale annotated data. Current...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Index Database
Publisher
SubjectTerms Bias
co‐training
Datasets
Feature extraction
Image segmentation
Labels
Learning
medical image segmentation
Medical imaging
Networks
pseudo‐labeling
Regularization
semi‐supervised learning
Title Dual Diversity and Pseudo‐Label Correction Learning for Semi‐Supervised Medical Image Segmentation
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fima.70194
https://www.proquest.com/docview/3254343736
Volume 35
WOSCitedRecordID wos001563881600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Journals
  customDbUrl:
  eissn: 1098-1098
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0011505
  issn: 0899-9457
  databaseCode: DRFUL
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB50VdCDb3F9EcSDl2qapnngSVwXhVXEB3graZIuC26V7a5nf4K_0V9imm1XPQiCt4ZOQ-k88jWZ-QbgIMQpcY4QBlksZUBZmAZKhCowQuqY6pBHmeeZ7fDra_H4KG-m4KSuhRnzQ0w23ErP8PG6dHCVFsdfpKG9vjoqucTpNMwQZ7e0ATOt2_ZDZ3KI4LCOz2AUJQkljXlNLITJ8eThn8vRF8b8jlT9UtNe-tdLLsNihTDR6dgkVmDK5quw8I13cBXmfN6nLtYga42cbKtOzkAqN-imsCPz_PH23lGpfUJnZf8OX_2AKjLWLnJIF93Zfs8J3Y1eynBTWIOqQx902XdByt3v9qvCpnwdHtrn92cXQdV6IdDuf4gGXBvJsc6sJtbElkQ81JpoYyUjGctSkWLjYiXDxmDDuOWSSSG0ZVEkM-ZwwAY08ufcbgLKMNZGpYJRFdLYYGWFUWWJq2axMlQ0Yb_WQPIyZthIxlzKJHGjxH--JuzUukkqJyuSiPi6WB6xJhx6Lfw-QXJ5deovtv4uug3zpOz26zPKdqAxHIzsLszq12GvGOxV1vYJ5aLZ3A
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB7RBVR6oBSK2EKLVfXQS8BxHD8kLohlxaphhXhI3CLHdtBKbECE5dyf0N_IL8H2JgsckJB6i5WJFWUe_mLPfAPwK8YFcY4QR2UqZURZXERKxCoyQuqU6pgnZeCZzfhwKC4v5ckc7LW1MFN-iNmGm_eMEK-9g_sN6d1n1tDRWO14MnH6AeapM6O0A_O90_5FNjtFcGAnpDAKz0JJU94yC2GyO3v49Xr0DDJfQtWw1vQ__99brsBygzHR_tQovsCcrVbh0wvmwVVYDJmful6Dsjdxsr02PQOpyqCT2k7MzePff5kq7DU68B08Qv0DauhYr5DDuujMjkdO6Gxy6wNObQ1qjn3QYOzClLt_NW5Km6qvcNE_PD84iprmC5F2f0Q04tpIjnVpNbEmtSThsdZEGysZKVlZiAIbFy0ZNgYbxi2XTAqhLUsSWTKHBNahU91UdgNQibE2qhCMqpimBisrjPJFrpqlylDRhZ-tCvLbKcdGPmVTJrkb5eHzdWGrVU7euFmdJyRUxvKEdeF3UMPbE-SD4_1w8e39otvw8ej8OMuzwfDPJiwR3_s35JdtQef-bmK_w4J-uB_Vdz8a03sC8UvdzA
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9tAEB7xaFE5QAtFDdCyQhx6MVmv1_uQuCDSqBEhinhI3Kz1PlCkxkSYcOYn9Df2l7De2AEOSJW42fLYsjz7zX7enfkG4CDGOfFAiCOXShlRFueRErGKjJA6pTrmiQs6s30-GIjrazlcgKOmFmamDzFfcKuQEeJ1BXA7Ma79rBo6GqvDSkycLsIyTSXzsFzunHev-vNdBE92QgqjqFQoacobZSFM2vObX89HzyTzJVUNc013_X1v-RnWao6JjmeD4gss2GIDVl8oD27Ax5D5qctNcJ2pt-006RlIFQYNSzs1t_8e__ZVbv-gk6qDR6h_QLUc6w3yXBdd2PHIG11MJ1XAKa1B9bYP6o19mPLXb8Z1aVPxFa66vy5Pfkd184VI-z8iGnFtJMfaWU2sSS1JeKw10cZKRhxzucix8dGSYWOwYdxyyaQQ2rIkkY55JrAFS8VtYb8Bchhro3LBqIpparCywqiqyFWzVBkqWrDfuCCbzDQ2spmaMsn8WRY-Xwt2G-dkNczKLCGhMpYnrAU_gxvefkDWOzsOB9v_b7oHK8NON-v3Bqc78IlUrX9DetkuLN3fTe13-KAf7kfl3Y965D0Br5zdRw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dual+Diversity+and+Pseudo%E2%80%90Label+Correction+Learning+for+Semi%E2%80%90Supervised+Medical+Image+Segmentation&rft.jtitle=International+journal+of+imaging+systems+and+technology&rft.au=Du%2C+Guangxing&rft.au=Wu%2C+Rui&rft.au=Xu%2C+Jinming&rft.au=Zeng%2C+Xiang&rft.date=2025-09-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0899-9457&rft.eissn=1098-1098&rft.volume=35&rft.issue=5&rft_id=info:doi/10.1002%2Fima.70194&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0899-9457&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0899-9457&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0899-9457&client=summon