The Improved Informed‐RRT Algorithm, Which Optimizes the Sampling Strategy and Integrates an Artificial Potential Field

ABSTRACT This article presents an algorithm for mobile robots that enables autonomous navigation in complex environments. Currently, achieving autonomous navigation for ground mobile robots in intricate and unstructured settings continues to pose significant challenges. To address issues such as dis...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of field robotics Ročník 42; číslo 8; s. 4033 - 4052
Hlavní autoři: Kai‐shen, Kang, Hai‐long, Huang, Zi‐qi, S. U., Hai‐ze, Wang
Médium: Journal Article
Jazyk:angličtina
Vydáno: Hoboken Wiley Subscription Services, Inc 01.12.2025
Témata:
ISSN:1556-4959, 1556-4967
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract ABSTRACT This article presents an algorithm for mobile robots that enables autonomous navigation in complex environments. Currently, achieving autonomous navigation for ground mobile robots in intricate and unstructured settings continues to pose significant challenges. To address issues such as dispersed sampling points, low sampling efficiency, and excessive path waypoints encountered in traditional Rapidly‐Exploring Random Trees (RRT) algorithms, this paper proposes an Optimized Sampling Strategy and Artificial Potential Fields Fusion‐based Informed‐RRT* global path planning algorithm. Initially, sampling angles are determined based on the position of the target point, and the workspace is partitioned into regions with varying levels of importance. Subsequently, an improved artificial potential fields algorithm is integrated to further refine the resultant forces acting on the nodes. Finally, cubic spline interpolation is utilized to smooth the generated path. The proposed algorithm was validated through simulation and experimental studies conducted on simple, narrow, and complex maps. The results demonstrated significant reductions in search time, path length, and the number of path waypoints compared to conventional A*, Dijkstra, RRT, RRT*, and Informed‐RRT algorithms. Additionally, the smoothness of the generated paths was notably improved. In the virtual maze experiments and real‐world environment tests, the improved algorithm presented in this paper demonstrates significant advantages over five other algorithms.
AbstractList This article presents an algorithm for mobile robots that enables autonomous navigation in complex environments. Currently, achieving autonomous navigation for ground mobile robots in intricate and unstructured settings continues to pose significant challenges. To address issues such as dispersed sampling points, low sampling efficiency, and excessive path waypoints encountered in traditional Rapidly‐Exploring Random Trees (RRT) algorithms, this paper proposes an Optimized Sampling Strategy and Artificial Potential Fields Fusion‐based Informed‐RRT* global path planning algorithm. Initially, sampling angles are determined based on the position of the target point, and the workspace is partitioned into regions with varying levels of importance. Subsequently, an improved artificial potential fields algorithm is integrated to further refine the resultant forces acting on the nodes. Finally, cubic spline interpolation is utilized to smooth the generated path. The proposed algorithm was validated through simulation and experimental studies conducted on simple, narrow, and complex maps. The results demonstrated significant reductions in search time, path length, and the number of path waypoints compared to conventional A*, Dijkstra, RRT, RRT*, and Informed‐RRT algorithms. Additionally, the smoothness of the generated paths was notably improved. In the virtual maze experiments and real‐world environment tests, the improved algorithm presented in this paper demonstrates significant advantages over five other algorithms.
ABSTRACT This article presents an algorithm for mobile robots that enables autonomous navigation in complex environments. Currently, achieving autonomous navigation for ground mobile robots in intricate and unstructured settings continues to pose significant challenges. To address issues such as dispersed sampling points, low sampling efficiency, and excessive path waypoints encountered in traditional Rapidly‐Exploring Random Trees (RRT) algorithms, this paper proposes an Optimized Sampling Strategy and Artificial Potential Fields Fusion‐based Informed‐RRT* global path planning algorithm. Initially, sampling angles are determined based on the position of the target point, and the workspace is partitioned into regions with varying levels of importance. Subsequently, an improved artificial potential fields algorithm is integrated to further refine the resultant forces acting on the nodes. Finally, cubic spline interpolation is utilized to smooth the generated path. The proposed algorithm was validated through simulation and experimental studies conducted on simple, narrow, and complex maps. The results demonstrated significant reductions in search time, path length, and the number of path waypoints compared to conventional A*, Dijkstra, RRT, RRT*, and Informed‐RRT algorithms. Additionally, the smoothness of the generated paths was notably improved. In the virtual maze experiments and real‐world environment tests, the improved algorithm presented in this paper demonstrates significant advantages over five other algorithms.
