Designing a novel framework of email spam detection using an improved heuristic algorithm and dual-scale feature fusion-based adaptive convolution neural network

Nowadays, e-mail is becoming more prevalent among individuals. In recent days, it has been declared to be the least expensive and quickest mode of communicating. In recent years, e-mail spam has become a big problem, so the number of e-mail spam has also increased, and they are used for unethical an...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Information security journal. Ročník 34; číslo 4; s. 286 - 309
Hlavní autori: Kadam, Vikas S., Pingale, Subhash, Biradar, Sangappa R., Rohokale, Vandana M., Bamane, Kalyan D.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Taylor & Francis 04.07.2025
Predmet:
ISSN:1939-3555, 1939-3547
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Nowadays, e-mail is becoming more prevalent among individuals. In recent days, it has been declared to be the least expensive and quickest mode of communicating. In recent years, e-mail spam has become a big problem, so the number of e-mail spam has also increased, and they are used for unethical and illegal conduct, scams, and theft. As a result, the main objective of the study is to detect e-mail spam using an adaptive deep-learning model with feature fusion. Initially, the input image and text are collected from benchmark datasets. Further, the raw text undergoes the pre-processing stage, and it is then followed by extracting the features using Bidirectional Encoder Representations from Transformers (BERT). Similarly, the Vision Transformer (ViT) is employed for extracting the features from raw images. Finally, these features are given in Dual Scale Feature Fusion-based Adaptive Convolutional Neural Network (DFF-ACNNet), and it is then fused for performing the classification in Convolutional Neural Network (CNN). Here, the hyper-parameters are tuned by using Modified Squid Game Optimizer (MSGO). Finally, the evaluation is done with various metrics to estimate the performance of the model and the accuracy of the developed system is 98.46, which is higher than the other conventional approaches.
AbstractList Nowadays, e-mail is becoming more prevalent among individuals. In recent days, it has been declared to be the least expensive and quickest mode of communicating. In recent years, e-mail spam has become a big problem, so the number of e-mail spam has also increased, and they are used for unethical and illegal conduct, scams, and theft. As a result, the main objective of the study is to detect e-mail spam using an adaptive deep-learning model with feature fusion. Initially, the input image and text are collected from benchmark datasets. Further, the raw text undergoes the pre-processing stage, and it is then followed by extracting the features using Bidirectional Encoder Representations from Transformers (BERT). Similarly, the Vision Transformer (ViT) is employed for extracting the features from raw images. Finally, these features are given in Dual Scale Feature Fusion-based Adaptive Convolutional Neural Network (DFF-ACNNet), and it is then fused for performing the classification in Convolutional Neural Network (CNN). Here, the hyper-parameters are tuned by using Modified Squid Game Optimizer (MSGO). Finally, the evaluation is done with various metrics to estimate the performance of the model and the accuracy of the developed system is 98.46, which is higher than the other conventional approaches.
Author Rohokale, Vandana M.
Pingale, Subhash
Biradar, Sangappa R.
Bamane, Kalyan D.
Kadam, Vikas S.
Author_xml – sequence: 1
  givenname: Vikas S.
  surname: Kadam
  fullname: Kadam, Vikas S.
  email: vikasskadam@gmail.com
  organization: Symbiosis Skills & Professional University
– sequence: 2
  givenname: Subhash
  surname: Pingale
  fullname: Pingale, Subhash
  organization: Sinhgad College of Engineering
– sequence: 3
  givenname: Sangappa R.
  surname: Biradar
  fullname: Biradar, Sangappa R.
  organization: SDMCET Dharwad
– sequence: 4
  givenname: Vandana M.
  surname: Rohokale
  fullname: Rohokale, Vandana M.
  organization: Sinhgad Institute of Technology and Science
– sequence: 5
  givenname: Kalyan D.
  surname: Bamane
  fullname: Bamane, Kalyan D.
