A possibilistic fuzzy Gath-Geva clustering algorithm using the exponential distance

[Display omitted] •Propose PFGG clustering algorithm.•PFGG uses the exponential distance in contrast to PFCM.•PFGG clusters the dataset containing noisy data accurately.•The clustering accuracies, cluster centers and convergence results of PFGG are significantly better than FCM, GG, PFCM. As a famou...

Full description

Saved in:
Bibliographic Details
Published in:Expert systems with applications Vol. 184; p. 115550
Main Authors: Wu, Xiaohong, Zhou, Haoxiang, Wu, Bin, Zhang, Tingfei
Format: Journal Article
Language:English
Published: New York Elsevier Ltd 01.12.2021
Elsevier BV
Subjects:
ISSN:0957-4174, 1873-6793
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract [Display omitted] •Propose PFGG clustering algorithm.•PFGG uses the exponential distance in contrast to PFCM.•PFGG clusters the dataset containing noisy data accurately.•The clustering accuracies, cluster centers and convergence results of PFGG are significantly better than FCM, GG, PFCM. As a famous clustering algorithm, Gath-Geva (GG) clustering has been widely applied in many fields. Unlike fuzzy c-means (FCM) clustering, GG clustering uses the exponential distance with the fuzzy covariance matrix instead of Euclidean distance to cluster hyperellipsoidal data accurately. Due to the existence of probabilistic constraint, GG clustering is sensitive to noise data. For possibilistic fuzzy c-means (PFCM), the type of clustering data limits its application. To solve the noise sensitivity problem of GG clustering and extend PFCM for clustering hyperellipsoidal data, a possibilistic fuzzy Gath-Geva (PFGG) clustering algorithm is proposed. The PFGG clustering is derived from GG clustering in combination with PFCM clustering. FCM, GG, PFCM and PFGG are run on the several datasets to compare their clustering results. The experimental results show that the performance of PFGG is significantly better than the other clustering algorithms.
AbstractList As a famous clustering algorithm, Gath-Geva (GG) clustering has been widely applied in many fields. Unlike fuzzy c-means (FCM) clustering, GG clustering uses the exponential distance with the fuzzy covariance matrix instead of Euclidean distance to cluster hyperellipsoidal data accurately. Due to the existence of probabilistic constraint, GG clustering is sensitive to noise data. For possibilistic fuzzy c-means (PFCM), the type of clustering data limits its application. To solve the noise sensitivity problem of GG clustering and extend PFCM for clustering hyperellipsoidal data, a possibilistic fuzzy Gath-Geva (PFGG) clustering algorithm is proposed. The PFGG clustering is derived from GG clustering in combination with PFCM clustering. FCM, GG, PFCM and PFGG are run on the several datasets to compare their clustering results. The experimental results show that the performance of PFGG is significantly better than the other clustering algorithms.
[Display omitted] •Propose PFGG clustering algorithm.•PFGG uses the exponential distance in contrast to PFCM.•PFGG clusters the dataset containing noisy data accurately.•The clustering accuracies, cluster centers and convergence results of PFGG are significantly better than FCM, GG, PFCM. As a famous clustering algorithm, Gath-Geva (GG) clustering has been widely applied in many fields. Unlike fuzzy c-means (FCM) clustering, GG clustering uses the exponential distance with the fuzzy covariance matrix instead of Euclidean distance to cluster hyperellipsoidal data accurately. Due to the existence of probabilistic constraint, GG clustering is sensitive to noise data. For possibilistic fuzzy c-means (PFCM), the type of clustering data limits its application. To solve the noise sensitivity problem of GG clustering and extend PFCM for clustering hyperellipsoidal data, a possibilistic fuzzy Gath-Geva (PFGG) clustering algorithm is proposed. The PFGG clustering is derived from GG clustering in combination with PFCM clustering. FCM, GG, PFCM and PFGG are run on the several datasets to compare their clustering results. The experimental results show that the performance of PFGG is significantly better than the other clustering algorithms.