Author Zi‐qi, S. U.
Hai‐ze, Wang
Kai‐shen, Kang
Hai‐long, Huang
Author_xml – sequence: 1
  givenname: Kang
  surname: Kai‐shen
  fullname: Kai‐shen, Kang
  email: 814047794@qq.com
  organization: Liaoning University of Technology
– sequence: 2
  givenname: Huang
  surname: Hai‐long
  fullname: Hai‐long, Huang
  organization: Liaoning University of Technology
– sequence: 3
  givenname: S. U.
  surname: Zi‐qi
  fullname: Zi‐qi, S. U.
  organization: Liaoning University of Technology
– sequence: 4
  givenname: Wang
  surname: Hai‐ze
  fullname: Hai‐ze, Wang
  organization: Liaoning University of Technology
BookMark eNp1kE1OwzAQhS1UJNrCghtYYoVEWjuu87MsFYVKlYraIpaWk0waV_kpjgsKK47AGTkJDkHsmM28J30zo3kD1CurEhC6pGRECXHHuopGPrF1gvqUc8-ZhJ7f-9M8PEODut4TMmFByPuo2WaAF8VBV6-Q4EWZVrqA5Ovjc73e4mm-q7QyWXGDnzMVZ3h1MKpQ71BjY8c2sjjkqtzhjdHSwK7Bsmx3WNn62lo81UalKlYyx4-VgdK0aq4gT87RaSrzGi5--xA9ze-2swdnubpfzKZLJ3Z5SBwqE8biECShMmWERpIBsMiHOPAkEIg4SWPwPTfwIhYAT0hCuRunXPo-BUjYEF11e-2PL0eojdhXR13ak4K5vssYdalnqeuOinVV1xpScdCqkLoRlIg2WWGTFT_JWnbcsW8qh-Z_UKxXt93ENy9Gfqc
Cites_doi 10.1109/ACCESS.2018.2871222
10.1016/j.asoc.2011.11.011
10.1016/0925-2312(94)00018-N
10.1002/rob.22055
10.1007/s11370-022-00416-8
10.1155/2022/3477265
10.1016/j.future.2023.02.004
10.1016/j.eswa.2024.124121
10.1016/j.eswa.2022.119410
10.1109/LRA.2023.3290819
10.1016/j.cmpb.2022.107202
10.1007/s00500-015-1750-1
10.1016/j.eswa.2022.119137
10.1109/JSYST.2023.3237613
10.3390/s21248312
10.1109/100.580977
10.1016/j.cie.2022.108123
10.1016/j.cie.2021.107230
10.1016/j.isatra.2019.08.018
10.1109/TRO.2004.838008
10.1016/j.jocs.2022.101937
10.1109/TII.2015.2416435
10.1016/j.trb.2008.05.010
10.1038/s41598-024-59413-9
10.1016/j.advengsoft.2013.12.003
10.1016/j.eswa.2021.115457
10.1017/S0263574723001674
10.1016/j.neucom.2012.09.019
10.1016/j.asoc.2009.02.014
10.3390/drones7050331
10.1007/s12555-022-0834-9
10.3390/en14206642
10.3390/drones8040125
10.1017/S0263574709990567
10.1016/j.jksuci.2021.02.015
10.1016/j.engappai.2023.106875
10.1016/j.aei.2021.101376
10.1016/j.oceaneng.2023.114595
10.1080/00207543.2021.2015806
10.1155/2020/1849240
10.3390/s23187918
10.1016/j.isatra.2022.09.007
10.1016/j.eswa.2020.113425
10.1109/IROS.2014.6942976
ContentType Journal Article
Copyright 2025 Wiley Periodicals LLC.
Copyright_xml – notice: 2025 Wiley Periodicals LLC.
