The Improved Informed‐RRT Algorithm, Which Optimizes the Sampling Strategy and Integrates an Artificial Potential Field
ABSTRACT This article presents an algorithm for mobile robots that enables autonomous navigation in complex environments. Currently, achieving autonomous navigation for ground mobile robots in intricate and unstructured settings continues to pose significant challenges. To address issues such as dis...
Uloženo v:
| Vydáno v: | Journal of field robotics Ročník 42; číslo 8; s. 4033 - 4052 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Hoboken
Wiley Subscription Services, Inc
01.12.2025
|
| Témata: | |
| ISSN: | 1556-4959, 1556-4967 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | ABSTRACT
This article presents an algorithm for mobile robots that enables autonomous navigation in complex environments. Currently, achieving autonomous navigation for ground mobile robots in intricate and unstructured settings continues to pose significant challenges. To address issues such as dispersed sampling points, low sampling efficiency, and excessive path waypoints encountered in traditional Rapidly‐Exploring Random Trees (RRT) algorithms, this paper proposes an Optimized Sampling Strategy and Artificial Potential Fields Fusion‐based Informed‐RRT* global path planning algorithm. Initially, sampling angles are determined based on the position of the target point, and the workspace is partitioned into regions with varying levels of importance. Subsequently, an improved artificial potential fields algorithm is integrated to further refine the resultant forces acting on the nodes. Finally, cubic spline interpolation is utilized to smooth the generated path. The proposed algorithm was validated through simulation and experimental studies conducted on simple, narrow, and complex maps. The results demonstrated significant reductions in search time, path length, and the number of path waypoints compared to conventional A*, Dijkstra, RRT, RRT*, and Informed‐RRT algorithms. Additionally, the smoothness of the generated paths was notably improved. In the virtual maze experiments and real‐world environment tests, the improved algorithm presented in this paper demonstrates significant advantages over five other algorithms. |
|---|---|
| AbstractList | This article presents an algorithm for mobile robots that enables autonomous navigation in complex environments. Currently, achieving autonomous navigation for ground mobile robots in intricate and unstructured settings continues to pose significant challenges. To address issues such as dispersed sampling points, low sampling efficiency, and excessive path waypoints encountered in traditional Rapidly‐Exploring Random Trees (RRT) algorithms, this paper proposes an Optimized Sampling Strategy and Artificial Potential Fields Fusion‐based Informed‐RRT* global path planning algorithm. Initially, sampling angles are determined based on the position of the target point, and the workspace is partitioned into regions with varying levels of importance. Subsequently, an improved artificial potential fields algorithm is integrated to further refine the resultant forces acting on the nodes. Finally, cubic spline interpolation is utilized to smooth the generated path. The proposed algorithm was validated through simulation and experimental studies conducted on simple, narrow, and complex maps. The results demonstrated