ArticleNumber 115550
Author Wu, Xiaohong
Wu, Bin
Zhou, Haoxiang
Zhang, Tingfei
Author_xml – sequence: 1
  givenname: Xiaohong
  surname: Wu
  fullname: Wu, Xiaohong
  email: wxh_www@163.com
  organization: School of Electrical and Information Engineering, Jiangsu University, Zhenjiang, China
– sequence: 2
  givenname: Haoxiang
  surname: Zhou
  fullname: Zhou, Haoxiang
  email: 1377099026@qq.com
  organization: School of Electrical and Information Engineering, Jiangsu University, Zhenjiang, China
– sequence: 3
  givenname: Bin
  surname: Wu
  fullname: Wu, Bin
  email: wubin2003@163.com
  organization: Department of Information Engineering, Chuzhou Polytechnic, Chuzhou, China
– sequence: 4
  givenname: Tingfei
  surname: Zhang
  fullname: Zhang, Tingfei
  email: 672816958@qq.com
  organization: School of Electrical and Information Engineering, Jiangsu University, Zhenjiang, China
BookMark eNp9kDtPwzAQgC1UJNrCH2CKxJxgOw8nEktVQUFCYgBm6-LYraM0CbZTaH89jsLE0Ol0uvvu8S3QrO1aidAtwRHBJLuvI2m_IaKYkoiQNE3xBZqTnMVhxop4hua4SFmYEJZcoYW1NcaEYczm6H0V9J21utSNtk6LQA2n0zHYgNuFG3mAQDSDddLodhtAs-2Mdrt9MNgxdzsZyJ_eX9I6DU1Q-QnQCnmNLhU0Vt78xSX6fHr8WD-Hr2-bl_XqNRQ0zV2olD8BsrysMCtVLFIMNKlSIJmKC8C5SJMYGIulwuBzWfoyZbgsSlKxMoF4ie6mub3pvgZpHa-7wbR-JfcLKKWY5IXvolOXMP5RIxXvjd6DOXKC-SiP13yUx0d5fJLnofwfJLQDp7vWGdDNefRhQqV__aCl4VZo6bVU2kjheNXpc_gv8HiNmQ
CitedBy_id crossref_primary_10_3233_JIFS_223854
crossref_primary_10_1016_j_measurement_2022_111683
crossref_primary_10_3233_JIFS_223576
crossref_primary_10_38124_ijisrt_25aug324
crossref_primary_10_1155_2022_8562194
crossref_primary_10_1155_2024_5806437
crossref_primary_10_3390_s21227502
crossref_primary_10_1016_j_energy_2023_126703
crossref_primary_10_1016_j_aei_2024_102772
crossref_primary_10_3390_app15084479
crossref_primary_10_1088_1361_6501_ad0ca6
crossref_primary_10_1093_comjnl_bxaf081
crossref_primary_10_1016_j_knosys_2023_110261
Cites_doi 10.1016/j.engappai.2019.07.015
10.1111/jfs.12555
10.1016/j.apm.2014.11.041
10.1109/TSMC.2017.2735995
10.3390/foods8010038
10.1016/j.apm.2012.04.031
10.1111/jfpe.12355
10.1109/TSMCB.2002.1033180
10.1016/j.compag.2018.02.014
10.1016/j.compmedimag.2010.12.001
10.1016/j.compag.2019.03.004
10.1016/j.asoc.2016.12.049
10.1016/j.asoc.2019.105610
10.1016/j.renene.2019.08.064
10.1016/j.apacoust.2017.01.023
10.1016/j.imavis.2019.02.006
10.1002/jsfa.9943
10.1016/j.ins.2019.07.100
10.1016/j.techfore.2019.05.015
10.1016/j.chemolab.2014.09.015
10.1109/91.227387
10.1007/s12530-010-9006-x
10.1109/TFUZZ.2004.840099
10.1109/34.192473
10.1111/jfpe.13298
10.1021/jf970337t
10.1016/j.jhydrol.2019.06.045
10.1016/j.apm.2011.03.050
10.1111/jfpe.13085
10.1016/j.jpdc.2019.07.015
10.1016/j.neucom.2017.01.115
10.1016/j.cmpb.2018.03.020
10.1016/S0308-8146(96)00289-0
10.1016/j.neucom.2019.04.070
ContentType Journal Article
Copyright 2021 Elsevier Ltd
Copyright Elsevier BV Dec 1, 2021
Copyright_xml – notice: 2021 Elsevier Ltd
– notice: Copyright Elsevier BV Dec 1, 2021
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/j.eswa.2021.115550
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1873-6793
ExternalDocumentID 10_1016_j_eswa_2021_115550
S0957417421009568
GroupedDBID --K
--M
.DC
.~1
0R~
13V
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARIN
AAXUO
AAYFN
ABBOA
ABFNM
ABMAC
ABMVD
ABUCO
ABYKQ
ACDAQ
ACGFS
ACHRH
ACNTT
ACRLP
ACZNC
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGJBL
AGUBO
AGUMN
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
ALEQD
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
AXJTR
BJAXD
BKOJK
BLXMC
BNSAS
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
IHE
J1W
JJJVA
KOM
LG9
LY1
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
ROL
RPZ
SDF
SDG
SDP
SDS
SES
SPC
SPCBC
SSB
SSD
SSL
SST
SSV
SSZ
T5K
TN5
~G-
29G
9DU
AAAKG
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABKBG
ABUFD
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
R2-
SBC
SET
SEW
WUQ
XPP
ZMT
~HD
7SC
8FD
AFXIZ
AGCQF
AGRNS
BNPGV
JQ2
L7M
L~C
L~D
SSH
ID FETCH-LOGICAL-c258t-ff700a68bd07bf3c50a24d5a16f39a08c543a773ef0a9a0eba24270b9b1d7b4a3
ISICitedReferencesCount 16
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000697030900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0957-4174
IngestDate Fri Jul 25 07:42:50 EDT 2025
Sat Nov 29 07:05:05 EST 2025
Tue Nov 18 22:12:49 EST 2025
Fri Feb 23 02:42:51 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords PFCM clustering
PFGG clustering