DBID AAYXX
CITATION
7SC
7SP
7TB
8FD
F28
FR3
JQ2
L7M
L~C
L~D
DOI 10.1002/rob.70000
DatabaseName CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Computer and Information Systems Abstracts Professional
DatabaseTitleList CrossRef
Technology Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1556-4967
EndPage 4052
ExternalDocumentID 10_1002_rob_70000
ROB70000
Genre researchArticle
GrantInformation_xml – fundername: This study was supported Liaoning University of Technology.
GroupedDBID .3N
.4S
.DC
.GA
.Y3
05W
0R~
10A
1L6
1OC
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
85S
8UM
930
A03
AAESR
AAEVG
AAHQN
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCZN
ACFBH
ACGFS
ACIWK
ACPOU
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIYS
ADIZJ
ADKYN
ADMGS
ADMLS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUYR
AFBPY
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AIDQK
AIDYY
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ARCSS
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EDO
EJD
F00
F01
F04
FEDTE
G-S
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HVGLF
HZ~
I-F
IX1
J0M
JPC
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MK~
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RX1
SUPJJ
TUS
UB1
V2E
W8V
W99
WBKPD
WIH
WIK
WLBEL
WOHZO
WQJ
WXSBR
WYISQ
XG1
XV2
~02
~IA
~WT
AAYXX
CITATION
O8X
7SC
7SP
7TB
8FD
F28
FR3
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c2590-1ad33c9ea01af301ba3ee3b7ec86ae0eb50fce76286b38e5d0d152cf5a771eed3
IEDL.DBID DRFUL
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001508703900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1556-4959
IngestDate Mon Nov 17 11:40:27 EST 2025
Thu Nov 27 01:00:23 EST 2025
Mon Nov 17 09:10:29 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2590-1ad33c9ea01af301ba3ee3b7ec86ae0eb50fce76286b38e5d0d152cf5a771eed3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 3272331216
PQPubID 1006410
PageCount 20
ParticipantIDs proquest_journals_3272331216
crossref_primary_10_1002_rob_70000
wiley_primary_10_1002_rob_70000_ROB70000
PublicationCentury 2000
PublicationDate December 2025
2025-12-00
20251201
PublicationDateYYYYMMDD 2025-12-01
PublicationDate_xml – month: 12
  year: 2025
  text: December 2025
PublicationDecade 2020
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Journal of field robotics
PublicationYear 2025
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2021; 21
2009; 43
2023; 17
2023; 7
2023; 8
2015; 11
2023; 143
2014; 69
2021; 184
2023; 126
2013; 103
2005; 21
2024; 14
2021; 50
2012; 12
1997; 4
2023; 61
1995; 8
2009; 28
2021; 14
2018; 6
2021; 10
2022; 2022
2020; 2020
2023; 67
2014; 2
2023; 23
2020; 97
2020; 152
2021; 156
2024; 8
2023; 134
2022; 34
2016; 20
2023; 215
2009; 9
2024; 252
2023; 213
2023; 279
2022; 15
2024; 42
2024; 22
2022; 227
2022; 39
2022; 168
e_1_2_9_30_1
e_1_2_9_31_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_10_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_12_1
e_1_2_9_33_1
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_14_1
e_1_2_9_39_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_19_1
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_42_1
e_1_2_9_20_1
e_1_2_9_40_1
e_1_2_9_45_1
e_1_2_9_21_1
Kumar P. P. (e_1_2_9_22_1) 2022; 34
e_1_2_9_46_1
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_23_1
