Diagnosis of osteoporosis using intelligence of optimized extreme learning machine with improved artificial algae algorithm

Osteoporosis is the silent killer disease that mostly occur in elderly people because of bone fragility and fracture. Early and accurate diagnosis of osteoporosis saves the patient life. This work focuses on developing an efficient classifier model to support this issue. For this, the proven Extreme...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of intelligent networks Jg. 1; S. 43 - 51
1. Verfasser: Devikanniga, D.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier B.V 2020
Schlagworte:
ISSN:2666-6030, 2666-6030
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Osteoporosis is the silent killer disease that mostly occur in elderly people because of bone fragility and fracture. Early and accurate diagnosis of osteoporosis saves the patient life. This work focuses on developing an efficient classifier model to support this issue. For this, the proven Extreme learning machine (ELM) is selected. Then a novel hybrid metaheuristic optimization algorithm is developed on fusing two nature inspired metaheuristic optimization algorithms namely Artificial algae algorithm with multi-light source and Monarch butterfly optimization algorithm. It is named as HMBA algorithm. To further increase the diagnostic accuracy of ELM, it is optimized using HMBA. This proposed HMBA-ELM classifier model is used to diagnose osteoporosis from normal subjects. The discrimination efficiency of proposed classifier is compared with other similar classifiers based on the results produced. It is found that the proposed HMBA- ELM has yielded outstanding results mainly in terms of (sensitivity ​± ​SD/specificity ​± ​SD/precision ​± ​SD/MCR±SD/accuracy ±SD) as (99.45 ​± ​0.69/99.77 ​± ​0.31/96.32 ​± ​0.12/0.30 ​± ​0.18/99.70 ​± ​0.21), (98.11 ​± ​0.91/99.56 ​± ​0.28/90.03 ​± ​0.19/0.51 ​± ​0.09/99.49 ​± ​0.18) and (99.26 ​± ​1.13/99.54 ​± ​0.33/97.38 ​± ​0.22/0.4 ​± ​0.31/99.6 ​± ​0.32) respectively for three osteoporosis datasets namely Femoral neck, Lumbar spine and Femoral & Spine. This is highest among all other approaches with less computation time. •The novel HMBA algorithm is developed by fusing AAAML and MBO algorithm.•This procedure is named as Evolution – migrated AAAML.•The HMBA algorithm is used to train ELM for classification of osteoporosis datasets used in the study.•The experiments are conducted and evaluated using 10- fold cross validation on ten independent runs.•HMBA-ELM has produced higher accuracy of 99.7% in classifying osteoporotic datasets.
AbstractList Osteoporosis is the silent killer disease that mostly occur in elderly people because of bone fragility and fracture. Early and accurate diagnosis of osteoporosis saves the patient life. This work focuses on developing an efficient classifier model to support this issue. For this, the proven Extreme learning machine (ELM) is selected. Then a novel hybrid metaheuristic optimization algorithm is developed on fusing two nature inspired metaheuristic optimization algorithms namely Artificial algae algorithm with multi-light source and Monarch butterfly optimization algorithm. It is named as HMBA algorithm. To further increase the diagnostic accuracy of ELM, it is optimized using HMBA. This proposed HMBA-ELM classifier model is used to diagnose osteoporosis from normal subjects. The discrimination efficiency of proposed classifier is compared with other similar classifiers based on the results produced. It is found that the proposed HMBA- ELM has yielded outstanding results mainly in terms of (sensitivity ​± ​SD/specificity ​± ​SD/precision ​± ​SD/MCR±SD/accuracy ±SD) as (99.45 ​± ​0.69/99.77 ​± ​0.31/96.32 ​± ​0.12/0.30 ​± ​0.18/99.70 ​± ​0.21), (98.11 ​± ​0.91/99.56 ​± ​0.28/90.03 ​± ​0.19/0.51 ​± ​0.09/99.49 ​± ​0.18) and (99.26 ​± ​1.13/99.54 ​± ​0.33/97.38 ​± ​0.22/0.4 ​± ​0.31/99.6 ​± ​0.32) respectively for three osteoporosis datasets namely Femoral neck, Lumbar spine and Femoral & Spine. This is highest among all other approaches with less computation time. •The novel HMBA algorithm is developed by fusing AAAML and MBO algorithm.•This procedure is named as Evolution – migrated AAAML.•The HMBA algorithm is used to train ELM for classification of osteoporosis datasets used in the study.•The experiments are conducted and evaluated using 10- fold cross validation on ten independent runs.•HMBA-ELM has produced higher accuracy of 99.7% in classifying osteoporotic datasets.