significant reductions in search time, path length, and the number of path waypoints compared to conventional A*, Dijkstra, RRT, RRT*, and Informed‐RRT algorithms. Additionally, the smoothness of the generated paths was notably improved. In the virtual maze experiments and real‐world environment tests, the improved algorithm presented in this paper demonstrates significant advantages over five other algorithms. ABSTRACT This article presents an algorithm for mobile robots that enables autonomous navigation in complex environments. Currently, achieving autonomous navigation for ground mobile robots in intricate and unstructured settings continues to pose significant challenges. To address issues such as dispersed sampling points, low sampling efficiency, and excessive path waypoints encountered in traditional Rapidly‐Exploring Random Trees (RRT) algorithms, this paper proposes an Optimized Sampling Strategy and Artificial Potential Fields Fusion‐based Informed‐RRT* global path planning algorithm. Initially, sampling angles are determined based on the position of the target point, and the workspace is partitioned into regions with varying levels of importance. Subsequently, an improved artificial potential fields algorithm is integrated to further refine the resultant forces acting on the nodes. Finally, cubic spline interpolation is utilized to smooth the generated path. The proposed algorithm was validated through simulation and experimental studies conducted on simple, narrow, and complex maps. The results demonstrated significant reductions in search time, path length, and the number of path waypoints compared to conventional A*, Dijkstra, RRT, RRT*, and Informed‐RRT algorithms. Additionally, the smoothness of the generated paths was notably improved. In the virtual maze experiments and real‐world environment tests, the improved algorithm presented in this paper demonstrates significant advantages over five other algorithms. |
| Author | Zi‐qi, S. U. Hai‐ze, Wang Kai‐shen, Kang Hai‐long, Huang |
| Author_xml | – sequence: 1 givenname: Kang surname: Kai‐shen fullname: Kai‐shen, Kang email: 814047794@qq.com organization: Liaoning University of Technology – sequence: 2 givenname: Huang surname: Hai‐long fullname: Hai‐long, Huang organization: Liaoning University of Technology – sequence: 3 givenname: S. U. surname: Zi‐qi fullname: Zi‐qi, S. U. organization: Liaoning University of Technology – sequence: 4 givenname: Wang surname: Hai‐ze fullname: Hai‐ze, Wang organization: Liaoning University of Technology |
| BookMark | eNp1kE1OwzAQhS1UJNrCghtYYoVEWjuu87MsFYVKlYraIpaWk0waV_kpjgsKK47AGTkJDkHsmM28J30zo3kD1CurEhC6pGRECXHHuopGPrF1gvqUc8-ZhJ7f-9M8PEODut4TMmFByPuo2WaAF8VBV6-Q4EWZVrqA5Ovjc73e4mm-q7QyWXGDnzMVZ3h1MKpQ71BjY8c2sjjkqtzhjdHSwK7Bsmx3WNn62lo81UalKlYyx4-VgdK0aq4gT87RaSrzGi5--xA9ze-2swdnubpfzKZLJ3Z5SBwqE8biECShMmWERpIBsMiHOPAkEIg4SWPwPTfwIhYAT0hCuRunXPo-BUjYEF11e-2PL0eojdhXR13ak4K5vssYdalnqeuOinVV1xpScdCqkLoRlIg2WWGTFT_JWnbcsW8qh-Z_UKxXt93ENy9Gfqc |