Hyperellipsoidal data
GG clustering
Noise data
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c258t-ff700a68bd07bf3c50a24d5a16f39a08c543a773ef0a9a0eba24270b9b1d7b4a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2582220189
PQPubID 2045477
ParticipantIDs proquest_journals_2582220189
crossref_primary_10_1016_j_eswa_2021_115550
crossref_citationtrail_10_1016_j_eswa_2021_115550
elsevier_sciencedirect_doi_10_1016_j_eswa_2021_115550
PublicationCentury 2000
PublicationDate 2021-12-01
2021-12-00
20211201
PublicationDateYYYYMMDD 2021-12-01
PublicationDate_xml – month: 12
  year: 2021
  text: 2021-12-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Expert systems with applications
PublicationYear 2021
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Ji, Sun, Xia (b0075) 2011; 35
Pal, Pal, Keller, Bezdek (b0105) 2005; 13
Wu, Wu, Sun, Qiu, Li (b0140) 2015; 39
Al-Jowder, Kemsley, Wilson (b0080) 1997; 59
Beck, Duong, Lebbah, Azzag, Cérin (b0015) 2019; 134
Soleimani-B., Lucas, Araabi (b0125) 2010; 1
Małgorzata, Jerzy, Piotr, Piotr, Szymon, Sławomir (b0095) 2010; 69
Askari, Montazerin, Fazel Zarandi (b0010) 2017; 53
Ni, Luo, Zhu, Liu (b0100) 2019; 85
Liu, Liyanaarachchi Lekamalage, Huang, Lin (b0090) 2018; 277
Wu, Fu, Wu, Chen, Jia (b0135) 2020; 40
Wu, Wu, Sun, Zhao (b0150) 2011; 35
Yu, Lin, Tan (b0185) 2017; 121
Abonyi, Babuska, Szeifert (b0005) 2002; 32
Chen, Xu, Xia (b0020) 2013; 37
Wu, Zhou, Wu, Sun, Dai (b0155) 2019; 42
GeethaRamani, Lakshmi (b0070) 2018; 160
Sun, Zhou, Hu, Wu, Zhang, Wang (b0130) 2019; 160
Dai, Huang, Lv, Zhang, Sun, Aheto (b0035) 2018; 38
Yang, Qian, EL‐Mesery, Zhang, Wang, Tang (b0175) 2019; 99
Pedro, Thiago (b0110) 2017
Yin, Wang, Perakis (b0180) 2018; 48
Zhou, Sun, Tian, Wu, Dai, Li (b0195) 2019; 42
Wu, Zhu, Wu, Zhao, Sun, Dai (b0165) 2019; 8
Radhika, Rangarajan (b0115) 2019; 83
Sharma, Dey (b0120) 2019; 83–84
Chen, Wang, Zhang (b0025) 2019; 146
D’Urso, Massari (b0045) 2019; 505
Yan, Chen (b0170) 2009
Wu, Wu, Sun, Yang (b0145) 2017; 40
Dunn (b0050) 1973; 3
Banguero, Correcher, Pérez-Navarro, García, Aristizabal (b0055) 2020; 146
Downey, Briandet, Wilson, Kemsley (b0040) 1997; 45
Feng, Niu, Zhang, Wang, Cheng (b0060) 2019; 576
Krishnapuram, Keller (b0085) 1993; 1
Zheng, Fu, Ying (b0190) 2014; 139
Coletta, Ponti, Hruschka, Acharya, Ghosh (b0030) 2019; 358
Wu, Zhu, Wu, Sun, Dai (b0160) 2018; 147
Gath, Geva (b0065) 1989; 11
GeethaRamani (10.1016/j.eswa.2021.115550_b0070) 2018; 160
Wu (10.1016/j.eswa.2021.115550_b0155) 2019; 42
Zheng (10.1016/j.eswa.2021.115550_b0190) 2014; 139
Chen (10.1016/j.eswa.2021.115550_b0020) 2013; 37
Dunn (10.1016/j.eswa.2021.115550_b0050) 1973; 3
Wu (10.1016/j.eswa.2021.115550_b0135) 2020; 40
Wu (10.1016/j.eswa.2021.115550_b0165) 2019; 8
Gath (10.1016/j.eswa.2021.115550_b0065) 1989; 11
Pedro (10.1016/j.eswa.2021.115550_b0110) 2017
Sun (10.1016/j.eswa.2021.115550_b0130) 2019; 160
Wu (10.1016/j.eswa.2021.115550_b0160) 2018; 147
Radhika (10.1016/j.eswa.2021.115550_b0115) 2019; 83
Soleimani-B. (10.1016/j.eswa.2021.115550_b0125) 2010; 1
Krishnapuram (10.1016/j.eswa.2021.115550_b0085) 1993; 1
Abonyi (10.1016/j.eswa.2021.115550_b0005) 2002; 32
Wu (10.1016/j.eswa.2021.115550_b0150) 2011; 35
Yang (10.1016/j.eswa.2021.115550_b0175) 2019; 99
Yan (10.1016/j.eswa.2021.115550_b0170) 2009
D’Urso (10.1016/j.eswa.2021.115550_b0045) 2019; 505
Małgorzata (10.1016/j.eswa.2021.115550_b0095) 2010; 69
Yin (10.1016/j.eswa.2021.115550_b0180) 2018; 48
Banguero (10.1016/j.eswa.2021.115550_b0055) 2020; 146
Yu (10.1016/j.eswa.2021.115550_b0185) 2017; 121
Liu (10.1016/j.eswa.2021.115550_b0090) 2018; 277
Al-Jowder (10.1016/j.eswa.2021.115550_b0080) 1997; 59
Wu (10.1016/j.eswa.2021.115550_b0140) 2015; 39
Ni (10.1016/j.eswa.2021.115550_b0100) 2019; 85
Beck (10.1016/j.eswa.2021.115550_b0015) 2019; 134
Zhou (10.1016/j.eswa.2021.115550_b0195) 2019; 42
Askari (10.1016/j.eswa.2021.115550_b0010) 2017; 53
Chen (10.1016/j.eswa.2021.115550_b0025) 2019; 146
Wu (10.1016/j.eswa.2021.115550_b0145) 2017; 40
Ji (10.1016/j.eswa.2021.115550_b0075) 2011; 35
Pal (10.1016/j.eswa.2021.115550_b0105) 2005; 13
Dai (10.1016/j.eswa.2021.115550_b0035) 2018; 38
Sharma (10.1016/j.eswa.2021.115550_b0120) 2019; 83–84
Coletta (10.1016/j.eswa.2021.115550_b0030) 2019; 358
Feng (10.1016/j.eswa.2021.115550_b0060) 2019; 576
Downey (10.1016/j.eswa.2021.115550_b0040) 1997; 45
References_xml – volume: 35
  start-page: 383
  year: 2011
  end-page: 397
  ident: b0075