Author Devikanniga, D.
Author_xml – sequence: 1
  givenname: D.
  surname: Devikanniga
  fullname: Devikanniga, D.
  email: mail4kanniga@gmail.com
  organization: Department of Computer Science and Engineering, Anna University, Chennai, 600025, India
BookMark eNp9kMtqwzAQRUVJoWmaH-jKPxB3rFh-QDclfUKgm3YtFHnsTLClIKnp6-drJ12ULoJAGsE9A_ecs5GxBhm7TCBOIMmuNjFtyMQcOMQgYoD0hI15lmWzDOYw-jOfsan3GwDgRQJFCmP2fUuqMdaTj2wdWR_Qbq3b_988mSYiE7BtqUGjcR_ZBuroC6sIP4LDDqMWlTNDtFN6TQajdwrriLqts7s-plygmjSpNlJto3C4resj3QU7rVXrcfr7Ttjr_d3L4nG2fH54WtwsZ5qLMp3labVSGce5UP0pFea8rnItqiIpVnmyqkueCpUUGqpSYFnnPIMKhMpRF7wW5XzC-GGv7ot5h7XcOuqU-5QJyMGg3MjBoBwMShCyN9hDxT9IU1CBrAlOUXscvT6g2JfaETrpNQ3-KnKog6wsHcN_AG3kkgo
CitedBy_id crossref_primary_10_1007_s11831_023_09957_2
crossref_primary_10_32890_jict2021_20_4_1
crossref_primary_10_1007_s44196_025_00846_z
crossref_primary_10_1371_journal_pone_0265338
crossref_primary_10_1016_j_bspc_2021_102709
Cites_doi 10.1093/qjmed/hcn022
10.1007/s00521-015-1923-y
10.1016/j.knosys.2014.04.042
10.1007/s11063-012-9236-y
10.1007/s12018-009-9064-4
10.1007/s001980050093
10.35940/ijitee.C8378.019320
10.1109/ETFA.2013.6647975
10.1001/jama.285.6.785
10.1002/jbmr.5650090621
10.1016/j.biosystems.2015.11.004
10.1359/jbmr.1997.12.11.1761
10.1016/j.jocd.2007.12.007
10.1142/S0218213014500146
10.1016/j.neucom.2016.06.023
10.1111/j.1467-8667.1994.tb00369.x
10.1016/j.patcog.2005.03.028
10.1162/neco.1991.3.4.617
10.1049/htl.2017.0059
10.1007/s00198-014-2794-2
10.1016/j.swevo.2015.05.003
ContentType Journal Article
Copyright 2020 The Author(s)
Copyright_xml – notice: 2020 The Author(s)
DBID 6I.
AAFTH
AAYXX
CITATION
DOI 10.1016/j.ijin.2020.05.004
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2666-6030
EndPage 51
ExternalDocumentID 10_1016_j_ijin_2020_05_004
S266660302030004X
GroupedDBID 6I.