| Cites_doi | 10.1109/ACCESS.2018.2871222 10.1016/j.asoc.2011.11.011 10.1016/0925-2312(94)00018-N 10.1002/rob.22055 10.1007/s11370-022-00416-8 10.1155/2022/3477265 10.1016/j.future.2023.02.004 10.1016/j.eswa.2024.124121 10.1016/j.eswa.2022.119410 10.1109/LRA.2023.3290819 10.1016/j.cmpb.2022.107202 10.1007/s00500-015-1750-1 10.1016/j.eswa.2022.119137 10.1109/JSYST.2023.3237613 10.3390/s21248312 10.1109/100.580977 10.1016/j.cie.2022.108123 10.1016/j.cie.2021.107230 10.1016/j.isatra.2019.08.018 10.1109/TRO.2004.838008 10.1016/j.jocs.2022.101937 10.1109/TII.2015.2416435 10.1016/j.trb.2008.05.010 10.1038/s41598-024-59413-9 10.1016/j.advengsoft.2013.12.003 10.1016/j.eswa.2021.115457 10.1017/S0263574723001674 10.1016/j.neucom.2012.09.019 10.1016/j.asoc.2009.02.014 10.3390/drones7050331 10.1007/s12555-022-0834-9 10.3390/en14206642 10.3390/drones8040125 10.1017/S0263574709990567 10.1016/j.jksuci.2021.02.015 10.1016/j.engappai.2023.106875 10.1016/j.aei.2021.101376 10.1016/j.oceaneng.2023.114595 10.1080/00207543.2021.2015806 10.1155/2020/1849240 10.3390/s23187918 10.1016/j.isatra.2022.09.007 10.1016/j.eswa.2020.113425 10.1109/IROS.2014.6942976 |
| ContentType | Journal Article |
| Copyright | 2025 Wiley Periodicals LLC. |
| Copyright_xml | – notice: 2025 Wiley Periodicals LLC. |
| DBID | AAYXX CITATION 7SC 7SP 7TB 8FD F28 FR3 JQ2 L7M L~C L~D |
| DOI | 10.1002/rob.70000 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | CrossRef Technology Research Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1556-4967 |
| EndPage | 4052 |
| ExternalDocumentID | 10_1002_rob_70000 ROB70000 |
| Genre | researchArticle |
| GrantInformation_xml | – fundername: This study was supported Liaoning University of Technology. |
| GroupedDBID | .3N .4S .DC .GA .Y3 05W 0R~ 10A 1L6 1OC 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 85S 8UM 930 A03 AAESR AAEVG AAHQN AAMMB AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ACAHQ ACBWZ ACCZN ACFBH ACGFS ACIWK ACPOU ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIYS ADIZJ ADKYN ADMGS ADMLS ADNMO ADOZA ADXAS ADZMN AEFGJ AEIGN AEIMD AENEX AEUYR AFBPY AFFPM AFGKR AFWVQ AFZJQ AGHNM AGQPQ AGXDD AGYGG AHBTC AIDQK AIDYY AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ARCSS ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS EDO EJD F00 F01 F04 FEDTE G-S GNP GODZA H.T H.X HBH HF~ HGLYW HVGLF HZ~ I-F IX1 J0M JPC LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MK~ MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RX1 SUPJJ TUS UB1 V2E W8V W99 WBKPD WIH WIK WLBEL WOHZO WQJ WXSBR WYISQ XG1 XV2 ~02 ~IA ~WT AAYXX CITATION O8X 7SC 7SP 7TB 8FD F28 FR3 JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c2590-1ad33c9ea01af301ba3ee3b7ec86ae0eb50fce76286b38e5d0d152cf5a771eed3 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001508703900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1556-4959 |
| IngestDate | Mon Nov 17 11:40:27 EST 2025 Thu Nov 27 01:00:23 EST 2025 Mon Nov 17 09:10:29 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 8 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c2590-1ad33c9ea01af301ba3ee3b7ec86ae0eb50fce76286b38e5d0d152cf5a771eed3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 3272331216 |
| PQPubID | 1006410 |
| PageCount | 20 |
| ParticipantIDs | proquest_journals_3272331216 crossref_primary_10_1002_rob_70000 wiley_primary_10_1002_rob_70000_ROB70000 |
| PublicationCentury | 2000 |
| PublicationDate | December 2025 2025-12-00 20251201 |
| PublicationDateYYYYMMDD | 2025-12-01 |
| PublicationDate_xml | – month: 12 year: 2025 text: December 2025 |
| PublicationDecade | 2020 |
| PublicationPlace | Hoboken |
| PublicationPlace_xml | – name: Hoboken |
| PublicationTitle | Journal of field robotics |
| PublicationYear | 2025 |
| Publisher | Wiley Subscription Services, Inc |