e_1_2_9_44_1
e_1_2_9_8_1
e_1_2_9_7_1
e_1_2_9_6_1
e_1_2_9_5_1
e_1_2_9_4_1
e_1_2_9_3_1
e_1_2_9_2_1
e_1_2_9_9_1
e_1_2_9_26_1
e_1_2_9_25_1
e_1_2_9_28_1
e_1_2_9_27_1
Wang J. (e_1_2_9_35_1) 2021; 10
e_1_2_9_29_1
References_xml – volume: 14
  start-page: 6642
  issue: 20
  year: 2021
  article-title: Efficient Local Path Planning Algorithm Using Artificial Potential Field Supported by Augmented Reality
  publication-title: Energies
– volume: 8
  start-page: 195
  issue: 2
  year: 1995
  end-page: 212
  article-title: Fast Computation of Optimal Paths Using a Parallel Dijkstra Algorithm With Embedded Constraints
  publication-title: Neurocomputing
– volume: 126
  year: 2023
  article-title: SOF‐RRT*: An Improved Path Planning Algorithm Using Spatial Offset Sampling
  publication-title: Engineering Applications of Artificial Intelligence
– volume: 34
  start-page: 6019
  issue: 8PB
  year: 2022
  end-page: 6039
  article-title: Localization Strategies for Autonomous Mobile Robots: A Review
  publication-title: Journal of King Saud University ‐ Computer and Information Sciences
– volume: 10
  start-page: 314
  issue: 12
  year: 2021
  article-title: Path Planning for Automatic Guided Vehicles (AGVs) Fusing MH‐RRT With Improved Teb//Actuators
  publication-title: MDPI
– volume: 21
  start-page: 8312
  issue: 24
  year: 2021
  article-title: An Improved Timed Elastic Band (TEB) Algorithm of Autonomous Ground Vehicle (AGV) in Complex Environment
  publication-title: Sensors
– volume: 252
  year: 2024
  article-title: Density Gradient‐RRT: An Improved Rapidly Exploring Random Tree Algorithm for UAV Path Planning
  publication-title: Expert Systems With Applications
– volume: 152
  year: 2020
  article-title: PQ‐RRT*: An Improved Path Planning Algorithm for Mobile Robots
  publication-title: Expert Systems With Applications
– volume: 50
  year: 2021
  article-title: Lifting Path Planning of Mobile Cranes Based on an Improved RRT Algorithm
  publication-title: Advanced Engineering Informatics
– volume: 97
  start-page: 415
  year: 2020
  end-page: 430
  article-title: Efficient Path Planning for UAV Formation via Comprehensively Improved Particle Swarm Optimization
  publication-title: ISA Transactions
– volume: 22
  start-page: 241
  issue: 1
  year: 2024
  end-page: 251
  article-title: Adaptive Informed RRT*: Asymptotically Optimal Path Planning With Elliptical Sampling Pools in Narrow Passages
  publication-title: International Journal of Control, Automation and Systems
– volume: 168
  year: 2022
  article-title: Global Path Planning Based on a Bidirectional Alternating Search A* Algorithm for Mobile Robots
  publication-title: Computers & Industrial Engineering
– volume: 6
  start-page: 53296
  year: 2018
  end-page: 53306
  article-title: Path Planning of Industrial Robot Based on Improved RRT Algorithm in Complex Environments
  publication-title: IEEE Access
– volume: 134
  start-page: 58
  year: 2023
  end-page: 73
  article-title: A Novel Model Predictive Artificial Potential Field Based Ship Motion Planning Method Considering COLREGs for Complex Encounter Scenarios
  publication-title: ISA Transactions
– volume: 15
  start-page: 289
  issue: 3
  year: 2022
  end-page: 306
  article-title: Auto‐Splitting D* Lite Path Planning for Large Disaster Area