  organization: D Y Patil College of Engineering Akurdi
BookMark eNp9kNtKAzEURYMoWKufIOQHpk5unZk3xTsIvujzcJpLG80kJclU_Bz_1LRWH4XADknW5mSdoEMfvEbonNQzUrf1BelYx4QQM1pTPqOcUSraAzTZnldM8Obwby_EMTpJ6a2u55R09QR93ehkl976JQbsw0Y7bCIM-iPEdxwM1gNYh9MaBqx01jLb4PGYdu89tsM6FkbhlR6jTdlKDG4Zos2rodwrrEZwVZLgNDYa8hhLFjr4agGpcKBgne1GYxn8JrhxV-9LGbgSeTvFKToy4JI-2-cUvd7dvlw_VE_P94_XV0-VLL_NlVbzhglpWNsx1TVtqxtuYEHnjRS0aTlRQjaLjrVGEV5WKySnIEB0UhKuOZsi8dMrY0gpatOvox0gfvak7ree-1_P_dZzv_dcuMsfznoT4gBlZqf6DJ8uxKLSS5t69n_FN4MLixE
Cites_doi 10.1109/ACCESS.2020.3030751
10.1016/j.optlastec.2023.109505
10.1007/s10207-023-00756-1
10.1155/2021/9210050
10.1007/s10586-017-1615-8
10.1109/ACCESS.2023.3310885
10.1016/j.procs.2022.03.087
10.1007/s12652-017-0621-2
10.1007/s41315-021-00217-9
10.1016/j.eij.2024.100473
10.1155/2023/6648970
10.1109/TIM.2021.3118090
10.1109/ICCV48922.2021.00676
10.1109/TCSI.2017.2757036
10.1007/s10207-019-00470-x
10.1080/1206212X.2023.2258328
10.1038/s41598-023-32465-z
10.1109/ACCESS.2019.2907000
10.1109/TII.2019.2895054
10.1109/ACCESS.2020.3017082
10.1007/s10994-006-9505-y
10.1007/s42452-019-0394-7
10.1007/s00521-017-3100-y
10.1109/ACCESS.2021.3116128
10.1016/j.eswa.2023.120977
10.3233/JCS-200111
10.1007/s00521-022-07148-x
10.1007/s11277-021-09221-5
10.1007/s11042-023-14814-2
10.1109/CTIT.2018.8649534
10.1109/ACCESS.2019.2944089
10.47852/bonviewJCCE2202192
10.1038/s41598-022-14338-z
10.1016/j.fcij.2018.11.006
10.1007/s41870-023-01516-z
ContentType Journal Article
Copyright 2024 Taylor & Francis Group, LLC 2024
Copyright_xml – notice: 2024 Taylor & Francis Group, LLC 2024
DBID AAYXX
CITATION
DOI 10.1080/19393555.2024.2432258
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1939-3547
EndPage 309
ExternalDocumentID 10_1080_19393555_2024_2432258
2432258
Genre Research Article
GroupedDBID .4S
.7F
.DC
.QJ
0BK
0R~
30N
5VS
8VB
AAENE
AAGDL
AAHIA
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABDBF
ABFIM
ABLIJ
ABPAQ
ABPEM
ABTAI
ABXUL
ABXYU
ACGFS
ACTIO
ADCVX
ADGTB
AEISY
AEOZL
AFRVT
AGDLA
AGMYJ
AHDZW
AIJEM
AIYEW
AKBVH
AKOOK
AKVCP
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
AQTUD
AVBZW
AWYRJ
BLEHA
CCCUG
CE4
DGEBU
DKSSO
EAP
EBR
EBS
EBU
EHB
EHE
EJD
EMI
EST
ESX
E~A
E~B
FPAXQ
GTTXZ
H13
HF~
H~P
J.P
K60
K6~
KYCEM
LJTGL
M4Z
NA5
NX~
PQBIZ
QN7
QWB
RIG
RNANH
ROSJB
RTWRZ
S-T
SNACF
TASJS
TBQAZ
TDBHL
TEN
TFL
TFT
TFW
TNC
TTHFI
TUROJ
TUS
TWF
UT5
UU3
ZGOLN
ZL0
~S~
AAYXX
CITATION
ID FETCH-LOGICAL-c258t-ed6735cf3893d9788e74fab267c527841d5c7b938fd14d1485c42a5a59cc14e43
IEDL.DBID TFW
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001369882600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1939-3555
IngestDate Sat Nov 29 07:49:55 EST 2025
Mon Oct 20 23:41:20 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c258t-ed6735cf3893d9788e74fab267c527841d5c7b938fd14d1485c42a5a59cc14e43
PageCount 24
ParticipantIDs informaworld_taylorfrancis_310_1080_19393555_2024_2432258
crossref_primary_10_1080_19393555_2024_2432258
PublicationCentury 2000
PublicationDate 07/04/2025
PublicationDateYYYYMMDD 2025-07-04
PublicationDate_xml – month: 07
  year: 2025
  text: 07/04/2025
  day: 04
PublicationDecade 2020
PublicationTitle Information security journal.