| Publisher_xml | – name: Wiley Subscription Services, Inc |
| References | 2021; 21 2009; 43 2023; 17 2023; 7 2023; 8 2015; 11 2023; 143 2014; 69 2021; 184 2023; 126 2013; 103 2005; 21 2024; 14 2021; 50 2012; 12 1997; 4 2023; 61 1995; 8 2009; 28 2021; 14 2018; 6 2021; 10 2022; 2022 2020; 2020 2023; 67 2014; 2 2023; 23 2020; 97 2020; 152 2021; 156 2024; 8 2023; 134 2022; 34 2016; 20 2023; 215 2009; 9 2024; 252 2023; 213 2023; 279 2022; 15 2024; 42 2024; 22 2022; 227 2022; 39 2022; 168 e_1_2_9_30_1 e_1_2_9_31_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_10_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_12_1 e_1_2_9_33_1 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_14_1 e_1_2_9_39_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_16_1 e_1_2_9_37_1 e_1_2_9_19_1 e_1_2_9_18_1 e_1_2_9_41_1 e_1_2_9_42_1 e_1_2_9_20_1 e_1_2_9_40_1 e_1_2_9_45_1 e_1_2_9_21_1 Kumar P. P. (e_1_2_9_22_1) 2022; 34 e_1_2_9_46_1 e_1_2_9_24_1 e_1_2_9_43_1 e_1_2_9_23_1 e_1_2_9_44_1 e_1_2_9_8_1 e_1_2_9_7_1 e_1_2_9_6_1 e_1_2_9_5_1 e_1_2_9_4_1 e_1_2_9_3_1 e_1_2_9_2_1 e_1_2_9_9_1 e_1_2_9_26_1 e_1_2_9_25_1 e_1_2_9_28_1 e_1_2_9_27_1 Wang J. (e_1_2_9_35_1) 2021; 10 e_1_2_9_29_1 |
| References_xml | – volume: 14 start-page: 6642 issue: 20 year: 2021 article-title: Efficient Local Path Planning Algorithm Using Artificial Potential Field Supported by Augmented Reality publication-title: Energies – volume: 8 start-page: 195 issue: 2 year: 1995 end-page: 212 article-title: Fast Computation of Optimal Paths Using a Parallel Dijkstra Algorithm With Embedded Constraints publication-title: Neurocomputing – volume: 126 year: 2023 article-title: SOF‐RRT*: An Improved Path Planning Algorithm Using Spatial Offset Sampling publication-title: Engineering Applications of Artificial Intelligence – volume: 34 start-page: 6019 issue: 8PB year: 2022 end-page: 6039 article-title: Localization Strategies for Autonomous Mobile Robots: A Review publication-title: Journal of King Saud University ‐ Computer and Information Sciences – volume: 10 start-page: 314 issue: 12 year: 2021 article-title: Path Planning for Automatic Guided Vehicles (AGVs) Fusing MH‐RRT With Improved Teb//Actuators publication-title: MDPI – volume: 21 start-page: 8312 issue: 24 year: 2021 article-title: An Improved Timed Elastic Band (TEB) Algorithm of Autonomous Ground Vehicle (AGV) in Complex Environment publication-title: Sensors – volume: 252 year: 2024 article-title: Density Gradient‐RRT: An Improved Rapidly Exploring Random Tree Algorithm for UAV Path Planning publication-title: Expert Systems With Applications – volume: 152 year: 2020 article-title: PQ‐RRT*: An Improved Path Planning Algorithm for Mobile Robots publication-title: Expert Systems With Applications – volume: 50 year: 2021 article-title: Lifting Path Planning of Mobile Cranes Based on an Improved RRT Algorithm publication-title: Advanced Engineering Informatics – volume: 97 start-page: 415 year: 2020 end-page: 430 article-title: Efficient Path Planning for UAV Formation via Comprehensively Improved Particle Swarm Optimization publication-title: ISA Transactions – volume: 22 start-page: 241 issue: 1 year: 2024 end-page: 251 article-title: Adaptive Informed RRT*: Asymptotically Optimal Path Planning With Elliptical Sampling Pools in Narrow Passages publication-title: International Journal of Control, Automation and Systems – volume: 168 year: 2022 