  article-title: A modified possibilistic fuzzy c-means clustering algorithm for bias field estimation and segmentation of brain MR image
  publication-title: Computerized Medical Imaging and Graphics
– year: 2017
  ident: b0110
  article-title: Proposal of new hybrid fuzzy clustering algorithms - Application to breast cancer dataset
  publication-title: 2017 IEEE Latin American Conference on Computational Intelligence (LA-CCI). IEEE
– volume: 69
  start-page: 15
  year: 2010
  end-page: 24
  ident: b0095
  article-title: Complete gradient clustering algorithm for features analysis of X-Ray images
  publication-title: IEEE Transactions on Information Technology in Biomedicine
– volume: 83–84
  start-page: 1
  year: 2019
  end-page: 16
  ident: b0120
  article-title: Two-stage quality adaptive fingerprint image enhancement using fuzzy c-means clustering based fingerprint quality analysis
  publication-title: Image and Vision Computing
– volume: 358
  start-page: 150
  year: 2019
  end-page: 165
  ident: b0030
  article-title: Combining clustering and active learning for the detection and learning of new image classes
  publication-title: Neurocomputing
– volume: 83
  start-page: 105610
  year: 2019
  ident: b0115
  article-title: On improving the lifespan of wireless sensor networks with fuzzy based clustering and machine learning based data reduction
  publication-title: Applied Soft Computing Journal
– volume: 134
  start-page: 128
  year: 2019
  end-page: 139
  ident: b0015
  article-title: A distributed approximate nearest neighbors algorithm for efficient large scale mean shift clustering
  publication-title: Journal of Parallel and Distributed Computing
– volume: 1
  start-page: 98
  year: 1993
  end-page: 110
  ident: b0085
  article-title: A possibilistic approach to clustering
  publication-title: IEEE Transactions on Fuzzy Systems
– volume: 121
  start-page: 33
  year: 2017
  end-page: 45
  ident: b0185
  article-title: A bearing fault diagnosis technique based on singular values of EEMD spatial condition matrix and Gath-Geva clustering
  publication-title: Applied Acoustics
– volume: 40
  start-page: e12355
  year: 2017
  ident: b0145
  article-title: Classification of apple varieties using near infrared reflectance spectroscopy and fuzzy discriminant c-means clustering model
  publication-title: Journal of Food Process Engineering
– volume: 42
  year: 2019
  ident: b0155
  article-title: Identification of tea varieties by mid-infrared diffuse reflectance spectroscopy coupled with a possibilistic fuzzy c-means clustering with a fuzzy covariance matrix
  publication-title: Journal of Food Process Engineering
– volume: 11
  start-page: 773
  year: 1989
  end-page: 781
  ident: b0065
  article-title: Unsupervised optimal fuzzy clustering
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
– volume: 59
  start-page: 195
  year: 1997
  end-page: 201
  ident: b0080
  article-title: Mid-infrared spectroscopy and authenticity problems in selected meats: A feasibility study
  publication-title: Food Chemistry
– volume: 1
  start-page: 59
  year: 2010
  end-page: 71
  ident: b0125
  article-title: Recursive Gath-Geva clustering as a basis for evolving neuro-fuzzy modeling
  publication-title: Evolving Systems
– volume: 147
  start-page: 64
  year: 2018
  end-page: 69
  ident: b0160
  article-title: Discrimination of tea varieties using FTIR spectroscopy and allied Gustafson-Kessel clustering
  publication-title: Computers and Electronics in Agriculture
– volume: 13
  start-page: 517
  year: 2005
  end-page: 530
  ident: b0105
  article-title: A possibilistic fuzzy c-means clustering algorithm
  publication-title: IEEE Transactions on Fuzzy Systems
– volume: 576
  start-page: 229
  year: 2019
  end-page: 238
  ident: b0060
  article-title: Operation rule derivation of hydropower reservoir by k-means clustering method and extreme learning machine based on particle swarm optimization
  publication-title: Journal of Hydrology
– volume: 53
  start-page: 262
  year: 2017
  end-page: 283
  ident: b0010
  article-title: Generalized possibilistic fuzzy c-means with novel cluster validity indices for clustering noisy data
  publication-title: Applied Soft Computing Journal
– volume: 139
  start-page: 42
  year: 2014
  end-page: 47
  ident: b0190
  article-title: Spectroscopy-based food classification with extreme learning machine