AAEDW
AAFTH
AAXUO
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ARCSS
EBS
FDB
GROUPED_DOAJ
M~E
0R~
AALRI
AAYWO
AAYXX
ACVFH
ADCNI
ADVLN
AEUPX
AFPUW
AIGII
AITUG
AKBMS
AKYEP
CITATION
ID FETCH-LOGICAL-c2594-74dba62e35a5a59ae72fd7c5d818b71bf9245a18c0d95e9f7260d05a7ec82f593
ISSN 2666-6030
IngestDate Tue Nov 18 21:25:51 EST 2025
Thu Nov 20 00:56:22 EST 2025
Thu Jul 20 20:16:47 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Metaheuristic optimization
Osteoporosis
Monarch butterfly optimization
Artificial algae algorithm
Classification
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c2594-74dba62e35a5a59ae72fd7c5d818b71bf9245a18c0d95e9f7260d05a7ec82f593
OpenAccessLink http://dx.doi.org/10.1016/j.ijin.2020.05.004
PageCount 9
ParticipantIDs crossref_primary_10_1016_j_ijin_2020_05_004
crossref_citationtrail_10_1016_j_ijin_2020_05_004
elsevier_sciencedirect_doi_10_1016_j_ijin_2020_05_004
PublicationCentury 2000
PublicationDate 2020
2020-00-00
PublicationDateYYYYMMDD 2020-01-01
PublicationDate_xml – year: 2020
  text: 2020
PublicationDecade 2020
PublicationTitle International journal of intelligent networks
PublicationYear 2020
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Iliou, Anagnostopoulos, Anastassopoulos (bib18) 2014; 23
Xu, Shu (bib13) 2006
Looker, Wahner, Dunn, Calvo, Harris, Heyse, Johnston, Lindsay (bib23) 1998; 8
T. Matias, R. Araújo, C.H. Antunes, D, Gabriel, Genetically optimized extreme learning machine, in Proc. 18th Conf. On Emerging Technologies & Factory Automation (ETFA), Cagliari, Italy, pp. 1-8.
Han, Kamber (bib26) 2001
Centers for Disease Control and Prevention (Cdc) (bib22) 2005-2013
Looker, Orwoll, Johnston, Lindsay, Wahner, Dunn (bib24) 1997; 12
Ma (bib14) 2017; 15
Kanis (bib1) 1994; vol. 4
Looker, Orwoll, Johnston, Lindsay, Wahner, Dunn (bib2) 1997; 12
Mohapatra, Chakravarty, Dash (bib17) 2015; 24
Cao, Lin, Huang (bib12) 2012; 36
Devikanniga, Samuel Raj (bib15) 2019; 28
Yu, Ye, Xiang (bib20) 2016; 214
Li, Niu, Ma, Wang, Zhang (bib16) 2014; 67
Kumar, Kumar (bib34) 2020; 9
Bhattacharya, Nair, Bhan, Goyal (bib33) 2019
J Carey, Delaney (bib8) 2010; 8
Uymaz, Tezel, Yel (bib27) 2015; 138
Devikanniga, Raj (bib10) 2018; 5
Wahner, Looker, Dunn, Walters, Hauser, Novak (bib3) 1994; 9
El Maghraoui, Roux (bib5) 2008; 101
Hegazy, Moselhi, Fazio (bib30) 1994; 9
Zhu, Qin, Suganthan, Huang (bib11) 2005; 38
Wang, Deb, Cui (bib32) 2019; 31
Kurkova (bib29) 1991; 3
Looker, Borrud, Dawson-Hughes, Shepherd, Wright (bib25) 2012
Huang, Zhu, Siew (bib28) 2004
Baim, Binkley, Bilezikian, Kendler, Hans, Lewiecki, Silverman (bib6) 2008; 11
Devikanniga, Vetrivel, Badrinath (bib9) 2019; 1362
Harrar, Hamami, Akkoul, Lespessailles, Jennane (bib21) 2012
Klibanski, Campbell, Bassford, Blair, Boden, Dickersin, Gifford, Glasse, Goldring, Hruska, Johnson, McCauley, Russell (bib4) 2001; 285
Felicia, Beur, Leboff, Lewiecki, Tanner, Susan, Lindsay (bib7) 2014; 25
Yoo, Kim, Oh, Kim (bib19) 2013
Wahner (10.1016/j.ijin.2020.05.004_bib3) 1994; 9
Devikanniga (10.1016/j.ijin.2020.05.004_bib9) 2019; 1362
10.1016/j.ijin.2020.05.004_bib31
Yu (10.1016/j.ijin.2020.05.004_bib20) 2016; 214