PublicationYear 2025
Publisher Taylor & Francis
Publisher_xml – name: Taylor & Francis
References e_1_3_3_30_1
Mani S. (e_1_3_3_23_1) 2023; 3
e_1_3_3_18_1
e_1_3_3_17_1
e_1_3_3_39_1
e_1_3_3_19_1
e_1_3_3_14_1
e_1_3_3_37_1
e_1_3_3_13_1
e_1_3_3_38_1
e_1_3_3_16_1
e_1_3_3_35_1
e_1_3_3_15_1
e_1_3_3_36_1
e_1_3_3_10_1
e_1_3_3_33_1
Liu T. (e_1_3_3_21_1) 2024; 3
e_1_3_3_34_1
e_1_3_3_31_1
e_1_3_3_11_1
e_1_3_3_32_1
e_1_3_3_40_1
Deepa D. (e_1_3_3_12_1) 2021; 12
e_1_3_3_7_1
e_1_3_3_6_1
e_1_3_3_9_1
e_1_3_3_8_1
e_1_3_3_29_1
e_1_3_3_28_1
e_1_3_3_25_1
e_1_3_3_24_1
e_1_3_3_27_1
e_1_3_3_26_1
e_1_3_3_3_1
e_1_3_3_2_1
e_1_3_3_20_1
e_1_3_3_5_1
e_1_3_3_4_1
e_1_3_3_22_1
References_xml – ident: e_1_3_3_14_1
  doi: 10.1109/ACCESS.2020.3030751
– ident: e_1_3_3_30_1
  doi: 10.1016/j.optlastec.2023.109505
– ident: e_1_3_3_2_1
  doi: 10.1007/s10207-023-00756-1
– ident: e_1_3_3_39_1
  doi: 10.1155/2021/9210050
– ident: e_1_3_3_20_1
  doi: 10.1007/s10586-017-1615-8
– ident: e_1_3_3_4_1
  doi: 10.1109/ACCESS.2023.3310885
– ident: e_1_3_3_25_1
  doi: 10.1016/j.procs.2022.03.087
– ident: e_1_3_3_9_1
  doi: 10.1007/s12652-017-0621-2
– volume: 3
  start-page: 90
  year: 2023
  ident: e_1_3_3_23_1
  article-title: Email spam detection using gated recurrent neural network
  publication-title: International Journal of Prograssive Research in Engineering Management and Science
– ident: e_1_3_3_37_1
  doi: 10.1007/s41315-021-00217-9
– ident: e_1_3_3_27_1
  doi: 10.1016/j.eij.2024.100473
– ident: e_1_3_3_33_1
  doi: 10.1007/s41315-021-00217-9
– ident: e_1_3_3_24_1
  doi: 10.1155/2023/6648970
– ident: e_1_3_3_22_1
  doi: 10.1109/TIM.2021.3118090
– ident: e_1_3_3_7_1
  doi: 10.1109/ICCV48922.2021.00676
– ident: e_1_3_3_6_1
  doi: 10.1109/TCSI.2017.2757036
– ident: e_1_3_3_35_1
  doi: 10.1007/s10207-019-00470-x
– ident: e_1_3_3_11_1
  doi: 10.1080/1206212X.2023.2258328
– ident: e_1_3_3_8_1
  doi: 10.1038/s41598-023-32465-z
– ident: e_1_3_3_10_1
  doi: 10.1109/ACCESS.2019.2907000
– ident: e_1_3_3_13_1
  doi: 10.1109/TII.2019.2895054
– ident: e_1_3_3_18_1
  doi: 10.1109/ACCESS.2020.3017082
– volume: 12
  start-page: 1708
  issue: 7
  year: 2021
  ident: e_1_3_3_12_1
  article-title: Bidirectional encoder representations from transformers (BERT) language model for sentiment analysis task
  publication-title: Turkish Journal of Computer and Mathematics Education (TURCOMAT)
– ident: e_1_3_3_29_1
  doi: 10.1007/s10994-006-9505-y
– ident: e_1_3_3_36_1