article-title: Global Path Planning Based on a Bidirectional Alternating Search A* Algorithm for Mobile Robots publication-title: Computers & Industrial Engineering – volume: 6 start-page: 53296 year: 2018 end-page: 53306 article-title: Path Planning of Industrial Robot Based on Improved RRT Algorithm in Complex Environments publication-title: IEEE Access – volume: 134 start-page: 58 year: 2023 end-page: 73 article-title: A Novel Model Predictive Artificial Potential Field Based Ship Motion Planning Method Considering COLREGs for Complex Encounter Scenarios publication-title: ISA Transactions – volume: 15 start-page: 289 issue: 3 year: 2022 end-page: 306 article-title: Auto‐Splitting D* Lite Path Planning for Large Disaster Area publication-title: Intelligent Service Robotics – volume: 213 year: 2023 article-title: UAV Trajectory Planning Based on Bi-Directional APF‐RRT* Algorithm With Goal-Biased publication-title: Expert Systems With Applications – volume: 61 start-page: 707 issue: 3 year: 2023 end-page: 725 article-title: Efficient Path Planning for Automated Guided Vehicles Using A* (Astar) Algorithm Incorporating Turning Costs in Search Heuristic publication-title: International Journal of Production Research – volume: 43 start-page: 97 issue: 1 year: 2009 end-page: 107 article-title: Hyperstar: A Multi‐Path Astar Algorithm for Risk Averse Vehicle Navigation publication-title: Transportation Research Part B: Methodological – volume: 28 start-page: 833 issue: 6 year: 2009 end-page: 846 article-title: Hybrid Ant Colony and Immune Network Algorithm Based on Improved APF for Optimal Motion Planning publication-title: Robotica – volume: 14 start-page: 8942 issue: 1 year: 2024 article-title: Route Planning of Mobile Robot Based on Improved RRT Star and TEB Algorithm publication-title: Scientific Reports – volume: 42 start-page: 644 issue: 3 year: 2024 end-page: 659 article-title: FBi‐RRT: A Path Planning Algorithm for Manipulators With Heuristic Node Expansion publication-title: Robotica – volume: 12 start-page: 1231 issue: 3 year: 2012 end-page: 1237 article-title: Fuzzy Dijkstra Algorithm for Shortest Path Problem under Uncertain Environment publication-title: Applied Soft Computing – volume: 103 start-page: 172 year: 2013 end-page: 185 article-title: Robot Path Planning in Uncertain Environment Using Multi‐Objective Particle Swarm Optimization publication-title: Neurocomputing – volume: 279 year: 2023 article-title: An Improved RRT Algorithm Based on Prior AIS Information and DP Compression for Ship Path Planning publication-title: Ocean Engineering – volume: 23 start-page: 7918 issue: 18 year: 2023 article-title: Research on Path Planning and Path Tracking Control of Autonomous Vehicles Based on Improved APF and SMC publication-title: Sensors – volume: 2 issue: 1 year: 2014 – volume: 215 year: 2023 article-title: Modified Adaptive Ant Colony Optimization Algorithm and Its Application for Solving Path Planning of Mobile Robot publication-title: Expert Systems With Applications – volume: 21 start-page: 188 issue: 2 year: 2005 end-page: 195 article-title: A Convergent Dynamic Window Approach to Obstacle Avoidance publication-title: IEEE Transactions of Robotics – volume: 2020 issue: 1 year: 2020 article-title: Cubic Spline Interpolation-Based Robot Path Planning Using a Chaotic Adaptive Particle Swarm Optimization Algorithm publication-title: Mathematical