  publication-title: Chemometrics and Intelligent Laboratory Systems
– volume: 8
  start-page: 38
  year: 2019
  ident: b0165
  article-title: Discrimination of Chinese liquors based on electronic nose and fuzzy discriminant principal component analysis
  publication-title: Foods
– year: 2009
  ident: b0170
  article-title: Hyperspherical possibilistic fuzzy c-means for high-dimensional data clustering
  publication-title: In
– volume: 40
  start-page: 512
  year: 2020
  end-page: 516
  ident: b0135
  article-title: Classification of FTNIR spectra of tea via possibilistic fuzzy discriminant C-means clustering
  publication-title: Spectroscopy and Spectral Analysis
– volume: 146
  start-page: 2438
  year: 2020
  end-page: 2449
  ident: b0055
  article-title: Diagnosis of a battery energy storage system based on principal component analysis
  publication-title: Renewable Energy
– volume: 3
  start-page: 32
  year: 1973
  end-page: 57
  ident: b0050
  article-title: A fuzzy relative of the ISODATA process and its use in detecting compact well separated cluster
  publication-title: Cybernet Systems
– volume: 277
  start-page: 78
  year: 2018
  end-page: 88
  ident: b0090
  article-title: Extreme learning machine for joint embedding and clustering
  publication-title: Neurocomputing
– volume: 48
  start-page: 2115
  year: 2018
  end-page: 2125
  ident: b0180
  article-title: A real-time sequential ship roll prediction scheme based on adaptive sliding data window
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics: Systems
– volume: 37
  start-page: 2197
  year: 2013
  end-page: 2211
  ident: b0020
  article-title: Correlation coefficients of hesitant fuzzy sets and their applications to clustering analysis
  publication-title: Applied Mathematical Modelling
– volume: 146
  start-page: 41
  year: 2019
  end-page: 54
  ident: b0025
  article-title: A hybrid PSO-SVM model based on clustering algorithm for short-term atmospheric pollutant concentration forecasting
  publication-title: Technological Forecasting & Social Change
– volume: 505
  start-page: 513
  year: 2019
  end-page: 534
  ident: b0045
  article-title: Fuzzy clustering of mixed data
  publication-title: Information Sciences
– volume: 32
  start-page: 612
  year: 2002
  end-page: 621
  ident: b0005
  article-title: Modified Gath-Geva fuzzy clustering for identification of takagi-sugeno fuzzy models
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics, Part B
– volume: 160
  start-page: 153
  year: 2019
  end-page: 159
  ident: b0130
  article-title: Visualizing distribution of moisture content in tea leaves using optimization algorithms and NIR hyperspectral imaging
  publication-title: Computers and Electronics in Agriculture
– volume: 42
  year: 2019
  ident: b0195
  article-title: Spectral classification of lettuce cadmium stress based on information fusion and VISSA-GOA-SVM algorithm
  publication-title: Journal of Food Process Engineering
– volume: 99
  start-page: 6589
  year: 2019
  end-page: 6600
  ident: b0175
  article-title: Rapid detection of rice disease using microscopy image identification based on the synergistic judgment of texture and shape features and decision tree-confusion matrix method
  publication-title: Journal of the Science of Food and Agriculture
– volume: 35
  start-page: 4790
  year: 2011
  end-page: 4795
  ident: b0150
  article-title: Mixed fuzzy inter-cluster separation clustering algorithm
  publication-title: Applied Mathematical Modelling
– volume: 160
  start-page: 153
  year: 2018
  end-page: 163
  ident: b0070
  article-title: Macula segmentation and fovea localization employing image processing and heuristic based clustering for automated retinal screening
  publication-title: Computer Methods and Programs in Biomedicine
– volume: 45
  start-page: 4357
  year: 1997
  end-page: 4361
  ident: b0040
  article-title: Near-and mid-infrared spectroscopies in food authentication: Coffee varietal identification
  publication-title: Journal of Agricultural and Food Chemistry
– volume: 85
  start-page: 727
  year: 2019
  end-page: 739
  ident: b0100
  article-title: Clustering by finding prominent peaks in density space
  publication-title: Engineering Applications of Artificial Intelligence
– volume: 39
  start-page: 3398
  year: 2015
  end-page: 3409
  ident: b0140
  article-title: A hybrid fuzzy k-harmonic means clustering algorithm
  publication-title: Applied Mathematical Modelling