  doi: 10.1007/s42452-019-0394-7
– ident: e_1_3_3_28_1
  doi: 10.1007/s00521-017-3100-y
– ident: e_1_3_3_19_1
  doi: 10.1109/ACCESS.2021.3116128
– ident: e_1_3_3_40_1
  doi: 10.1016/j.eswa.2023.120977
– ident: e_1_3_3_34_1
  doi: 10.3233/JCS-200111
– ident: e_1_3_3_17_1
  doi: 10.1007/s00521-022-07148-x
– ident: e_1_3_3_31_1
  doi: 10.1007/s11277-021-09221-5
– volume: 3
  start-page: 6
  issue: 3
  year: 2024
  ident: e_1_3_3_21_1
  article-title: Spam detection and classification based on distilbert deep learning algorithm
  publication-title: Applied Science and Engineering Journal for Advanced Research
– ident: e_1_3_3_32_1
  doi: 10.1007/s11042-023-14814-2
– ident: e_1_3_3_16_1
  doi: 10.1109/CTIT.2018.8649534
– ident: e_1_3_3_5_1
  doi: 10.1109/ACCESS.2019.2944089
– ident: e_1_3_3_15_1
  doi: 10.47852/bonviewJCCE2202192
– ident: e_1_3_3_3_1
  doi: 10.1038/s41598-022-14338-z
– ident: e_1_3_3_26_1
  doi: 10.1016/j.fcij.2018.11.006
– ident: e_1_3_3_38_1
  doi: 10.1007/s41870-023-01516-z
SSID ssj0062190
Score 2.321576
Snippet Nowadays, e-mail is becoming more prevalent among individuals. In recent days, it has been declared to be the least expensive and quickest mode of...
SourceID crossref
informaworld
SourceType Index Database
Publisher
StartPage 286
SubjectTerms Dual scale feature fusion-based adaptive convolutional neural network
email spam detection
modified squid game optimizer
Vision Transformer
Title Designing a novel framework of email spam detection using an improved heuristic algorithm and dual-scale feature fusion-based adaptive convolution neural network
URI https://www.tandfonline.com/doi/abs/10.1080/19393555.2024.2432258
Volume 34
WOSCitedRecordID wos001369882600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAWR
  databaseName: Taylor & Francis Online Journals
  customDbUrl:
  eissn: 1939-3547
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0062190
  issn: 1939-3555
  databaseCode: TFW
  dateStart: 20080324
  isFulltext: true
  titleUrlDefault: https://www.tandfonline.com
  providerName: Taylor & Francis
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELYQYmChPMVbN7Aa8nAeHhFQMaCKgdcWOfaZVmrTqk37f_in-JxEggEWmJOLHN3T5-8-M3ZBs4x5mlseIqZcyNRy6SpTriQGGAaIyp_gvzxkg0H-9iYfWzThooVV0h7aNkQRPlaTc6ty0SHirlzNQazgidvdReIyEmSTNO7rKnsC9T31X7tYnDp_DJpzZclJpJvh-ekr37LTN-7SL1mn3_uH9W6zrbbkhOvGRnbYGla7rNdd5wCtd--xj1uP5nC5DBRU0xWOwXbQLZhawIkajcFFoAkYrD2EqwLCzbv3Kxj57gQaGOKyYX8GNX6fzkf1cOKeG6ChL75wJoFg0dOJgl1Sr45TJjWgjJpR7AUCwrcOAUS36dZeNWD1ffbcv3u6ueftDQ5cu1-sOZo0ixNtqSoybr-aYyasKqM004k_8TSJzkoZ59aEwpD-tIhUohKpdShQxAdsvZpWeMjAxSWtSiFkXsYiDbQU0gSlzVzIcoICj9hlp7li1hB1FGHLf9opoCAFFK0Cjpj8qt-i9h0S21xnUsS_yh7_QfaEbUZ0hzC1iMUpW6_nSzxjG3pVjxbzc2--nzKp754