J Carey (10.1016/j.ijin.2020.05.004_bib8) 2010; 8
Harrar (10.1016/j.ijin.2020.05.004_bib21) 2012
Centers for Disease Control and Prevention (Cdc) (10.1016/j.ijin.2020.05.004_bib22) 2005
Devikanniga (10.1016/j.ijin.2020.05.004_bib15) 2019; 28
Zhu (10.1016/j.ijin.2020.05.004_bib11) 2005; 38
Iliou (10.1016/j.ijin.2020.05.004_bib18) 2014; 23
Felicia (10.1016/j.ijin.2020.05.004_bib7) 2014; 25
Bhattacharya (10.1016/j.ijin.2020.05.004_bib33) 2019
Ma (10.1016/j.ijin.2020.05.004_bib14) 2017; 15
Looker (10.1016/j.ijin.2020.05.004_bib2) 1997; 12
Cao (10.1016/j.ijin.2020.05.004_bib12) 2012; 36
Kanis (10.1016/j.ijin.2020.05.004_bib1) 1994; vol. 4
Kumar (10.1016/j.ijin.2020.05.004_bib34) 2020; 9
Li (10.1016/j.ijin.2020.05.004_bib16) 2014; 67
Looker (10.1016/j.ijin.2020.05.004_bib25) 2012
Looker (10.1016/j.ijin.2020.05.004_bib23) 1998; 8
Klibanski (10.1016/j.ijin.2020.05.004_bib4) 2001; 285
Hegazy (10.1016/j.ijin.2020.05.004_bib30) 1994; 9
Yoo (10.1016/j.ijin.2020.05.004_bib19) 2013
Devikanniga (10.1016/j.ijin.2020.05.004_bib10) 2018; 5
Kurkova (10.1016/j.ijin.2020.05.004_bib29) 1991; 3
El Maghraoui (10.1016/j.ijin.2020.05.004_bib5) 2008; 101
Wang (10.1016/j.ijin.2020.05.004_bib32) 2019; 31
Xu (10.1016/j.ijin.2020.05.004_bib13) 2006
Han (10.1016/j.ijin.2020.05.004_bib26) 2001
Uymaz (10.1016/j.ijin.2020.05.004_bib27) 2015; 138
Mohapatra (10.1016/j.ijin.2020.05.004_bib17) 2015; 24
Huang (10.1016/j.ijin.2020.05.004_bib28) 2004
Baim (10.1016/j.ijin.2020.05.004_bib6) 2008; 11
Looker (10.1016/j.ijin.2020.05.004_bib24) 1997; 12
References_xml – reference: T. Matias, R. Araújo, C.H. Antunes, D, Gabriel, Genetically optimized extreme learning machine, in Proc. 18th Conf. On Emerging Technologies & Factory Automation (ETFA), Cagliari, Italy, pp. 1-8.
– volume: 9
  start-page: 145
  year: 1994
  end-page: 159
  ident: bib30
  article-title: Developing practical neural network application using backpropagation
  publication-title: J. Microcomput. Civ. Eng.
– volume: 8
  start-page: 113
  year: 2010
  end-page: 121
  ident: bib8
  article-title: T-Scores and Z-Scores
  publication-title: Clin. Rev. Bone Miner. Metabol.
– volume: 5
  start-page: 70
  year: 2018
  end-page: 75
  ident: bib10
  article-title: Classification of osteoporosis by artificial neural network based on monarch butterfly optimization algorithm
  publication-title: IET HealthcareTechnol. Lett.
– year: 2012
  ident: bib25
  article-title: Osteoporosis or Low Bone Mass at the Femur Neck or Lumbar Spine in Older Adults: United States, NCHS Data Brief No. 93
– volume: 25
  start-page: 2359
  year: 2014
  end-page: 2381
  ident: bib7
  article-title: The clinician’s guide to prevention and treatment of osteoporosis
  publication-title: Osteoporos. Int.
– volume: 1362
  start-page: 20
  year: 2019
  ident: bib9
  article-title: Review of meta-heuristic optimization based artificial neural networks and its applications
  publication-title: J. Phys. Conf.
– volume: 8
  start-page: 468
  year: 1998
  end-page: 490
  ident: bib23
  article-title: Updated data on proximal femur bone mineral levels of US adults
  publication-title: Osteoporos. Int.