– volume: 38
  year: 2018
  ident: b0035
  article-title: Analysis of volatile compounds of
  publication-title: Journal of Food Safety
– volume: 85
  start-page: 727
  year: 2019
  ident: 10.1016/j.eswa.2021.115550_b0100
  article-title: Clustering by finding prominent peaks in density space
  publication-title: Engineering Applications of Artificial Intelligence
  doi: 10.1016/j.engappai.2019.07.015
– volume: 38
  issue: 6
  year: 2018
  ident: 10.1016/j.eswa.2021.115550_b0035
  article-title: Analysis of volatile compounds of Tremella aurantialba fermentation via electronic nose and HS-SPME-GC-MS
  publication-title: Journal of Food Safety
  doi: 10.1111/jfs.12555
– volume: 39
  start-page: 3398
  issue: 12
  year: 2015
  ident: 10.1016/j.eswa.2021.115550_b0140
  article-title: A hybrid fuzzy k-harmonic means clustering algorithm
  publication-title: Applied Mathematical Modelling
  doi: 10.1016/j.apm.2014.11.041
– volume: 48
  start-page: 2115
  issue: 12
  year: 2018
  ident: 10.1016/j.eswa.2021.115550_b0180
  article-title: A real-time sequential ship roll prediction scheme based on adaptive sliding data window
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics: Systems
  doi: 10.1109/TSMC.2017.2735995
– volume: 8
  start-page: 38
  issue: 1
  year: 2019
  ident: 10.1016/j.eswa.2021.115550_b0165
  article-title: Discrimination of Chinese liquors based on electronic nose and fuzzy discriminant principal component analysis
  publication-title: Foods
  doi: 10.3390/foods8010038
– volume: 37
  start-page: 2197
  issue: 4
  year: 2013
  ident: 10.1016/j.eswa.2021.115550_b0020
  article-title: Correlation coefficients of hesitant fuzzy sets and their applications to clustering analysis
  publication-title: Applied Mathematical Modelling
  doi: 10.1016/j.apm.2012.04.031
– year: 2017
  ident: 10.1016/j.eswa.2021.115550_b0110
  article-title: Proposal of new hybrid fuzzy clustering algorithms - Application to breast cancer dataset
– volume: 40
  start-page: e12355
  issue: 2
  year: 2017
  ident: 10.1016/j.eswa.2021.115550_b0145
  article-title: Classification of apple varieties using near infrared reflectance spectroscopy and fuzzy discriminant c-means clustering model
  publication-title: Journal of Food Process Engineering
  doi: 10.1111/jfpe.12355
– year: 2009
  ident: 10.1016/j.eswa.2021.115550_b0170
  article-title: Hyperspherical possibilistic fuzzy c-means for high-dimensional data clustering
– volume: 32
  start-page: 612
  issue: 5
  year: 2002
  ident: 10.1016/j.eswa.2021.115550_b0005
  article-title: Modified Gath-Geva fuzzy clustering for identification of takagi-sugeno fuzzy models
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics, Part B
  doi: 10.1109/TSMCB.2002.1033180
– volume: 147
  start-page: 64
  year: 2018
  ident: 10.1016/j.eswa.2021.115550_b0160
  article-title: Discrimination of tea varieties using FTIR spectroscopy and allied Gustafson-Kessel clustering
  publication-title: Computers and Electronics in Agriculture
  doi: 10.1016/j.compag.2018.02.014
– volume: 35
  start-page: 383
  issue: 5
  year: 2011
  ident: 10.1016/j.eswa.2021.115550_b0075
  article-title: A modified possibilistic fuzzy c-means clustering algorithm for bias field estimation and segmentation of brain MR image
  publication-title: Computerized Medical Imaging and Graphics
  doi: 10.1016/j.compmedimag.2010.12.001
– volume: 160
  start-page: 153
  year: 2019
  ident: 10.1016/j.eswa.2021.115550_b0130
  article-title: Visualizing distribution of moisture content in tea leaves using optimization algorithms and NIR hyperspectral imaging
  publication-title: Computers and Electronics in Agriculture
  doi: 10.1016/j.compag.2019.03.004
– volume: 53
  start-page: 262
  year: 2017
  ident: 10.1016/j.eswa.2021.115550_b0010
  article-title: Generalized possibilistic fuzzy c-means with novel cluster validity indices for clustering noisy data
  publication-title: Applied Soft Computing Journal
  doi: 10.1016/j.asoc.2016.12.049
– volume: 83
  start-page: 105610
  year: 2019
  ident: 10.1016/j.eswa.2021.115550_b0115
  article-title: On improving the lifespan of wireless sensor networks with fuzzy based clustering and machine learning based data reduction
  publication-title: Applied Soft Computing Journal
  doi: 10.1016/j.asoc.2019.105610
– volume: 146
  start-page: 2438
  year: 2020
  ident: 10.1016/j.eswa.2021.115550_b0055