  publication-title: Intelligent Service Robotics
– volume: 213
  year: 2023
  article-title: UAV Trajectory Planning Based on Bi-Directional APF‐RRT* Algorithm With Goal-Biased
  publication-title: Expert Systems With Applications
– volume: 61
  start-page: 707
  issue: 3
  year: 2023
  end-page: 725
  article-title: Efficient Path Planning for Automated Guided Vehicles Using A* (Astar) Algorithm Incorporating Turning Costs in Search Heuristic
  publication-title: International Journal of Production Research
– volume: 43
  start-page: 97
  issue: 1
  year: 2009
  end-page: 107
  article-title: Hyperstar: A Multi‐Path Astar Algorithm for Risk Averse Vehicle Navigation
  publication-title: Transportation Research Part B: Methodological
– volume: 28
  start-page: 833
  issue: 6
  year: 2009
  end-page: 846
  article-title: Hybrid Ant Colony and Immune Network Algorithm Based on Improved APF for Optimal Motion Planning
  publication-title: Robotica
– volume: 14
  start-page: 8942
  issue: 1
  year: 2024
  article-title: Route Planning of Mobile Robot Based on Improved RRT Star and TEB Algorithm
  publication-title: Scientific Reports
– volume: 42
  start-page: 644
  issue: 3
  year: 2024
  end-page: 659
  article-title: FBi‐RRT: A Path Planning Algorithm for Manipulators With Heuristic Node Expansion
  publication-title: Robotica
– volume: 12
  start-page: 1231
  issue: 3
  year: 2012
  end-page: 1237
  article-title: Fuzzy Dijkstra Algorithm for Shortest Path Problem under Uncertain Environment
  publication-title: Applied Soft Computing
– volume: 103
  start-page: 172
  year: 2013
  end-page: 185
  article-title: Robot Path Planning in Uncertain Environment Using Multi‐Objective Particle Swarm Optimization
  publication-title: Neurocomputing
– volume: 279
  year: 2023
  article-title: An Improved RRT Algorithm Based on Prior AIS Information and DP Compression for Ship Path Planning
  publication-title: Ocean Engineering
– volume: 23
  start-page: 7918
  issue: 18
  year: 2023
  article-title: Research on Path Planning and Path Tracking Control of Autonomous Vehicles Based on Improved APF and SMC
  publication-title: Sensors
– volume: 2
  issue: 1
  year: 2014
– volume: 215
  year: 2023
  article-title: Modified Adaptive Ant Colony Optimization Algorithm and Its Application for Solving Path Planning of Mobile Robot
  publication-title: Expert Systems With Applications
– volume: 21
  start-page: 188
  issue: 2
  year: 2005
  end-page: 195
  article-title: A Convergent Dynamic Window Approach to Obstacle Avoidance
  publication-title: IEEE Transactions of Robotics
– volume: 2020
  issue: 1
  year: 2020
  article-title: Cubic Spline Interpolation-Based Robot Path Planning Using a Chaotic Adaptive Particle Swarm Optimization Algorithm
  publication-title: Mathematical Problems in Engineering
– volume: 20
  start-page: 4149
  year: 2016
  end-page: 4171
  article-title: Relaxed Dijkstra and A* With Linear Complexity for Robot Path Planning Problems in Large‐Scale Grid Environments
  publication-title: Soft Computing
– volume: 11
  start-page: 620
  issue: 3
  year: 2015
  end-page: 631
  article-title: Trajectory Optimization With Particle Swarm Optimization for Manipulator Motion Planning
  publication-title: IEEE Transactions on Industrial Informatics