– volume: vol. 4
  start-page: 368
  year: 1994
  end-page: 381
  ident: bib1
  article-title: WHO Study Group, Assessment of Fracture Risk and its Application to Screening for Postmenopausal Women for Osteoporosis: Synopsis of a WHO Report
– volume: 101
  start-page: 605
  year: 2008
  end-page: 617
  ident: bib5
  article-title: DXA scanning in clinical practice
  publication-title: QJM: Int. J. Med.
– start-page: 25
  year: 2004
  end-page: 29
  ident: bib28
  article-title: Extreme learning machine: a new learning scheme of feedforward neural networks
  publication-title: Proc. Int. Joint Conf. On Neural Networks, Budapest, Hungary
– start-page: 181
  year: 2013
  end-page: 188
  ident: bib19
  article-title: Risk prediction of femoral neck osteoporosis using machine learning and conventional methods
  publication-title: Advances in Computational Intelligence, IWANN 2013
– start-page: 217
  year: 2012
  end-page: 221
  ident: bib21
  article-title: Osteoporosis assessment using Multilayer Perceptron neural networks
  publication-title: 2012 3rd International Conference on Image Processing Theory
– volume: 24
  start-page: 25
  year: 2015
  end-page: 49
  ident: bib17
  article-title: An improved cuckoo search based extreme learning machine for medical data classification
  publication-title: Swarm Evol. Comput.
– volume: 31
  start-page: 1995
  year: 2019
  end-page: 2014
  ident: bib32
  article-title: Monarch butterfly optimization
  publication-title: Neural Comput. Appl.
– year: 2001
  ident: bib26
  article-title: Data Mining Concepts and Techniques
– volume: 285
  start-page: 785
  year: 2001
  end-page: 795
  ident: bib4
  article-title: Osteoporosis prevention, diagnosis, and therapy
  publication-title: J. Am. Med. Assoc.
– volume: 23
  start-page: 1450014
  year: 2014
  ident: bib18
  article-title: Osteoporosis detection using machine learning techniques and feature selection
  publication-title: Int. J. Artif. Intell. Tool.
– volume: 9
  start-page: 951
  year: 1994
  end-page: 960
  ident: bib3
  article-title: Quality control of bone densitometry in a National Health Survey (NHANES 111) using three mobile examination centers
  publication-title: J. Bone Miner. Res.
– start-page: 644
  year: 2006
  end-page: 652
  ident: bib13
  article-title: Evolutionary extreme learning machine – based on particle swarm optimization
  publication-title: Advances in Neural Networks - ISNN 2006
– volume: 12
  start-page: 1761
  year: 1997
  end-page: 1768
  ident: bib24
  article-title: Prevalence of low femoral bone density in older US adults from NHANES III
  publication-title: J. Bone Miner. Res.
– volume: 138
  start-page: 25
  year: 2015
  end-page: 38
  ident: bib27
  article-title: Artificial algae algorithm with multi-light source for numerical optimization and applications
  publication-title: Biosystems
– volume: 3
  start-page: 617
  year: 1991
  end-page: 622
  ident: bib29
  article-title: Kolmogorov’s theorem is relevant
  publication-title: Neural Comput.
– volume: 15
  start-page: 135
  year: 2017
  end-page: 147
  ident: bib14
  article-title: An efficient optimization method for extreme learning machine using artificial bee colony
  publication-title: J. Digit. Inf. Manag.
– volume: 9
  start-page: 696
  year: 2020
  end-page: 700
  ident: bib34
  article-title: Classification using artificial neural network optimized with bat algorithm
  publication-title: Int. J. Innovative Technol. Explor. Eng.
– volume: 38
  start-page: 1759
  year: 2005
  end-page: 1763
  ident: bib11
  article-title: Evolutionary extreme learning machine
  publication-title: Pattern Recogn.
– volume: 28
  start-page: 213
  year: 2019
  end-page: 236
  ident: bib15
  article-title: Improving classification accuracy using hybrid of extreme learning machine and artificial algae algorithm with multi-light source
  publication-title: International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems
– volume: 214
  start-page: 376
  year: 2016
  end-page: 381
  ident: bib20
  article-title: Application of artificial neural network in the diagnostic system of osteoporosis
  publication-title: Neurocomputing
– volume: 11
  start-page: 75
  year: 2008
  end-page: 91
  ident: bib6
  article-title: Official positions of the international society for clinical densitometry and executive summary of the 2007 ISCD position development conference
  publication-title: J. Clin. Densitom.
