A Universal High‐Gain Low‐Profile All‐Dielectric Lens Design Method for Feed Antennas

ABSTRACT An automatic optimization design method of all‐dielectric lenses for arbitrary feed antennas is presented in this article. The lens optimization process is divided into cross‐section parameters optimization and profile parameters optimization. First, the phase of antenna radiation field is...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Microwave and optical technology letters Jg. 67; H. 5
Hauptverfasser: Peng, Ao, Chen, Juan, Mou, Chunhui, Zhang, Lingpu, Nan, Qin
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York Wiley Subscription Services, Inc 01.05.2025
Schlagworte:
ISSN:0895-2477, 1098-2760
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:ABSTRACT An automatic optimization design method of all‐dielectric lenses for arbitrary feed antennas is presented in this article. The lens optimization process is divided into cross‐section parameters optimization and profile parameters optimization. First, the phase of antenna radiation field is clustered using the K‐means algorithm to optimize the cross‐section parameters. Then, the simulated annealing‐particle swarm optimization algorithm (SA‐PSO) is used to further obtain the profile parameters. The optimization results for two typical feed antennas are given to verify the feasibility of proposed method. For a horn antenna in 18–26 GHz band, the maximum gain can be improved by 6.94 dBi with a minimum profile size of 1.69 λ 0 ${\lambda }_{0}$. For a Bow‐tie antenna operating at 0.35–0.75 GHz band, the maximum gain can be improved by 2.39 dBi with a profile of 0.055 λ 0 ${\lambda }_{0}$. The results show that proposed method has the properties of high gain, controllable profile, and universal applicability. It can be applied to the design of high‐gain lenses for antennas in various complex communication scenarios.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0895-2477
1098-2760
DOI:10.1002/mop.70211