– volume: 143
  start-page: 349
  year: 2023
  end-page: 360
  article-title: A Probability Smoothing Bi‐RRT Path Planning Algorithm for Indoor Robot
  publication-title: Future Generation Computer Systems
– volume: 17
  start-page: 4555
  issue: 3
  year: 2023
  end-page: 4566
  article-title: A Jamming Aware Artificial Potential Field Method to Counter GPS Jamming for Unmanned Surface Ship Path Planning
  publication-title: IEEE Systems Journal
– volume: 156
  year: 2021
  article-title: Path Planning Optimization of Indoor Mobile Robot Based on Adaptive Ant Colony Algorithm
  publication-title: Computers & Industrial Engineering
– volume: 7
  start-page: 331
  issue: 5
  year: 2023
  article-title: Potential‐Field‐RRT: A Path‐Planning Algorithm for UAVs Based on Potential‐Field‐Oriented Greedy Strategy to Extend Random Tree
  publication-title: Drones
– volume: 8
  start-page: 4823
  issue: 8
  year: 2023
  end-page: 4830
  article-title: Safe Artificial Potential Field‐Novel Local Path Planning Algorithm Maintaining Safe Distance From Obstacles
  publication-title: IEEE Robotics and Automation Letters
– volume: 39
  start-page: 371
  issue: 4
  year: 2022
  end-page: 386
  article-title: Local Path Planning for Autonomous Mobile Robots by Integrating Modified Dynamic‐Window Approach and Improved Follow the Gap Method
  publication-title: Journal of Field Robotics
– volume: 227
  year: 2022
  article-title: An Improved Path Planning Algorithm Based on Artificial Potential Field and Primal‐Dual Neural Network for Surgical Robot
  publication-title: Computer Methods and Programs in Biomedicine
– volume: 69
  start-page: 18
  year: 2014
  end-page: 25
  article-title: Haptic Assisted Aircraft Optimal Assembly Path Planning Scheme Based on Swarming and Artificial Potential Field Approach
  publication-title: Advances in Engineering Software
– volume: 4
  start-page: 23
  issue: 1
  year: 1997
  end-page: 33
  article-title: The Dynamic Window Approach to Collision Avoidance
  publication-title: IEEE Robotics & Automation Magazine
– volume: 2022
  issue: 1
  year: 2022
  article-title: Autonomous Navigation of Robots Based on the Improved Informed‐RRT∗Algorithm and DWA
  publication-title: Journal of Robotics
– volume: 67
  year: 2023
  article-title: An Improved RRT* Algorithm for Robot Path Planning Based on Path Expansion Heuristic Sampling
  publication-title: Journal of Computational Science
– volume: 9
  start-page: 1102
  issue: 3
  year: 2009
  end-page: 1110
  article-title: Path Planning for Autonomous Mobile Robot Navigation With Ant Colony Optimization and Fuzzy Cost Function Evaluation
  publication-title: Applied Soft Computing
– volume: 184
  year: 2021
  article-title: F‐RRT*: An Improved Path Planning Algorithm With Improved Initial Solution and Convergence Rate
  publication-title: Expert Systems With Applications
– volume: 8
  start-page: 125
  issue: 4
  year: 2024
  article-title: Research on A Global Path‐Planning Algorithm for Unmanned Arial Vehicle Swarm in Three‐Dimensional Space Based on Theta*–Artificial Potential Field Method
  publication-title: Drones
– ident: e_1_2_9_42_1
  doi: 10.1109/ACCESS.2018.2871222
– ident: e_1_2_9_5_1
  doi: 10.1016/j.asoc.2011.11.011
– ident: e_1_2_9_32_1
  doi: 10.1016/0925-2312(94)00018-N