– volume: 36
  start-page: 285
  year: 2012
  end-page: 305
  ident: bib12
  article-title: Self-adaptive evolutionary extreme learning machine
  publication-title: Neural Process. Lett.
– start-page: 1047
  year: 2019
  end-page: 1052
  ident: bib33
  article-title: Computer based automatic detection and classification of osteoporosis in bone radiographs
  publication-title: Proc. 6th Int. Conf. On Signal Processing and Integrated Networks (SPIN)
– volume: 67
  start-page: 278
  year: 2014
  end-page: 289
  ident: bib16
  article-title: Tuning extreme learning machine by an improved artificial bee colony to model and optimize the boiler efficiency
  publication-title: Knowl.-Based Syst.
– year: 2005-2013
  ident: bib22
  article-title: National Center for Health Statistics (NCHS). National Health and Nutrition Examination Survey Data
– volume: 12
  start-page: 1761
  year: 1997
  end-page: 1768
  ident: bib2
  article-title: Prevalence of low femoral bone density in older US adults from NHANES III
  publication-title: J. Bone Miner. Res.
– start-page: 181
  year: 2013
  ident: 10.1016/j.ijin.2020.05.004_bib19
  article-title: Risk prediction of femoral neck osteoporosis using machine learning and conventional methods
– volume: 101
  start-page: 605
  year: 2008
  ident: 10.1016/j.ijin.2020.05.004_bib5
  article-title: DXA scanning in clinical practice
  publication-title: QJM: Int. J. Med.
  doi: 10.1093/qjmed/hcn022
– volume: 31
  start-page: 1995
  year: 2019
  ident: 10.1016/j.ijin.2020.05.004_bib32
  article-title: Monarch butterfly optimization
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-015-1923-y
– volume: 67
  start-page: 278
  year: 2014
  ident: 10.1016/j.ijin.2020.05.004_bib16
  article-title: Tuning extreme learning machine by an improved artificial bee colony to model and optimize the boiler efficiency
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2014.04.042
– volume: 36
  start-page: 285
  year: 2012
  ident: 10.1016/j.ijin.2020.05.004_bib12
  article-title: Self-adaptive evolutionary extreme learning machine
  publication-title: Neural Process. Lett.
  doi: 10.1007/s11063-012-9236-y
– volume: 8
  start-page: 113
  year: 2010
  ident: 10.1016/j.ijin.2020.05.004_bib8
  article-title: T-Scores and Z-Scores
  publication-title: Clin. Rev. Bone Miner. Metabol.
  doi: 10.1007/s12018-009-9064-4
– volume: 8
  start-page: 468
  year: 1998
  ident: 10.1016/j.ijin.2020.05.004_bib23
  article-title: Updated data on proximal femur bone mineral levels of US adults
  publication-title: Osteoporos. Int.
  doi: 10.1007/s001980050093
– volume: 9
  start-page: 696
  year: 2020
  ident: 10.1016/j.ijin.2020.05.004_bib34
  article-title: Classification using artificial neural network optimized with bat algorithm
  publication-title: Int. J. Innovative Technol. Explor. Eng.
  doi: 10.35940/ijitee.C8378.019320
– volume: vol. 4
  start-page: 368
  year: 1994
  ident: 10.1016/j.ijin.2020.05.004_bib1
– start-page: 217
  year: 2012
  ident: 10.1016/j.ijin.2020.05.004_bib21
  article-title: Osteoporosis assessment using Multilayer Perceptron neural networks
– ident: 10.1016/j.ijin.2020.05.004_bib31
  doi: 10.1109/ETFA.2013.6647975
– year: 2012
  ident: 10.1016/j.ijin.2020.05.004_bib25
– volume: 1362
  start-page: 20
  year: 2019
  ident: 10.1016/j.ijin.2020.05.004_bib9
  article-title: Review of meta-heuristic optimization based artificial neural networks and its applications
  publication-title: J. Phys. Conf.