  article-title: Diagnosis of a battery energy storage system based on principal component analysis
  publication-title: Renewable Energy
  doi: 10.1016/j.renene.2019.08.064
– volume: 121
  start-page: 33
  year: 2017
  ident: 10.1016/j.eswa.2021.115550_b0185
  article-title: A bearing fault diagnosis technique based on singular values of EEMD spatial condition matrix and Gath-Geva clustering
  publication-title: Applied Acoustics
  doi: 10.1016/j.apacoust.2017.01.023
– volume: 69
  start-page: 15
  year: 2010
  ident: 10.1016/j.eswa.2021.115550_b0095
  article-title: Complete gradient clustering algorithm for features analysis of X-Ray images
  publication-title: IEEE Transactions on Information Technology in Biomedicine
– volume: 83–84
  start-page: 1
  year: 2019
  ident: 10.1016/j.eswa.2021.115550_b0120
  article-title: Two-stage quality adaptive fingerprint image enhancement using fuzzy c-means clustering based fingerprint quality analysis
  publication-title: Image and Vision Computing
  doi: 10.1016/j.imavis.2019.02.006
– volume: 3
  start-page: 32
  year: 1973
  ident: 10.1016/j.eswa.2021.115550_b0050
  article-title: A fuzzy relative of the ISODATA process and its use in detecting compact well separated cluster
  publication-title: Cybernet Systems
– volume: 99
  start-page: 6589
  issue: 14
  year: 2019
  ident: 10.1016/j.eswa.2021.115550_b0175
  article-title: Rapid detection of rice disease using microscopy image identification based on the synergistic judgment of texture and shape features and decision tree-confusion matrix method
  publication-title: Journal of the Science of Food and Agriculture
  doi: 10.1002/jsfa.9943
– volume: 505
  start-page: 513
  year: 2019
  ident: 10.1016/j.eswa.2021.115550_b0045
  article-title: Fuzzy clustering of mixed data
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2019.07.100
– volume: 146
  start-page: 41
  year: 2019
  ident: 10.1016/j.eswa.2021.115550_b0025
  article-title: A hybrid PSO-SVM model based on clustering algorithm for short-term atmospheric pollutant concentration forecasting
  publication-title: Technological Forecasting & Social Change
  doi: 10.1016/j.techfore.2019.05.015
– volume: 139
  start-page: 42
  year: 2014
  ident: 10.1016/j.eswa.2021.115550_b0190
  article-title: Spectroscopy-based food classification with extreme learning machine
  publication-title: Chemometrics and Intelligent Laboratory Systems
  doi: 10.1016/j.chemolab.2014.09.015
– volume: 1
  start-page: 98
  issue: 2
  year: 1993
  ident: 10.1016/j.eswa.2021.115550_b0085
  article-title: A possibilistic approach to clustering
  publication-title: IEEE Transactions on Fuzzy Systems
  doi: 10.1109/91.227387
– volume: 1
  start-page: 59
  issue: 1
  year: 2010
  ident: 10.1016/j.eswa.2021.115550_b0125
  article-title: Recursive Gath-Geva clustering as a basis for evolving neuro-fuzzy modeling
  publication-title: Evolving Systems
  doi: 10.1007/s12530-010-9006-x
– volume: 13
  start-page: 517
  issue: 4
  year: 2005
  ident: 10.1016/j.eswa.2021.115550_b0105
  article-title: A possibilistic fuzzy c-means clustering algorithm
  publication-title: IEEE Transactions on Fuzzy Systems
  doi: 10.1109/TFUZZ.2004.840099
– volume: 40
  start-page: 512
  issue: 2
  year: 2020
  ident: 10.1016/j.eswa.2021.115550_b0135
  article-title: Classification of FTNIR spectra of tea via possibilistic fuzzy discriminant C-means clustering
  publication-title: Spectroscopy and Spectral Analysis
– volume: 11
  start-page: 773
  issue: 7
  year: 1989
  ident: 10.1016/j.eswa.2021.115550_b0065
  article-title: Unsupervised optimal fuzzy clustering
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/34.192473
– volume: 42
  issue: 8
  year: 2019
  ident: 10.1016/j.eswa.2021.115550_b0155
  article-title: Identification of tea varieties by mid-infrared diffuse reflectance spectroscopy coupled with a possibilistic fuzzy c-means clustering with a fuzzy covariance matrix
  publication-title: Journal of Food Process Engineering
  doi: 10.1111/jfpe.13298
– volume: 45
  start-page: 4357
  year: 1997
  ident: 10.1016/j.eswa.2021.115550_b0040
  article-title: Near-and mid-infrared spectroscopies in food authentication: Coffee varietal identification
  publication-title: Journal of Agricultural and Food Chemistry
  doi: 10.1021/jf970337t
– volume: 576
  start-page: 229
  year: 2019
  ident: 10.1016/j.eswa.2021.115550_b0060