linkProvider Taylor & Francis
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9tAEF4BRaIXKLSoPFrmwHWDH-vHHqtCRNWQU4DcrPXubImUOChx8n_6T7uztqVwgEuRfLPHsjXv2W9mGLukXsY8zS0PEVMuZGq5dJEpVxIDDANE5U_wHwbZcJiPx3KzF4ZglZRD22ZQhLfVpNxUjO4gcVcu6KCx4IlL7yLRiwQJZb7NPtB2OkrARv3HzhqnTiOD5mRZcqLpunhee80L__RieumG3-kfvMcXf2L7bdQJPxoxOWRbWB2xg26jA7QK_pn9vfaADufOQEE1X-MUbIfegrkFnKnJFJwRmoHB2qO4KiDovHu-gokvUKCBJ1w1A6BBTf_MF5P6aebuG6C-L750UoFg0U8UBbuich0nZ2pAGfVM5hcIC9_qBNDETfftVYNX_8Lu-zejn7e8XeLAtfvFmqNJszjRlgIj41LWHDNhVRmlmU78oadJdFbKOLcmFO7KEy0ilahEah0KFPEx26nmFX5l4EyTVqUQMi9jkQZaCmmC0mbOajlCgSes17GueG5mdRRhOwK1Y0BBDChaBpwwucngovZFEttsNCniN2lP_4P2gu3dju4GxeDX8PcZ-xjRSmGqGItztlMvVviN7ep1PVkuvntZ_gdG6fPB
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELZaWlVcoC_Es51Dr6Z5OA8fEXRFVbTiQFtukWOPuyvtZle7Wf4P_5QZJ5Hg0F6KlFsyUaJ5evz5GyG-8FnGMi-9jBFzqXTupabKVBqNEcYRogk7-L-uivG4vL3V1z2acN3DKnkN7TuiiBCr2bmXzg-IuK9UczAreEaru0SdJoptsnwpXlHpnLFh34x-D8E4J4eMuo1lLVlmOMTzt9c8SU9PyEsfpZ3R7jN88Fux09eccNYZyTvxApv3YneY5wC9e38Q9xcBzkHJDAw0izucgR-wW7DwgHMznQGFoDk4bAOGqwEGztPzDUxDewIdTHDT0T-Dmf1ZrKbtZE73HfCpL7kmm0DwGPhEwW-4WSc5lTowziw5-AIj4XuPAObbpG9vOrT6R_Fz9O3m_FL2IxykpV9sJbq8SDPruSxytGAtsVDe1Ele2CxsebrMFrVOS-9iRVeZWZWYzGTa2lihSvfEVrNocF8ABSZraqV0Wacqj6xW2kW1LyhmkaDCA3E6aK5adkwdVdwToA4KqFgBVa-AA6Ef67dqQ4vEd_NMqvSfsof_IftZvLm-GFVX38c_jsR2wvOEuV2sjsVWu9rgiXht79rpevUpWPIDdrPycw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Designing+a+novel+framework+of+email+spam+detection+using+an+improved+heuristic+algorithm+and+dual-scale+feature+fusion-based+adaptive+convolution+neural+network&rft.jtitle=Information+security+journal.&rft.au=Kadam%2C+Vikas+S.&rft.au=Pingale%2C+Subhash&rft.au=Biradar%2C+Sangappa+R.&rft.au=Rohokale%2C+Vandana+M.&rft.date=2025-07-04&rft.issn=1939-3555&rft.eissn=1939-3547&rft.volume=34&rft.issue=4&rft.spage=286&rft.epage=309&rft_id=info:doi/10.1080%2F19393555.2024.2432258&rft.externalDBID=n%2Fa&rft.externalDocID=10_1080_19393555_2024_2432258
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1939-3555&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1939-3555&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1939-3555&client=summon