– start-page: 644
  year: 2006
  ident: 10.1016/j.ijin.2020.05.004_bib13
  article-title: Evolutionary extreme learning machine – based on particle swarm optimization
– volume: 285
  start-page: 785
  year: 2001
  ident: 10.1016/j.ijin.2020.05.004_bib4
  article-title: Osteoporosis prevention, diagnosis, and therapy
  publication-title: J. Am. Med. Assoc.
  doi: 10.1001/jama.285.6.785
– volume: 15
  start-page: 135
  year: 2017
  ident: 10.1016/j.ijin.2020.05.004_bib14
  article-title: An efficient optimization method for extreme learning machine using artificial bee colony
  publication-title: J. Digit. Inf. Manag.
– volume: 9
  start-page: 951
  year: 1994
  ident: 10.1016/j.ijin.2020.05.004_bib3
  article-title: Quality control of bone densitometry in a National Health Survey (NHANES 111) using three mobile examination centers
  publication-title: J. Bone Miner. Res.
  doi: 10.1002/jbmr.5650090621
– volume: 138
  start-page: 25
  year: 2015
  ident: 10.1016/j.ijin.2020.05.004_bib27
  article-title: Artificial algae algorithm with multi-light source for numerical optimization and applications
  publication-title: Biosystems
  doi: 10.1016/j.biosystems.2015.11.004
– volume: 12
  start-page: 1761
  year: 1997
  ident: 10.1016/j.ijin.2020.05.004_bib2
  article-title: Prevalence of low femoral bone density in older US adults from NHANES III
  publication-title: J. Bone Miner. Res.
  doi: 10.1359/jbmr.1997.12.11.1761
– volume: 11
  start-page: 75
  year: 2008
  ident: 10.1016/j.ijin.2020.05.004_bib6
  article-title: Official positions of the international society for clinical densitometry and executive summary of the 2007 ISCD position development conference
  publication-title: J. Clin. Densitom.
  doi: 10.1016/j.jocd.2007.12.007
– volume: 23
  start-page: 1450014
  year: 2014
  ident: 10.1016/j.ijin.2020.05.004_bib18
  article-title: Osteoporosis detection using machine learning techniques and feature selection
  publication-title: Int. J. Artif. Intell. Tool.
  doi: 10.1142/S0218213014500146
– volume: 214
  start-page: 376
  year: 2016
  ident: 10.1016/j.ijin.2020.05.004_bib20
  article-title: Application of artificial neural network in the diagnostic system of osteoporosis
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2016.06.023
– start-page: 25
  year: 2004
  ident: 10.1016/j.ijin.2020.05.004_bib28
  article-title: Extreme learning machine: a new learning scheme of feedforward neural networks
– volume: 28
  start-page: 213
  year: 2019
  ident: 10.1016/j.ijin.2020.05.004_bib15
  article-title: Improving classification accuracy using hybrid of extreme learning machine and artificial algae algorithm with multi-light source
– start-page: 1047
  year: 2019
  ident: 10.1016/j.ijin.2020.05.004_bib33
  article-title: Computer based automatic detection and classification of osteoporosis in bone radiographs
– volume: 9
  start-page: 145
  year: 1994
  ident: 10.1016/j.ijin.2020.05.004_bib30
  article-title: Developing practical neural network application using backpropagation
  publication-title: J. Microcomput. Civ. Eng.
  doi: 10.1111/j.1467-8667.1994.tb00369.x
– volume: 38
  start-page: 1759
  year: 2005
  ident: 10.1016/j.ijin.2020.05.004_bib11
  article-title: Evolutionary extreme learning machine
  publication-title: Pattern Recogn.
  doi: 10.1016/j.patcog.2005.03.028
– volume: 12
  start-page: 1761
  year: 1997
  ident: 10.1016/j.ijin.2020.05.004_bib24
  article-title: Prevalence of low femoral bone density in older US adults from NHANES III
  publication-title: J. Bone Miner. Res.
  doi: 10.1359/jbmr.1997.12.11.1761
– year: 2005
  ident: 10.1016/j.ijin.2020.05.004_bib22
– volume: 3
  start-page: 617
  year: 1991
  ident: 10.1016/j.ijin.2020.05.004_bib29
  article-title: Kolmogorov’s theorem is relevant
  publication-title: Neural Comput.