Problems in Engineering – volume: 20 start-page: 4149 year: 2016 end-page: 4171 article-title: Relaxed Dijkstra and A* With Linear Complexity for Robot Path Planning Problems in Large‐Scale Grid Environments publication-title: Soft Computing – volume: 11 start-page: 620 issue: 3 year: 2015 end-page: 631 article-title: Trajectory Optimization With Particle Swarm Optimization for Manipulator Motion Planning publication-title: IEEE Transactions on Industrial Informatics – volume: 143 start-page: 349 year: 2023 end-page: 360 article-title: A Probability Smoothing Bi‐RRT Path Planning Algorithm for Indoor Robot publication-title: Future Generation Computer Systems – volume: 17 start-page: 4555 issue: 3 year: 2023 end-page: 4566 article-title: A Jamming Aware Artificial Potential Field Method to Counter GPS Jamming for Unmanned Surface Ship Path Planning publication-title: IEEE Systems Journal – volume: 156 year: 2021 article-title: Path Planning Optimization of Indoor Mobile Robot Based on Adaptive Ant Colony Algorithm publication-title: Computers & Industrial Engineering – volume: 7 start-page: 331 issue: 5 year: 2023 article-title: Potential‐Field‐RRT: A Path‐Planning Algorithm for UAVs Based on Potential‐Field‐Oriented Greedy Strategy to Extend Random Tree publication-title: Drones – volume: 8 start-page: 4823 issue: 8 year: 2023 end-page: 4830 article-title: Safe Artificial Potential Field‐Novel Local Path Planning Algorithm Maintaining Safe Distance From Obstacles publication-title: IEEE Robotics and Automation Letters – volume: 39 start-page: 371 issue: 4 year: 2022 end-page: 386 article-title: Local Path Planning for Autonomous Mobile Robots by Integrating Modified Dynamic‐Window Approach and Improved Follow the Gap Method publication-title: Journal of Field Robotics – volume: 227 year: 2022 article-title: An Improved Path Planning Algorithm Based on Artificial Potential Field and Primal‐Dual Neural Network for Surgical Robot publication-title: Computer Methods and Programs in Biomedicine – volume: 69 start-page: 18 year: 2014 end-page: 25 article-title: Haptic Assisted Aircraft Optimal Assembly Path Planning Scheme Based on Swarming and Artificial Potential Field Approach publication-title: Advances in Engineering Software – volume: 4 start-page: 23 issue: 1 year: 1997 end-page: 33 article-title: The Dynamic Window Approach to Collision Avoidance publication-title: IEEE Robotics & Automation Magazine – volume: 2022 issue: 1 year: 2022 article-title: Autonomous Navigation of Robots Based on the Improved Informed‐RRT∗Algorithm and DWA publication-title: Journal of Robotics – volume: 67 year: 2023 article-title: An Improved RRT* Algorithm for Robot Path Planning Based on Path Expansion Heuristic Sampling publication-title: Journal of Computational Science – volume: 9 start-page: 1102 issue: 3 year: 2009 end-page: 1110 article-title: Path Planning for Autonomous Mobile Robot Navigation With Ant Colony Optimization and Fuzzy Cost Function Evaluation publication-title: Applied Soft Computing – volume: 184 year: 2021 article-title: F‐RRT*: An Improved Path Planning Algorithm With Improved Initial Solution and Convergence Rate publication-title: Expert Systems With Applications – volume: 8 start-page: 125 issue: 4 year: 2024 article-title: Research on A Global Path‐Planning Algorithm for Unmanned Arial Vehicle Swarm in Three‐Dimensional Space Based on