– ident: e_1_2_9_17_1
  doi: 10.1002/rob.22055
– ident: e_1_2_9_16_1
  doi: 10.1007/s11370-022-00416-8
– ident: e_1_2_9_4_1
  doi: 10.1155/2022/3477265
– ident: e_1_2_9_27_1
  doi: 10.1016/j.future.2023.02.004
– ident: e_1_2_9_18_1
  doi: 10.1016/j.eswa.2024.124121
– ident: e_1_2_9_38_1
  doi: 10.1016/j.eswa.2022.119410
– ident: e_1_2_9_33_1
  doi: 10.1109/LRA.2023.3290819
– ident: e_1_2_9_13_1
  doi: 10.1016/j.cmpb.2022.107202
– ident: e_1_2_9_2_1
  doi: 10.1007/s00500-015-1750-1
– ident: e_1_2_9_7_1
  doi: 10.1016/j.eswa.2022.119137
– ident: e_1_2_9_36_1
  doi: 10.1109/JSYST.2023.3237613
– volume: 10
  start-page: 314
  issue: 12
  year: 2021
  ident: e_1_2_9_35_1
  article-title: Path Planning for Automatic Guided Vehicles (AGVs) Fusing MH‐RRT With Improved Teb//Actuators
  publication-title: MDPI
– ident: e_1_2_9_37_1
  doi: 10.3390/s21248312
– ident: e_1_2_9_8_1
  doi: 10.1109/100.580977
– ident: e_1_2_9_23_1
  doi: 10.1016/j.cie.2022.108123
– ident: e_1_2_9_28_1
  doi: 10.1016/j.cie.2021.107230
– ident: e_1_2_9_31_1
  doi: 10.1016/j.isatra.2019.08.018
– ident: e_1_2_9_30_1
  doi: 10.1109/TRO.2004.838008
– ident: e_1_2_9_6_1
  doi: 10.1016/j.jocs.2022.101937
– ident: e_1_2_9_21_1
  doi: 10.1109/TII.2015.2416435
– ident: e_1_2_9_3_1
  doi: 10.1016/j.trb.2008.05.010
– ident: e_1_2_9_40_1
  doi: 10.1038/s41598-024-59413-9
– ident: e_1_2_9_14_1
  doi: 10.1016/j.advengsoft.2013.12.003
– ident: e_1_2_9_26_1
  doi: 10.1016/j.eswa.2021.115457
– ident: e_1_2_9_39_1
  doi: 10.1017/S0263574723001674
– ident: e_1_2_9_43_1
  doi: 10.1016/j.neucom.2012.09.019
– ident: e_1_2_9_11_1
  doi: 10.1016/j.asoc.2009.02.014
– ident: e_1_2_9_19_1
  doi: 10.3390/drones7050331
– ident: e_1_2_9_20_1
  doi: 10.1007/s12555-022-0834-9
– ident: e_1_2_9_34_1
  doi: 10.3390/en14206642
– ident: e_1_2_9_45_1
  doi: 10.3390/drones8040125
– ident: e_1_2_9_29_1
  doi: 10.1017/S0263574709990567
– volume: 34
  start-page: 6019
  issue: 8
  year: 2022
  ident: e_1_2_9_22_1
  article-title: Localization Strategies for Autonomous Mobile Robots: A Review
  publication-title: Journal of King Saud University ‐ Computer and Information Sciences
  doi: 10.1016/j.jksuci.2021.02.015
– ident: e_1_2_9_41_1
  doi: 10.1016/j.engappai.2023.106875
– ident: e_1_2_9_46_1
  doi: 10.1016/j.aei.2021.101376
– ident: e_1_2_9_12_1
  doi: 10.1016/j.oceaneng.2023.114595
– ident: e_1_2_9_9_1
  doi: 10.1080/00207543.2021.2015806
– ident: e_1_2_9_25_1
  doi: 10.1155/2020/1849240
– ident: e_1_2_9_44_1
  doi: 10.3390/s23187918
– ident: e_1_2_9_15_1
  doi: 10.1016/j.isatra.2022.09.007
– ident: e_1_2_9_24_1
  doi: 10.1016/j.eswa.2020.113425
– ident: e_1_2_9_10_1
  doi: 10.1109/IROS.2014.6942976
SSID ssj0043895
Score 2.4381225
Snippet ABSTRACT This article presents an algorithm for mobile robots that enables autonomous navigation in complex environments. Currently, achieving autonomous...
This article presents an algorithm for mobile robots that enables autonomous navigation in complex environments. Currently, achieving autonomous navigation for...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Index Database
Publisher
StartPage 4033
SubjectTerms Algorithms
Artificial potential field method
Autonomous navigation
Cubic spline interpolation
Global path planning algorithm
Informed‐RRT algorithm
Optimized Sampling Strategy