  doi: 10.1162/neco.1991.3.4.617
– volume: 5
  start-page: 70
  year: 2018
  ident: 10.1016/j.ijin.2020.05.004_bib10
  article-title: Classification of osteoporosis by artificial neural network based on monarch butterfly optimization algorithm
  publication-title: IET HealthcareTechnol. Lett.
  doi: 10.1049/htl.2017.0059
– year: 2001
  ident: 10.1016/j.ijin.2020.05.004_bib26
– volume: 25
  start-page: 2359
  year: 2014
  ident: 10.1016/j.ijin.2020.05.004_bib7
  article-title: The clinician’s guide to prevention and treatment of osteoporosis
  publication-title: Osteoporos. Int.
  doi: 10.1007/s00198-014-2794-2
– volume: 24
  start-page: 25
  year: 2015
  ident: 10.1016/j.ijin.2020.05.004_bib17
  article-title: An improved cuckoo search based extreme learning machine for medical data classification
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2015.05.003
SSID ssj0002810840
Score 2.1965063
Snippet Osteoporosis is the silent killer disease that mostly occur in elderly people because of bone fragility and fracture. Early and accurate diagnosis of...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 43
SubjectTerms Artificial algae algorithm
Classification
Metaheuristic optimization
Monarch butterfly optimization
Osteoporosis
Title Diagnosis of osteoporosis using intelligence of optimized extreme learning machine with improved artificial algae algorithm
URI https://dx.doi.org/10.1016/j.ijin.2020.05.004
Volume 1
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2666-6030
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002810840
  issn: 2666-6030
  databaseCode: DOA
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2666-6030
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002810840
  issn: 2666-6030
  databaseCode: M~E
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT-MwELaqsgcuwL5EWRb5sLcqKHHjOj6ihRWXRRxYiVuUOA5Kt02rtiAEEr-dGT_SUFi0HFAlq7GcpO18Hc9MZr4h5Ac4VQUbKB5ELJNBzKI4yGXOAnQVVKGjWMvSNJsQZ2fJ5aU873QefC3MzVjUdXJ7K2fvKmqYA2Fj6ewbxN1cFCbgPQgdRhA7jP8l-GObPGd5RrCEYwomtjm-XtgClhYJJy4BpTGp7sDwBD2N0ULfSeKqPzGZltoGaysTfoBleE_HO4GFIBrH6RyWTNqW7tNQ4xpBhb3_sl_bJPRVc3vYpv9iFyUb7j0-bAclWLjSWrDhD4Nh6B626BfmvNptqU3L1OQ2YEtA-0y12yjD6LAaVchby0LDuGp7Fz_l0V7b35qsQ5_QNkrxGileIw15auhkN5jgElMCfz-sYnQsicLE1NQ238DVXdkUwfWP8rJt07JXLnbIlnM06JEFyEfS0fUnsu2beFCn0z-T-wYvdFrSNl6owQtt48Us8XihDi_U44U6vFDEC_V4oSu8UIMX2uDlC_nz6-Ti52ngOnIECtzkOBBxkWdDpgc8g5fMtGBlIRQvwOzLRZSX4M3zLEpUWEgO_3IB3nIR8kxolbCSy8FX0q2ntd4lVMVKZIVE81eC0xCD-zTMwxKzjjOmedQjkf8tU-Xo6rFryjj9txh7pN-cM7NkLa-u5l5EqTM3rRmZAuReOW_vTXf5RjbxyEbt9kl3Ob_W38kHdbOsFvMDEwI6MKh7BEpdqUc
linkProvider ISSN International Centre
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Diagnosis+of+osteoporosis+using+intelligence+of+optimized+extreme+learning+machine+with+improved+artificial+algae+algorithm&rft.jtitle=International+journal+of+intelligent+networks&rft.au=Devikanniga%2C+D.&rft.date=2020&rft.issn=2666-6030&rft.eissn=2666-6030&rft.volume=1&rft.spage=43&rft.epage=51&rft_id=info:doi/10.1016%2Fj.ijin.2020.05.004&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ijin_2020_05_004
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2666-6030&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2666-6030&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2666-6030&client=summon