Theta*–Artificial Potential Field Method publication-title: Drones – ident: e_1_2_9_42_1 doi: 10.1109/ACCESS.2018.2871222 – ident: e_1_2_9_5_1 doi: 10.1016/j.asoc.2011.11.011 – ident: e_1_2_9_32_1 doi: 10.1016/0925-2312(94)00018-N – ident: e_1_2_9_17_1 doi: 10.1002/rob.22055 – ident: e_1_2_9_16_1 doi: 10.1007/s11370-022-00416-8 – ident: e_1_2_9_4_1 doi: 10.1155/2022/3477265 – ident: e_1_2_9_27_1 doi: 10.1016/j.future.2023.02.004 – ident: e_1_2_9_18_1 doi: 10.1016/j.eswa.2024.124121 – ident: e_1_2_9_38_1 doi: 10.1016/j.eswa.2022.119410 – ident: e_1_2_9_33_1 doi: 10.1109/LRA.2023.3290819 – ident: e_1_2_9_13_1 doi: 10.1016/j.cmpb.2022.107202 – ident: e_1_2_9_2_1 doi: 10.1007/s00500-015-1750-1 – ident: e_1_2_9_7_1 doi: 10.1016/j.eswa.2022.119137 – ident: e_1_2_9_36_1 doi: 10.1109/JSYST.2023.3237613 – volume: 10 start-page: 314 issue: 12 year: 2021 ident: e_1_2_9_35_1 article-title: Path Planning for Automatic Guided Vehicles (AGVs) Fusing MH‐RRT With Improved Teb//Actuators publication-title: MDPI – ident: e_1_2_9_37_1 doi: 10.3390/s21248312 – ident: e_1_2_9_8_1 doi: 10.1109/100.580977 – ident: e_1_2_9_23_1 doi: 10.1016/j.cie.2022.108123 – ident: e_1_2_9_28_1 doi: 10.1016/j.cie.2021.107230 – ident: e_1_2_9_31_1 doi: 10.1016/j.isatra.2019.08.018 – ident: e_1_2_9_30_1 doi: 10.1109/TRO.2004.838008 – ident: e_1_2_9_6_1 doi: 10.1016/j.jocs.2022.101937 – ident: e_1_2_9_21_1 doi: 10.1109/TII.2015.2416435 – ident: e_1_2_9_3_1 doi: 10.1016/j.trb.2008.05.010 – ident: e_1_2_9_40_1 doi: 10.1038/s41598-024-59413-9 – ident: e_1_2_9_14_1 doi: 10.1016/j.advengsoft.2013.12.003 – ident: e_1_2_9_26_1 doi: 10.1016/j.eswa.2021.115457 – ident: e_1_2_9_39_1 doi: 10.1017/S0263574723001674 – ident: e_1_2_9_43_1 doi: 10.1016/j.neucom.2012.09.019 – ident: e_1_2_9_11_1 doi: 10.1016/j.asoc.2009.02.014 – ident: e_1_2_9_19_1 doi: 10.3390/drones7050331 – ident: e_1_2_9_20_1 doi: 10.1007/s12555-022-0834-9 – ident: e_1_2_9_34_1 doi: 10.3390/en14206642 – ident: e_1_2_9_45_1 doi: 10.3390/drones8040125 – ident: e_1_2_9_29_1 doi: 10.1017/S0263574709990567 – volume: 34 start-page: 6019 issue: 8 year: 2022 ident: e_1_2_9_22_1 article-title: Localization Strategies for Autonomous Mobile Robots: A Review publication-title: Journal of King Saud University ‐ Computer and Information Sciences doi: 10.1016/j.jksuci.2021.02.015 – ident: e_1_2_9_41_1 doi: 10.1016/j.engappai.2023.106875 – ident: e_1_2_9_46_1 doi: 10.1016/j.aei.2021.101376 – ident: e_1_2_9_12_1 doi: 10.1016/j.oceaneng.2023.114595 – ident: e_1_2_9_9_1 doi: 10.1080/00207543.2021.2015806 – ident: e_1_2_9_25_1 doi: 10.1155/2020/1849240 – ident: e_1_2_9_44_1 doi: 10.3390/s23187918 – ident: e_1_2_9_15_1 doi: 10.1016/j.isatra.2022.09.007 – ident: e_1_2_9_24_1 doi: 10.1016/j.eswa.2020.113425 – ident: e_1_2_9_10_1 doi: 10.1109/IROS.2014.6942976 |
| SSID | ssj0043895 |
| Score | 2.4381225 |
| Snippet | ABSTRACT
This article presents an algorithm for mobile robots that enables autonomous navigation in complex environments. Currently, achieving autonomous... This article presents an algorithm for mobile robots that enables autonomous navigation in complex environments. Currently, achieving autonomous navigation for... |
| SourceID | proquest crossref wiley |
| SourceType | Aggregation Database Index Database Publisher |
| StartPage | 4033 |