  article-title: Operation rule derivation of hydropower reservoir by k-means clustering method and extreme learning machine based on particle swarm optimization
  publication-title: Journal of Hydrology
  doi: 10.1016/j.jhydrol.2019.06.045
– volume: 35
  start-page: 4790
  issue: 10
  year: 2011
  ident: 10.1016/j.eswa.2021.115550_b0150
  article-title: Mixed fuzzy inter-cluster separation clustering algorithm
  publication-title: Applied Mathematical Modelling
  doi: 10.1016/j.apm.2011.03.050
– volume: 42
  issue: 5
  year: 2019
  ident: 10.1016/j.eswa.2021.115550_b0195
  article-title: Spectral classification of lettuce cadmium stress based on information fusion and VISSA-GOA-SVM algorithm
  publication-title: Journal of Food Process Engineering
  doi: 10.1111/jfpe.13085
– volume: 134
  start-page: 128
  year: 2019
  ident: 10.1016/j.eswa.2021.115550_b0015
  article-title: A distributed approximate nearest neighbors algorithm for efficient large scale mean shift clustering
  publication-title: Journal of Parallel and Distributed Computing
  doi: 10.1016/j.jpdc.2019.07.015
– volume: 277
  start-page: 78
  year: 2018
  ident: 10.1016/j.eswa.2021.115550_b0090
  article-title: Extreme learning machine for joint embedding and clustering
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2017.01.115
– volume: 160
  start-page: 153
  year: 2018
  ident: 10.1016/j.eswa.2021.115550_b0070
  article-title: Macula segmentation and fovea localization employing image processing and heuristic based clustering for automated retinal screening
  publication-title: Computer Methods and Programs in Biomedicine
  doi: 10.1016/j.cmpb.2018.03.020
– volume: 59
  start-page: 195
  issue: 2
  year: 1997
  ident: 10.1016/j.eswa.2021.115550_b0080
  article-title: Mid-infrared spectroscopy and authenticity problems in selected meats: A feasibility study
  publication-title: Food Chemistry
  doi: 10.1016/S0308-8146(96)00289-0
– volume: 358
  start-page: 150
  year: 2019
  ident: 10.1016/j.eswa.2021.115550_b0030
  article-title: Combining clustering and active learning for the detection and learning of new image classes
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2019.04.070
SSID ssj0017007
Score 2.4430737
Snippet [Display omitted] •Propose PFGG clustering algorithm.•PFGG uses the exponential distance in contrast to PFCM.•PFGG clusters the dataset containing noisy data...
As a famous clustering algorithm, Gath-Geva (GG) clustering has been widely applied in many fields. Unlike fuzzy c-means (FCM) clustering, GG clustering uses...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 115550
SubjectTerms Algorithms
Clustering
Covariance matrix
Euclidean geometry
GG clustering
Hyperellipsoidal data
Noise data
Noise sensitivity
PFCM clustering
PFGG clustering
Title A possibilistic fuzzy Gath-Geva clustering algorithm using the exponential distance
URI https://dx.doi.org/10.1016/j.eswa.2021.115550
https://www.proquest.com/docview/2582220189
Volume 184
WOSCitedRecordID wos000697030900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-6793
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017007
  issn: 0957-4174
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFLeg48CFb8TGQD5wizLly7V9LGhsIDQhUaTeIjt1tlYjqZpkdPvreY7tJC3axA5cosSxX928X55fnt8HQh-UCIXMVe7HSSb9JJHC51xRX4YqmzPCuGBtoPA3enbGZjP-3W4XVG05AVoUbLPhq__KamgDZuvQ2XuwuyMKDXAOTIcjsB2O_8T4ibcqK-P0qnMwe3lzc3PtnYCm55-oKx0L2ejkCG1w4uV5uV7UF7-8pnJhU2qzKgvtQmR2b-oOFcvOaU-ta5sB2sXGDXbBOynfaO7NFqK8KO3q2Nqny7b9VJQbAOb5du-Pi6LvaA3ZU5hYrhZD60QUDjw9nJmR-kloKvH0EjcZyEzQSYlJPvuXODeWheWRqn7rHFFReNR33s6dvbOmdZ6GzoltmWoaqaaRGhoP0V5ECWcjtDf5cjz72u090cAE2buZ21Ar4xW4O5Pb1Jmdhb3VVqbP0BP7mYEnBh7P0QNVvEBPXQkPbCX6S_RjgrfQglu04A4tuEcL7tCCW7RgQAseoAU7tLxCPz8fTz-d-rbOhp9FhNV-nsNfFmMm5wGVeZyRQETJnIhwnMdcBCwjSSwojVUeCLhWEm5HNJBchnMqExG_RqMCfuwNwgwIZBEQTAjcEJEgPIEh4zGVPBSB2Eehe1xpZpPQ61ool-ntjNpHXjdmZVKw3NmbOC6kVok0ymEKoLpz3KFjWWrf5iqFxwP6cxAyfnCvSbxFj_uX4RCN6nWj3qFH2VW9qNbvLeD-APIeoPw
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+possibilistic+fuzzy+Gath-Geva+clustering+algorithm+using+the+exponential+distance&rft.jtitle=Expert+systems+with+applications&rft.au=Wu%2C+Xiaohong&rft.au=Zhou%2C+Haoxiang&rft.au=Wu%2C+Bin&rft.au=Zhang%2C+Tingfei&rft.date=2021-12-01&rft.issn=0957-4174&rft.volume=184&rft.spage=115550&rft_id=info:doi/10.1016%2Fj.eswa.2021.115550&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_eswa_2021_115550
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon