Mobile robot path planning using fuzzy enhanced improved Multi-Objective particle swarm optimization (FIMOPSO)

•Efficient algorithm is needed for cracking Car-like Robot Path Planning problems.•An Improved Multi-objective PSO algorithm is proposed and compared with MOSPEA2.•Five objective functions are considered in solving multi-objective CRPP problems.•Totally six experiments were conducted to validate the...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Expert systems with applications Ročník 198; s. 116875
Hlavní autori: Sathiya, V., Chinnadurai, M., Ramabalan, S.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York Elsevier Ltd 15.07.2022
Elsevier BV
Predmet:
ISSN:0957-4174, 1873-6793
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract •Efficient algorithm is needed for cracking Car-like Robot Path Planning problems.•An Improved Multi-objective PSO algorithm is proposed and compared with MOSPEA2.•Five objective functions are considered in solving multi-objective CRPP problems.•Totally six experiments were conducted to validate the proposed strategy.•Moving obstacles around the robot and a dynamic goal point were considered. This paper introduces a method for car-like mobile robot path planning (CRPP). The robot works in both dynamic and static situations. The aim of this method is to explore the best safe path with minimum path length, minimum motor torque, minimum travel time, minimum robot acceleration and maximum obstacle avoidance. Kinodynamic and non-holonomic constraints related with car-like robot are considered. Fuzzy enhanced Improved Multi-objective Particle Swarm Optimization (FIMOPSO) algorithm is proposed to solve the CRPP problem. Fuzzy inference system is used for obstacle avoidance. In the proposed FIMOPSO, five improvements are made. Proposed technique is compared with Multi-objective Strength Pareto Evolutionary Algorithm 2 (MOSPEA2) technique. Experiments on a custom-made car-like robot are ensuring the quality of proposed technique. This research works show that proposed FIMOPSO is another alternative technique to CRPP problems. Paths dictated by FIMOPSO are safe, collision free, feasible, and possible and can be practically implemented. Fuzzy inference system works well for safe robot travel. FIMOPSO simulation paths are acceptable. Since, the deviation between experiment and simulation is less than 2%.
AbstractList This paper introduces a method for car-like mobile robot path planning (CRPP). The robot works in both dynamic and static situations. The aim of this method is to explore the best safe path with minimum path length, minimum motor torque, minimum travel time, minimum robot acceleration and maximum obstacle avoidance. Kinodynamic and non-holonomic constraints related with car-like robot are considered. Fuzzy enhanced Improved Multi-objective Particle Swarm Optimization (FIMOPSO) algorithm is proposed to solve the CRPP problem. Fuzzy inference system is used for obstacle avoidance. In the proposed FIMOPSO, five improvements are made. Proposed technique is compared with Multi-objective Strength Pareto Evolutionary Algorithm 2 (MOSPEA2) technique. Experiments on a custom-made car-like robot are ensuring the quality of proposed technique. This research works show that proposed FIMOPSO is another alternative technique to CRPP problems. Paths dictated by FIMOPSO are safe, collision free, feasible, and possible and can be practically implemented. Fuzzy inference system works well for safe robot travel. FIMOPSO simulation paths are acceptable. Since, the deviation between experiment and simulation is less than 2%.
•Efficient algorithm is needed for cracking Car-like Robot Path Planning problems.•An Improved Multi-objective PSO algorithm is proposed and compared with MOSPEA2.•Five objective functions are considered in solving multi-objective CRPP problems.•Totally six experiments were conducted to validate the proposed strategy.•Moving obstacles around the robot and a dynamic goal point were considered. This paper introduces a method for car-like mobile robot path planning (CRPP). The robot works in both dynamic and static situations. The aim of this method is to explore the best safe path with minimum path length, minimum motor torque, minimum travel time, minimum robot acceleration and maximum obstacle avoidance. Kinodynamic and non-holonomic constraints related with car-like robot are considered. Fuzzy enhanced Improved Multi-objective Particle Swarm Optimization (FIMOPSO) algorithm is proposed to solve the CRPP problem. Fuzzy inference system is used for obstacle avoidance. In the proposed FIMOPSO, five improvements are made. Proposed technique is compared with Multi-objective Strength Pareto Evolutionary Algorithm 2 (MOSPEA2) technique. Experiments on a custom-made car-like robot are ensuring the quality of proposed technique. This research works show that proposed FIMOPSO is another alternative technique to CRPP problems. Paths dictated by FIMOPSO are safe, collision free, feasible, and possible and can be practically implemented. Fuzzy inference system works well for safe robot travel. FIMOPSO simulation paths are acceptable. Since, the deviation between experiment and simulation is less than 2%.
ArticleNumber 116875
Author Sathiya, V.
Chinnadurai, M.
Ramabalan, S.
Author_xml – sequence: 1
  givenname: V.
  surname: Sathiya
  fullname: Sathiya, V.
  email: sathiyav2105@gmail.com
  organization: Department of Electronics and Communication Engineering, E.G.S. Pillay Engineering College, Nagapattinam 611002, Tamil Nadu, India
– sequence: 2
  givenname: M.
  surname: Chinnadurai
  fullname: Chinnadurai, M.
  email: mchinna81@gmail.com
  organization: Department of Computer Science and Engineering, E.G.S. Pillay Engineering College, Nagapattinam 611002, Tamil Nadu, India
– sequence: 3
  givenname: S.
  surname: Ramabalan
  fullname: Ramabalan, S.
  email: cadsrb@gmail.com
  organization: Department of Mechanical Engineering, E.G.S. Pillay Engineering College, Nagapattinam 611002, Tamil Nadu, India
BookMark eNp9kLFu2zAQhokiAeokfYFOAro0g1xSFEkZ6BIYcWLAhgu0nQmKOtUUZFIlKQf204eKO3XIwuNw33933w26ss4CQp8JnhNM-LduDuFFzQtcFHNCeCXYBzQjlaA5Fwt6hWZ4wUReElF-RDchdBgTgbGYIbt1tekh8652MRtU3GdDr6w19k82hultx_P5lIHdK6uhycxh8O6YPtuxjybf1R3oaI6QWB-NTlFpEX_I3BDNwZxVNM5mX1fr7e7Hz939HbpuVR_g0796i36vHn8tn_PN7mm9fNjkumBVzBsuiGKUipIpKjhoTEEDxxrXNWhRa8Fa3IqGlw2tmrKsQbUtg7KgdYk1W9Bb9OWSm5b9O0KIsnOjt2mkLLhIwbzgLHUVly7tXQgeWjl4c1D-JAmWk1fZycmrnLzKi9cEVf9B2sS3M6NXpn8f_X5BIZ1-NOBl0AYmrcYni7Jx5j38FVdUl2s
CitedBy_id crossref_primary_10_1002_rob_22354
crossref_primary_10_3390_machines11100980
crossref_primary_10_3390_biomimetics9010039
crossref_primary_10_1016_j_oceaneng_2023_114750
crossref_primary_10_1177_09544062231217924
crossref_primary_10_1016_j_cie_2023_109767
crossref_primary_10_1109_TCE_2024_3514203
crossref_primary_10_1016_j_aei_2025_103398
crossref_primary_10_1016_j_isatra_2023_10_019
crossref_primary_10_1016_j_engappai_2025_110444
crossref_primary_10_1016_j_jksuci_2023_101603
crossref_primary_10_1155_2023_6646581
crossref_primary_10_3390_s23239353
crossref_primary_10_1016_j_compeleceng_2024_109273
crossref_primary_10_1007_s40430_023_04249_z
crossref_primary_10_1016_j_eswa_2023_121112
crossref_primary_10_1007_s00500_023_09259_6
crossref_primary_10_1016_j_swevo_2024_101576
crossref_primary_10_1016_j_eswa_2024_125388
crossref_primary_10_1016_j_oceaneng_2023_115433
crossref_primary_10_1016_j_engappai_2024_109866
crossref_primary_10_3390_robotics14030032
crossref_primary_10_1016_j_eswa_2023_120849
crossref_primary_10_1016_j_eswa_2023_120713
crossref_primary_10_1109_ACCESS_2023_3236006
crossref_primary_10_1007_s11227_022_04998_z
crossref_primary_10_3390_act14010012
crossref_primary_10_1080_00207721_2022_2135976
crossref_primary_10_1016_j_ins_2025_122512
crossref_primary_10_2478_amns_2024_2339
Cites_doi 10.1016/j.asoc.2020.106796
10.1109/ACCESS.2018.2864188
10.1007/s00500-015-1825-z
10.1504/IJWMC.2018.097194
10.1007/s00500-012-0964-8
10.1016/j.eswa.2020.114541
10.1016/j.cie.2021.107230
10.1007/s12555-019-0009-5
10.1007/s12555-019-0396-z
10.1016/j.asoc.2020.106076
10.1016/j.asoc.2017.05.012
10.1007/s12652-020-02535-5
10.1016/j.compag.2019.01.016
10.1007/s00500-015-1991-z
10.1016/j.neucom.2017.12.015
10.1080/0952813X.2018.1549107
10.1016/j.eswa.2016.03.035
10.1016/j.compeleceng.2020.106688
10.1016/j.arcontrol.2020.10.001
10.1016/j.eswa.2018.01.050
10.1016/j.robot.2019.103320
ContentType Journal Article
Copyright 2022 Elsevier Ltd
Copyright Elsevier BV Jul 15, 2022
Copyright_xml – notice: 2022 Elsevier Ltd
– notice: Copyright Elsevier BV Jul 15, 2022
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/j.eswa.2022.116875
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1873-6793
ExternalDocumentID 10_1016_j_eswa_2022_116875
S0957417422003220
GroupedDBID --K
--M
.DC
.~1
0R~
13V
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AABNK
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARIN
AATTM
AAXKI
AAXUO
AAYFN
ABBOA
ABFNM
ABJNI
ABMAC
ABMVD
ABUCO
ACDAQ
ACGFS
ACHRH
ACNTT
ACRLP
ACZNC
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AENEX
AFTJW
AGHFR
AGUBO
AGUMN
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AKRWK
ALEQD
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
AOUOD
APLSM
AXJTR
BJAXD
BKOJK
BLXMC
BNPGV
BNSAS
CS3
DU5
EBS
EFJIC
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
IHE
J1W
JJJVA
KOM
LG9
LY1
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
ROL
RPZ
SDF
SDG
SDP
SDS
SES
SPC
SPCBC
SSB
SSD
SSH
SSL
SST
SSV
SSZ
T5K
TN5
~G-
29G
9DU
AAAKG
AAQXK
AAYWO
AAYXX
ABKBG
ABUFD
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EFLBG
EJD
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
R2-
SBC
SET
SEW
WUQ
XPP
ZMT
~HD
7SC
8FD
AFXIZ
AGCQF
AGRNS
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c258t-d671a533745a376ec03ece60c0bbec7bc75f0f7d64d38d44beaff5e423b40c593
ISICitedReferencesCount 41
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000792032100004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0957-4174
IngestDate Fri Jul 25 03:05:45 EDT 2025
Sat Nov 29 07:09:40 EST 2025
Tue Nov 18 21:18:31 EST 2025
Sun Apr 06 06:53:03 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords MOSPEA2
Car-like robot path planning
Non-holonomic and kinodynamic constraints
Static and dynamic environments
FIMOPSO
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c258t-d671a533745a376ec03ece60c0bbec7bc75f0f7d64d38d44beaff5e423b40c593
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2673376265
PQPubID 2045477
ParticipantIDs proquest_journals_2673376265
crossref_primary_10_1016_j_eswa_2022_116875
crossref_citationtrail_10_1016_j_eswa_2022_116875
elsevier_sciencedirect_doi_10_1016_j_eswa_2022_116875
PublicationCentury 2000
PublicationDate 2022-07-15
PublicationDateYYYYMMDD 2022-07-15
PublicationDate_xml – month: 07
  year: 2022
  text: 2022-07-15
  day: 15
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Expert systems with applications
PublicationYear 2022
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Hidalgo-Paniagua, Vega-Rodríguez, Ferruz (b0010) 2016; 58
Maoudj, Hentout (b0005) 2020; 97
Qian, Liu, Tian, Bao (b0090) 2020; 85
Ahmed, Deb (b0050) 2013; 17
Ah King, Deb, Rughooputh (b0020) 2010; 16
Abwahab, Nefti-Meziani, Atyabi (b0105) 2020; 50
Hidalgo-Paniagua, Vega-Rodríguez, Ferruz, Pavón (b0015) 2017; 21
Feiyi, Haolun, Chi-Man, Haidong, Yujie, Yurong, Hao (b0060) 2020; 88
Xue, Sun (b0140) 2018; 8
Mac, Copot, Tran, De Keyser (b0125) 2017; 59
Wang, Li, Meng (b0080) 2021; 170
Zitzler, Laumanns, Thiele (b0145) 2001
Xia, Zhang, Weng, Liu, Wang (b0095) 2018; 35
Salmanpour, Monfared, Omranpour (b0120) 2017; 21
Moradi (b0030) 2019; 31
Velagić, Vuković, Ibrahimović (b0070) 2020; 18
Dao, Pan, Pan (b0130) 2016
Zhang, Zhang, Zhou (b0075) 2018; 6
Yunqiang, Wende, Lin, Xiaokun (b0065) 2018; 15
Miao, Chen, Yan, Yuanyuan (b0035) 2021; 156
Mohanty (b0100) 2020; 11
Ajeil, Ibraheem, Sahib, Humaidi (b0045) 2020; 89
Wang, Li, Guo, Chen (b0025) 2018; 282
Saeed, Recupero, Remagnino (b0115) 2020; 123
Mahmud, Abidin, Mohamed, Rahman, Iida (b0110) 2019; 157
Bayat, Najafi-Nia, Aliyari (b0055) 2018; 100
Durillo, Jośe Garćıa-Nieto, Nebro, Coello, Coello, Alba (b0085) 2009
Eberhart, Kennedy (b0040) 1995
Liu, Jiang (b0135) 2020; 18
Miao (10.1016/j.eswa.2022.116875_b0035) 2021; 156
Salmanpour (10.1016/j.eswa.2022.116875_b0120) 2017; 21
Eberhart (10.1016/j.eswa.2022.116875_b0040) 1995
Mahmud (10.1016/j.eswa.2022.116875_b0110) 2019; 157
Zitzler (10.1016/j.eswa.2022.116875_b0145) 2001
Hidalgo-Paniagua (10.1016/j.eswa.2022.116875_b0015) 2017; 21
Bayat (10.1016/j.eswa.2022.116875_b0055) 2018; 100
Mohanty (10.1016/j.eswa.2022.116875_b0100) 2020; 11
Abwahab (10.1016/j.eswa.2022.116875_b0105) 2020; 50
Yunqiang (10.1016/j.eswa.2022.116875_b0065) 2018; 15
Xue (10.1016/j.eswa.2022.116875_b0140) 2018; 8
Ah King (10.1016/j.eswa.2022.116875_b0020) 2010; 16
Maoudj (10.1016/j.eswa.2022.116875_b0005) 2020; 97
Moradi (10.1016/j.eswa.2022.116875_b0030) 2019; 31
Qian (10.1016/j.eswa.2022.116875_b0090) 2020; 85
Zhang (10.1016/j.eswa.2022.116875_b0075) 2018; 6
Liu (10.1016/j.eswa.2022.116875_b0135) 2020; 18
Velagić (10.1016/j.eswa.2022.116875_b0070) 2020; 18
Hidalgo-Paniagua (10.1016/j.eswa.2022.116875_b0010) 2016; 58
Ahmed (10.1016/j.eswa.2022.116875_b0050) 2013; 17
Wang (10.1016/j.eswa.2022.116875_b0080) 2021; 170
Saeed (10.1016/j.eswa.2022.116875_b0115) 2020; 123
Wang (10.1016/j.eswa.2022.116875_b0025) 2018; 282
Dao (10.1016/j.eswa.2022.116875_b0130) 2016
Durillo (10.1016/j.eswa.2022.116875_b0085) 2009
Xia (10.1016/j.eswa.2022.116875_b0095) 2018; 35
Feiyi (10.1016/j.eswa.2022.116875_b0060) 2020; 88
Ajeil (10.1016/j.eswa.2022.116875_b0045) 2020; 89
Mac (10.1016/j.eswa.2022.116875_b0125) 2017; 59
References_xml – volume: 89
  year: 2020
  ident: b0045
  article-title: Multi-objective path planning of an autonomous mobile robot using hybrid PSO-MFB optimization algorithm
  publication-title: Applied Soft Computing
– volume: 123
  year: 2020
  ident: b0115
  article-title: A boundary node method for path planning of mobile robots
  publication-title: Robotics and Autonomous Systems
– volume: 170
  year: 2021
  ident: b0080
  article-title: Kinematic constrained bi-directional RRT with efficient branch pruning for robot path planning
  publication-title: Expert System with Applications
– volume: 58
  start-page: 20
  year: 2016
  end-page: 35
  ident: b0010
  article-title: Applying the MOVNS (multi-objective variable neighborhood search) algorithm to solve the path planning problem in mobile robotics
  publication-title: Expert Systems with Applications
– volume: 16
  start-page: 1
  year: 2010
  end-page: 27
  ident: b0020
  article-title: Comparison of NSGA-II and SPEA2 on the multiobjective environmental/economic dispatch problem
  publication-title: University of Mauritius Research Journal
– start-page: 495
  year: 2009
  end-page: 509
  ident: b0085
  article-title: Multi-objective particle swarm optimizers: an experimental comparison
  publication-title: Proceedings of International Conference on Evolutionary Multi-criterion optimization. April 7 - 10, Nantes, France
– volume: 97
  year: 2020
  ident: b0005
  article-title: Optimal path planning approach based on q-learning algorithm for mobile robots
  publication-title: Applied Soft Computing
– volume: 50
  start-page: 233
  year: 2020
  end-page: 252
  ident: b0105
  article-title: A comparative review on mobile robot path planning: Classical or meta-heuristic methods?
  publication-title: Annual Reviews in Control
– volume: 21
  start-page: 3063
  year: 2017
  end-page: 3079
  ident: b0120
  article-title: Solving robot path planning problem by using a new elitist multi-objective IWD algorithm based on coefficient of variation
  publication-title: Soft Computing
– volume: 17
  start-page: 1283
  year: 2013
  end-page: 1299
  ident: b0050
  article-title: Multi-objective optimal path planning using elitist non-dominated sorting genetic algorithms
  publication-title: Soft Computing
– volume: 282
  start-page: 42
  year: 2018
  end-page: 51
  ident: b0025
  article-title: Car-like mobile robot path planning in rough terrain using multi-objective particle swarm optimization algorithm
  publication-title: Neurocomputing
– volume: 85
  year: 2020
  ident: b0090
  article-title: Robot path planning optimization method based on heuristic multi-directional rapidly-exploring tree
  publication-title: Computers & Electrical Engineering
– volume: 6
  start-page: 44542
  year: 2018
  end-page: 44555
  ident: b0075
  article-title: Path planning of mobile robot based on hybrid multi-objective bare bones particle swarm optimization with differential evolution
  publication-title: IEEE Access
– volume: 11
  start-page: 6387
  year: 2020
  end-page: 6402
  ident: b0100
  article-title: An intelligent navigational strategy for mobile robots in uncertain environments using smart cuckoo search algorithm
  publication-title: Journal of Ambient Intelligence and Humanized Computing
– start-page: 337
  year: 2016
  end-page: 342
  ident: b0130
  article-title: A multi-objective optimal mobile robot path planning based on whale optimization algorithm
  publication-title: IEEE 13th international conference on signal processing (ICSP2016). IEEE
– volume: 18
  start-page: 1264
  year: 2020
  end-page: 1276
  ident: b0070
  article-title: Mobile robot motion framework based on enhanced robust panel method
  publication-title: International Journal of ControlAutom. Syst.
– volume: 88
  year: 2020
  ident: b0060
  article-title: A new global best guided artificial bee colony algorithm with application in robot path planning
  publication-title: Applied Soft Computing
– volume: 8
  start-page: 1
  year: 2018
  end-page: 21
  ident: b0140
  article-title: Solving the path planning problem in mobile robotics with the multi-objective evolutionary algorithm
  publication-title: Applied Sciences
– volume: 31
  start-page: 325
  year: 2019
  end-page: 348
  ident: b0030
  article-title: Multi-objective mobile robot path planning problem through learnable evolution model
  publication-title: Journal of Experimental and Theoretical Artificial Intelligence
– volume: 157
  start-page: 488
  year: 2019
  end-page: 499
  ident: b0110
  article-title: Multi-objective path planner for an agricultural mobile robot in a virtual greenhouse environment
  publication-title: Computers and Electronics in Agriculture
– volume: 35
  start-page: 1755
  year: 2018
  end-page: 1764
  ident: b0095
  article-title: Robot path planning based on multi-objective optimization with local search
  publication-title: Journal of Intelligent & Fuzzy Systems
– volume: 156
  year: 2021
  ident: b0035
  article-title: Path planning optimization of indoor mobile robot based on adaptive ant colony algorithm
  publication-title: Computers & Industrial Engineering
– volume: 100
  start-page: 68
  year: 2018
  end-page: 78
  ident: b0055
  article-title: Mobile robots path planning: electrostatic potential field approach
  publication-title: Expert Systems with Applications
– volume: 59
  start-page: 68
  year: 2017
  end-page: 76
  ident: b0125
  article-title: A hierarchical global path planning approach for mobile robots based on multi-objective particle swarm optimization
  publication-title: Applied Soft Computing
– year: 2001
  ident: b0145
  article-title: SPEA2: Improving the strength pareto evolutionary algorithm
  publication-title: TIK Report 103, Computer Engineering and Networks Laboratory (TIK), ETH Zurich, Zurich, Switzerland
– volume: 18
  start-page: 2658
  year: 2020
  end-page: 2666
  ident: b0135
  article-title: Robotic path planning based on a triangular mesh map
  publication-title: International Journal of Control, Automation & System
– volume: 21
  start-page: 949
  year: 2017
  end-page: 964
  ident: b0015
  article-title: Solving the multi-objective path planning problem in mobile robotics with a firefly-based approach
  publication-title: Soft Computing
– volume: 15
  start-page: 335
  year: 2018
  end-page: 341
  ident: b0065
  article-title: Research on multi-objective path planning of a robot based on artificial potential field method
  publication-title: International Journal of Wireless and Mobile Computing
– start-page: 39
  year: 1995
  end-page: 43
  ident: b0040
  publication-title: A new optimizer using particle swarm theory
– volume: 88
  year: 2020
  ident: 10.1016/j.eswa.2022.116875_b0060
  article-title: A new global best guided artificial bee colony algorithm with application in robot path planning
  publication-title: Applied Soft Computing
– volume: 97
  year: 2020
  ident: 10.1016/j.eswa.2022.116875_b0005
  article-title: Optimal path planning approach based on q-learning algorithm for mobile robots
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2020.106796
– volume: 6
  start-page: 44542
  year: 2018
  ident: 10.1016/j.eswa.2022.116875_b0075
  article-title: Path planning of mobile robot based on hybrid multi-objective bare bones particle swarm optimization with differential evolution
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2864188
– volume: 21
  start-page: 949
  year: 2017
  ident: 10.1016/j.eswa.2022.116875_b0015
  article-title: Solving the multi-objective path planning problem in mobile robotics with a firefly-based approach
  publication-title: Soft Computing
  doi: 10.1007/s00500-015-1825-z
– volume: 15
  start-page: 335
  issue: 4
  year: 2018
  ident: 10.1016/j.eswa.2022.116875_b0065
  article-title: Research on multi-objective path planning of a robot based on artificial potential field method
  publication-title: International Journal of Wireless and Mobile Computing
  doi: 10.1504/IJWMC.2018.097194
– start-page: 495
  year: 2009
  ident: 10.1016/j.eswa.2022.116875_b0085
  article-title: Multi-objective particle swarm optimizers: an experimental comparison
– start-page: 337
  year: 2016
  ident: 10.1016/j.eswa.2022.116875_b0130
  article-title: A multi-objective optimal mobile robot path planning based on whale optimization algorithm
– volume: 17
  start-page: 1283
  year: 2013
  ident: 10.1016/j.eswa.2022.116875_b0050
  article-title: Multi-objective optimal path planning using elitist non-dominated sorting genetic algorithms
  publication-title: Soft Computing
  doi: 10.1007/s00500-012-0964-8
– volume: 170
  year: 2021
  ident: 10.1016/j.eswa.2022.116875_b0080
  article-title: Kinematic constrained bi-directional RRT with efficient branch pruning for robot path planning
  publication-title: Expert System with Applications
  doi: 10.1016/j.eswa.2020.114541
– volume: 156
  year: 2021
  ident: 10.1016/j.eswa.2022.116875_b0035
  article-title: Path planning optimization of indoor mobile robot based on adaptive ant colony algorithm
  publication-title: Computers & Industrial Engineering
  doi: 10.1016/j.cie.2021.107230
– volume: 18
  start-page: 1264
  year: 2020
  ident: 10.1016/j.eswa.2022.116875_b0070
  article-title: Mobile robot motion framework based on enhanced robust panel method
  publication-title: International Journal of ControlAutom. Syst.
  doi: 10.1007/s12555-019-0009-5
– volume: 18
  start-page: 2658
  year: 2020
  ident: 10.1016/j.eswa.2022.116875_b0135
  article-title: Robotic path planning based on a triangular mesh map
  publication-title: International Journal of Control, Automation & System
  doi: 10.1007/s12555-019-0396-z
– volume: 89
  year: 2020
  ident: 10.1016/j.eswa.2022.116875_b0045
  article-title: Multi-objective path planning of an autonomous mobile robot using hybrid PSO-MFB optimization algorithm
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2020.106076
– start-page: 39
  year: 1995
  ident: 10.1016/j.eswa.2022.116875_b0040
– volume: 59
  start-page: 68
  year: 2017
  ident: 10.1016/j.eswa.2022.116875_b0125
  article-title: A hierarchical global path planning approach for mobile robots based on multi-objective particle swarm optimization
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2017.05.012
– volume: 11
  start-page: 6387
  year: 2020
  ident: 10.1016/j.eswa.2022.116875_b0100
  article-title: An intelligent navigational strategy for mobile robots in uncertain environments using smart cuckoo search algorithm
  publication-title: Journal of Ambient Intelligence and Humanized Computing
  doi: 10.1007/s12652-020-02535-5
– volume: 157
  start-page: 488
  year: 2019
  ident: 10.1016/j.eswa.2022.116875_b0110
  article-title: Multi-objective path planner for an agricultural mobile robot in a virtual greenhouse environment
  publication-title: Computers and Electronics in Agriculture
  doi: 10.1016/j.compag.2019.01.016
– volume: 8
  start-page: 1
  year: 2018
  ident: 10.1016/j.eswa.2022.116875_b0140
  article-title: Solving the path planning problem in mobile robotics with the multi-objective evolutionary algorithm
  publication-title: Applied Sciences
– volume: 21
  start-page: 3063
  year: 2017
  ident: 10.1016/j.eswa.2022.116875_b0120
  article-title: Solving robot path planning problem by using a new elitist multi-objective IWD algorithm based on coefficient of variation
  publication-title: Soft Computing
  doi: 10.1007/s00500-015-1991-z
– volume: 282
  start-page: 42
  year: 2018
  ident: 10.1016/j.eswa.2022.116875_b0025
  article-title: Car-like mobile robot path planning in rough terrain using multi-objective particle swarm optimization algorithm
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2017.12.015
– volume: 35
  start-page: 1755
  issue: 2
  year: 2018
  ident: 10.1016/j.eswa.2022.116875_b0095
  article-title: Robot path planning based on multi-objective optimization with local search
  publication-title: Journal of Intelligent & Fuzzy Systems
– volume: 31
  start-page: 325
  issue: 2
  year: 2019
  ident: 10.1016/j.eswa.2022.116875_b0030
  article-title: Multi-objective mobile robot path planning problem through learnable evolution model
  publication-title: Journal of Experimental and Theoretical Artificial Intelligence
  doi: 10.1080/0952813X.2018.1549107
– volume: 58
  start-page: 20
  year: 2016
  ident: 10.1016/j.eswa.2022.116875_b0010
  article-title: Applying the MOVNS (multi-objective variable neighborhood search) algorithm to solve the path planning problem in mobile robotics
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2016.03.035
– volume: 85
  year: 2020
  ident: 10.1016/j.eswa.2022.116875_b0090
  article-title: Robot path planning optimization method based on heuristic multi-directional rapidly-exploring tree
  publication-title: Computers & Electrical Engineering
  doi: 10.1016/j.compeleceng.2020.106688
– volume: 50
  start-page: 233
  year: 2020
  ident: 10.1016/j.eswa.2022.116875_b0105
  article-title: A comparative review on mobile robot path planning: Classical or meta-heuristic methods?