| SubjectTerms | Algorithms Artificial potential field method Autonomous navigation Cubic spline interpolation Global path planning algorithm Informed‐RRT algorithm Optimized Sampling Strategy Path planning Potential fields Rapidly exploring random tree algorithm Robots RRT algorithm Sampling Smoothness Strategy Waypoints |
| Title | The Improved Informed‐RRT Algorithm, Which Optimizes the Sampling Strategy and Integrates an Artificial Potential Field |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Frob.70000 https://www.proquest.com/docview/3272331216 |
| Volume | 42 |
| WOSCitedRecordID | wos001508703900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1556-4967 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0043895 issn: 1556-4959 databaseCode: DRFUL dateStart: 20060101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwED5BywADb0ShIAsxMBBI7KROxMSrYkBQlSLYIr_SVqIpagoSTPwEfiO_BNtJoAxISGyOFF8i3913Z-v8HcAuC5hgknuOjqa-41OqcbCBPSeJGOOU4UhKaZtN0Kur8P4-ak3BUXkXJueH-DpwM55h8do4OOPZ4Tdp6GjID6iB22moYm23fgWqZ-3m7WUJxKavd2DpUoOGo_cBUUks5OLDr8k_w9F3jjmZqdpQ01z4108uwnyRYaLj3CSWYEqlyzA3wTu4AqZbHcqPE5RE-Y0kJT_e3tvtDjp-6A5H_XFvsI_uen3RQ9caVQb9V5UhnSyiG2Zq0NMuKnhtXxBLjYyCdSLTj_bbOTMFag3Hph5Jj5qmVm4VbpvnndMLp-jB4Ai9MXIdj0lCRKSY67FEgwFnRCnCqRJhgylX8cBNhKLmgisnoQqkK3VGIJKAUerp-EvWoJIOU7UOiAc44tpkIj_kviQuixJhGos3FBVUuLwGO6Uq4secaiPOSZVxrNcxtutYg3qppLjwtiwmmGJCPC2qBntWHb8LiNvXJ3aw8fdXN2EWm7a_toqlDpXx6EltwYx4Hvez0XZhdp8qT94O |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB60FdSDb7E-F_HgwWiSTboNeKmPUrHWUiv2FvYVW7CptFXQkz_B3-gvcXeTVD0IgrcNZCdh57nDzDcAe9SnnArmWMqbepZHiLKDRdexooBSRqgbCCHMsAlSr5fa7aAxAcdZL0yCDzFOuGnNMPZaK7hOSB99oYYO-uyQaHs7CXlPiZGfg_xZs3JbyyyxHuztG7xUv2ipi0CQIQvZ7tF4809_9BVkfg9Vja-pzP_vLxdgLo0xUTkRikWYkPESzH5DHlwGPa8OJQkFKVDSkyTFx9t7s9lC5Yf7_qA76vQO0F2nyzvoWtmVXvdVDpEKF9EN1VXo8T1KkW1fEI01jRR3YqgezbcTbArU6I90RZJaVXS13ArcVs5bp1UrncJgcXU1si2HCox5IKnt0EiZA0axlJgRyUtFKm3JfDvikugWV4ZL0he2UDEBj3xKiKM8MF6FXNyP5Rog5rsBU0ITeCXmCWzTIOJ6tHhREk64zQqwm_EifEzANsIEVtkN1TmG5hwLsJlxKUz1bRhil7gYO4pUAfYNP34nEDavT8xi_e-v7sB0tXVVC2sX9csNmHH1EGBT07IJudHgSW7BFH8edYeD7VQGPwFzqOH- |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB58IXrwLa6uGsSDB6tt0zYb8OKrKMq6rIreSl51F7S77K6CnvwJ_kZ_iUna-jgIgrcUmmnJzHwzCZNvADZZyAST3HN0NA2cgBCNg5HvOSlljBPmUymlbTZB6vXa7S1tDMFeeRcm54f4PHAznmHx2ji46sp094s1tNfhO8Tg7TCMBiGNtFuOHjXj6_MSiU1j79DypYaRozcCtGQWcv3dz8k_49FXkvk9VbWxJp7-31_OwFSRY6L93ChmYUhlczD5jXlwHky_OpQfKCiJ8jtJSr6_vjWbV2j__q7Taw9aD9voptUWLXShceWh_aL6SKeL6JKZKvTsDhXMts-IZUZGwTvR14_22zk3BWp0BqYiSY9iUy23ANfx8dXhiVN0YXCE3hq5jsckxoIq5nos1XDAGVYKc6JELWLKVTx0U6GIueLKcU2F0pU6JxBpyAjxdATGizCSdTK1BIiHPuXaaGhQ44HELqOpMK3FI0UEES6vwEapi6Sbk20kOa2yn-h1TOw6VqBaaikp_K2fYJ_4GHtaVAW2rD5-F5A0Lw7sYPnvr67DeOMoTs5P62crMOGbHsC2pKUKI4Peo1qFMfE0aPd7a4UJfgAsUOF5 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Improved+Informed%E2%80%90RRT+Algorithm%2C+Which+Optimizes+the+Sampling+Strategy+and+Integrates+an+Artificial+Potential+Field&rft.jtitle=Journal+of+field+robotics&rft.au=Kai%E2%80%90shen%2C+Kang&rft.au=Hai%E2%80%90long%2C+Huang&rft.au=Zi%E2%80%90qi%2C+S.+U.&rft.au=Hai%E2%80%90ze%2C+Wang&rft.date=2025-12-01&rft.issn=1556-4959&rft.eissn=1556-4967&rft.volume=42&rft.issue=8&rft.spage=4033&rft.epage=4052&rft_id=info:doi/10.1002%2Frob.70000&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_rob_70000 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1556-4959&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1556-4959&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1556-4959&client=summon |