Path planning
Potential fields
Rapidly exploring random tree algorithm
Robots
RRT algorithm
Sampling
Smoothness
Strategy
Waypoints
Title The Improved Informed‐RRT Algorithm, Which Optimizes the Sampling Strategy and Integrates an Artificial Potential Field
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Frob.70000
https://www.proquest.com/docview/3272331216
Volume 42
WOSCitedRecordID wos001508703900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1556-4967
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0043895
  issn: 1556-4959
  databaseCode: DRFUL
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwED5BywADb0ShIAsxMBBI7KROxMSrYkBQlSLYIr_SVqIpagoSTPwEfiO_BNtJoAxISGyOFF8i3913Z-v8HcAuC5hgknuOjqa-41OqcbCBPSeJGOOU4UhKaZtN0Kur8P4-ak3BUXkXJueH-DpwM55h8do4OOPZ4Tdp6GjID6iB22moYm23fgWqZ-3m7WUJxKavd2DpUoOGo_cBUUks5OLDr8k_w9F3jjmZqdpQ01z4108uwnyRYaLj3CSWYEqlyzA3wTu4AqZbHcqPE5RE-Y0kJT_e3tvtDjp-6A5H_XFvsI_uen3RQ9caVQb9V5UhnSyiG2Zq0NMuKnhtXxBLjYyCdSLTj_bbOTMFag3Hph5Jj5qmVm4VbpvnndMLp-jB4Ai9MXIdj0lCRKSY67FEgwFnRCnCqRJhgylX8cBNhKLmgisnoQqkK3VGIJKAUerp-EvWoJIOU7UOiAc44tpkIj_kviQuixJhGos3FBVUuLwGO6Uq4secaiPOSZVxrNcxtutYg3qppLjwtiwmmGJCPC2qBntWHb8LiNvXJ3aw8fdXN2EWm7a_toqlDpXx6EltwYx4Hvez0XZhdp8qT94O
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB60FdSDb7E-F_HgwWiSTboNeKmPUrHWUiv2FvYVW7CptFXQkz_B3-gvcXeTVD0IgrcNZCdh57nDzDcAe9SnnArmWMqbepZHiLKDRdexooBSRqgbCCHMsAlSr5fa7aAxAcdZL0yCDzFOuGnNMPZaK7hOSB99oYYO-uyQaHs7CXlPiZGfg_xZs3JbyyyxHuztG7xUv2ipi0CQIQvZ7tF4809_9BVkfg9Vja-pzP_vLxdgLo0xUTkRikWYkPESzH5DHlwGPa8OJQkFKVDSkyTFx9t7s9lC5Yf7_qA76vQO0F2nyzvoWtmVXvdVDpEKF9EN1VXo8T1KkW1fEI01jRR3YqgezbcTbArU6I90RZJaVXS13ArcVs5bp1UrncJgcXU1si2HCox5IKnt0EiZA0axlJgRyUtFKm3JfDvikugWV4ZL0he2UDEBj3xKiKM8MF6FXNyP5Rog5rsBU0ITeCXmCWzTIOJ6tHhREk64zQqwm_EifEzANsIEVtkN1TmG5hwLsJlxKUz1bRhil7gYO4pUAfYNP34nEDavT8xi_e-v7sB0tXVVC2sX9csNmHH1EGBT07IJudHgSW7BFH8edYeD7VQGPwFzqOH-
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB58IXrwLa6uGsSDB6tt0zYb8OKrKMq6rIreSl51F7S77K6CnvwJ_kZ_iUna-jgIgrcUmmnJzHwzCZNvADZZyAST3HN0NA2cgBCNg5HvOSlljBPmUymlbTZB6vXa7S1tDMFeeRcm54f4PHAznmHx2ji46sp094s1tNfhO8Tg7TCMBiGNtFuOHjXj6_MSiU1j79DypYaRozcCtGQWcv3dz8k_49FXkvk9VbWxJp7-31_OwFSRY6L93ChmYUhlczD5jXlwHky_OpQfKCiJ8jtJSr6_vjWbV2j__q7Taw9aD9voptUWLXShceWh_aL6SKeL6JKZKvTsDhXMts-IZUZGwTvR14_22zk3BWp0BqYiSY9iUy23ANfx8dXhiVN0YXCE3hq5jsckxoIq5nos1XDAGVYKc6JELWLKVTx0U6GIueLKcU2F0pU6JxBpyAjxdATGizCSdTK1BIiHPuXaaGhQ44HELqOpMK3FI0UEES6vwEapi6Sbk20kOa2yn-h1TOw6VqBaaikp_K2fYJ_4GHtaVAW2rD5-F5A0Lw7sYPnvr67DeOMoTs5P62crMOGbHsC2pKUKI4Peo1qFMfE0aPd7a4UJfgAsUOF5
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Improved+Informed%E2%80%90RRT+Algorithm%2C+Which+Optimizes+the+Sampling+Strategy+and+Integrates+an+Artificial+Potential+Field&rft.jtitle=Journal+of+field+robotics&rft.au=Kai%E2%80%90shen%2C+Kang&rft.au=Hai%E2%80%90long%2C+Huang&rft.au=Zi%E2%80%90qi%2C+S.+U.&rft.au=Hai%E2%80%90ze%2C+Wang&rft.date=2025-12-01&rft.issn=1556-4959&rft.eissn=1556-4967&rft.volume=42&rft.issue=8&rft.spage=4033&rft.epage=4052&rft_id=info:doi/10.1002%2Frob.70000&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_rob_70000
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1556-4959&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1556-4959&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1556-4959&client=summon