  publication-title: Annual Reviews in Control
  doi: 10.1016/j.arcontrol.2020.10.001
– volume: 100
  start-page: 68
  year: 2018
  ident: 10.1016/j.eswa.2022.116875_b0055
  article-title: Mobile robots path planning: electrostatic potential field approach
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2018.01.050
– volume: 16
  start-page: 1
  year: 2010
  ident: 10.1016/j.eswa.2022.116875_b0020
  article-title: Comparison of NSGA-II and SPEA2 on the multiobjective environmental/economic dispatch problem
  publication-title: University of Mauritius Research Journal
– year: 2001
  ident: 10.1016/j.eswa.2022.116875_b0145
  article-title: SPEA2: Improving the strength pareto evolutionary algorithm
– volume: 123
  year: 2020
  ident: 10.1016/j.eswa.2022.116875_b0115
  article-title: A boundary node method for path planning of mobile robots
  publication-title: Robotics and Autonomous Systems
  doi: 10.1016/j.robot.2019.103320
SSID ssj0017007
Score 2.5418777
Snippet •Efficient algorithm is needed for cracking Car-like Robot Path Planning problems.•An Improved Multi-objective PSO algorithm is proposed and compared with...
This paper introduces a method for car-like mobile robot path planning (CRPP). The robot works in both dynamic and static situations. The aim of this method is...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 116875
SubjectTerms Car-like robot path planning
Collision avoidance
Evolutionary algorithms
FIMOPSO
Inference
MOSPEA2
Multiple objective analysis
Non-holonomic and kinodynamic constraints
Obstacle avoidance
Particle swarm optimization
Path planning
Robots
Static and dynamic environments
Travel time
Title Mobile robot path planning using fuzzy enhanced improved Multi-Objective particle swarm optimization (FIMOPSO)
URI https://dx.doi.org/10.1016/j.eswa.2022.116875
https://www.proquest.com/docview/2673376265
Volume 198
WOSCitedRecordID wos000792032100004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-6793
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017007
  issn: 0957-4174
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV07b9swECZcp0OXvoukSQsOHVoIEvSmNAZFgqaA46BNC28CSVGIjVgKZDmvpX-9x5fsukjQDF0EQRYPtO7j8Xi844fQhwxmbVEFzOWMUzemAGNGK-7ylPPMjyNRBlSRTZDj42wyyU8Gg1-2FubynNR1dn2dX_xXVcMzULYsnX2Aunuh8ADuQelwBbXD9Z8UP2oYjHSnbVjTyWNTzyRTtCImcpYqMFAtb29vHFGf6c3_qQorwI2qxXXHbKZtILTVwp3FFW3nTgPGZW6qNqVfeng0Gp98H9tQwqzP6RNtZw6ItqVza5vkfURHZj3eKM_1p7fKMZjWNS2XrebIHvU_fKNzymQSpgrWeuuhilCltepizT7mSNw40LQ8vfnVLNTGgAZBmmkqlb9suw4zzDwB_9qT4r3Vy38epL0xwfVphzajbVZIGYWUUWgZj9BWSJI8G6Kt_aODydd-I4r4uuLe9tzUXekUwc2e3OXbbMzyynU5fY6emjUH3tfqfIEGon6Jnlk-D2zM-ytUa-hgBR0soYMtdLCCDlbQwRY62EIHb0AHW-hgBR28Dh380QDn02v04_Dg9PMX1_BxuDxMss4tUxJQWB6QOKEwLwnuR4KL1Oc-A0tAGCdJ5VekTOMyyso4ZoJWVSLAYWexz5M8eoOGdVOLbYTDCISFOSynuaQ8j8A8BKXwYXVNwzKqyA4K7JcsuDmsXnKmnBd363AHOX2bC31Uy71vJ1ZBhXE2tRNZAN7ubbdntVmYUb8owpTAZ4HeJ28f1Ild9GQ1TvbQsGuX4h16zC-76aJ9b7D4G66vreE
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mobile+robot+path+planning+using+fuzzy+enhanced+improved+Multi-Objective+particle+swarm+optimization+%28FIMOPSO%29&rft.jtitle=Expert+systems+with+applications&rft.au=Sathiya%2C+V.&rft.au=Chinnadurai%2C+M.&rft.au=Ramabalan%2C+S.&rft.date=2022-07-15&rft.issn=0957-4174&rft.volume=198&rft.spage=116875&rft_id=info:doi/10.1016%2Fj.eswa.2022.116875&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_eswa_2022_116875
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon