Intelligent fault identification of hydraulic pump using deep adaptive normalized CNN and synchrosqueezed wavelet transform

•A normalized CNN is constructed for fault diagnosis of hydraulic piston pump.•Multiple signals are analyzed and used for intelligent fault diagnosis.•Bayesian algorithm is introduced for automatic selection of hyperparameters.•Severity level of different failure and changeable conditions are discus...

Full description

Saved in:
Bibliographic Details
Published in:Reliability engineering & system safety Vol. 224; p. 108560
Main Authors: Tang, Shengnan, Zhu, Yong, Yuan, Shouqi
Format: Journal Article
Language:English
Published: Barking Elsevier Ltd 01.08.2022
Elsevier BV
Subjects:
ISSN:0951-8320, 1879-0836
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract •A normalized CNN is constructed for fault diagnosis of hydraulic piston pump.•Multiple signals are analyzed and used for intelligent fault diagnosis.•Bayesian algorithm is introduced for automatic selection of hyperparameters.•Severity level of different failure and changeable conditions are discussed.•The BNCNN presents high accuracy and stability by experimental verification. Hydraulic piston pump is known as one of the most critical parts in a typical hydraulic transmission system. It is imperative to probe into an accurate fault diagnosis method to guarantee the stability and reliability of the system. Due to the shortcomings of traditional methods, the development of artificial intelligence enlightens the intensive exploration for machinery fault diagnosis. In this research, a normalized convolutional neural network (NCNN) framework with batch normalization strategy is developed for feature extraction and fault identification. First, the batch normalization technology is introduced in the modeling to resolve the change of data distribution. Second, inspired by the intelligent algorithms, Bayesian algorithm is employed to automatically tune the model hyperparameters. The improved model is named BNCNN. Third, BNCNN is used for fault diagnosis based on synchrosqueesed wavelet transform. The experiments in a hydraulic piston pump are employed for the demonstration of the method. Moreover, the superior performance of the proposed method is validated by the contrastive analysis. The results reveal that BNCNN can accurately and steadily complete the fault classification of hydraulic pump.
AbstractList Hydraulic piston pump is known as one of the most critical parts in a typical hydraulic transmission system. It is imperative to probe into an accurate fault diagnosis method to guarantee the stability and reliability of the system. Due to the shortcomings of traditional methods, the development of artificial intelligence enlightens the intensive exploration for machinery fault diagnosis. In this research, a normalized convolutional neural network (NCNN) framework with batch normalization strategy is developed for feature extraction and fault identification. First, the batch normalization technology is introduced in the modeling to resolve the change of data distribution. Second, inspired by the intelligent algorithms, Bayesian algorithm is employed to automatically tune the model hyperparameters. The improved model is named BNCNN. Third, BNCNN is used for fault diagnosis based on synchrosqueesed wavelet transform. The experiments in a hydraulic piston pump are employed for the demonstration of the method. Moreover, the superior performance of the proposed method is validated by the contrastive analysis. The results reveal that BNCNN can accurately and steadily complete the fault classification of hydraulic pump.
•A normalized CNN is constructed for fault diagnosis of hydraulic piston pump.•Multiple signals are analyzed and used for intelligent fault diagnosis.•Bayesian algorithm is introduced for automatic selection of hyperparameters.•Severity level of different failure and changeable conditions are discussed.•The BNCNN presents high accuracy and stability by experimental verification. Hydraulic piston pump is known as one of the most critical parts in a typical hydraulic transmission system. It is imperative to probe into an accurate fault diagnosis method to guarantee the stability and reliability of the system. Due to the shortcomings of traditional methods, the development of artificial intelligence enlightens the intensive exploration for machinery fault diagnosis. In this research, a normalized convolutional neural network (NCNN) framework with batch normalization strategy is developed for feature extraction and fault identification. First, the batch normalization technology is introduced in the modeling to resolve the change of data distribution. Second, inspired by the intelligent algorithms, Bayesian algorithm is employed to automatically tune the model hyperparameters. The improved model is named BNCNN. Third, BNCNN is used for fault diagnosis based on synchrosqueesed wavelet transform. The experiments in a hydraulic piston pump are employed for the demonstration of the method. Moreover, the superior performance of the proposed method is validated by the contrastive analysis. The results reveal that BNCNN can accurately and steadily complete the fault classification of hydraulic pump.
ArticleNumber 108560
Author Zhu, Yong
Yuan, Shouqi
Tang, Shengnan
Author_xml – sequence: 1
  givenname: Shengnan
  orcidid: 0000-0002-6417-0143
  surname: Tang
  fullname: Tang, Shengnan
  organization: Institute of Advanced Manufacturing and Modern Equipment Technology, Jiangsu University, Zhenjiang 212013, China
– sequence: 2
  givenname: Yong
  surname: Zhu
  fullname: Zhu, Yong
  email: zhuyong@ujs.edu.cn
  organization: International Shipping Research Institute, GongQing Institute of Science and Technology, Jiujiang 332020, China
– sequence: 3
  givenname: Shouqi
  surname: Yuan
  fullname: Yuan, Shouqi
  organization: National Research Center of Pumps, Jiangsu University, Zhenjiang 212013, China
BookMark eNp9kDFv2zAQhYnAAWI7-QOZCHSWS1EWRQFZCqNNAxjp0swExTsmNGRKJSkXbv98qbpTh0w83L3He_etyMIPHgm5L9mmZKX4eNgEjHHDGee5IWvBrsiylE1bMFmJBVmyti4LWXF2Q1YxHhhj27ZuluT3k0_Y9-4VfaJWT32iDnLtrDM6ucHTwdK3M4Q8coaO03GkU3T-lQLiSDXoMbkTUj-Eo-7dLwS6e36m2gONZ2_ewhB_TIhz_6c-YY-JpqB9tFl_S66t7iPe_XvX5OXL5--7r8X-2-PT7tO-MLyWqdCW66oCAbYSFhpmm06ABCEZiNZst50s81y2FVZNXaPedhY6qLUArlnd2WpNPlz-HcOQw8SkDsMUfF6puJDNTEWIrJIXlcmZY0CrjEt_EeTArlclUzNqdVAzajWjVhfU2cr_s47BHXU4v296uJgwn35yGFQ0Dr1BcAFNUjC49-x_AJaUnfA
CitedBy_id crossref_primary_10_1016_j_aei_2025_103290
crossref_primary_10_1016_j_ress_2024_110362
crossref_primary_10_1109_TIM_2024_3351244
crossref_primary_10_1088_1402_4896_ad723f
crossref_primary_10_1007_s11227_025_07075_3
crossref_primary_10_1177_10775463231154448
crossref_primary_10_3390_jmse11081609
crossref_primary_10_1016_j_engappai_2022_105712
crossref_primary_10_1109_JSEN_2025_3539099
crossref_primary_10_3390_agriculture12101609
crossref_primary_10_1109_TIM_2023_3298393
crossref_primary_10_3390_s24072124
crossref_primary_10_1109_ACCESS_2024_3399393
crossref_primary_10_1016_j_ress_2024_110369
crossref_primary_10_3390_app15126586
crossref_primary_10_1016_j_apacoust_2023_109537
crossref_primary_10_1016_j_inffus_2023_02_012
crossref_primary_10_1109_TIM_2024_3385829
crossref_primary_10_1016_j_aei_2024_103041
crossref_primary_10_1016_j_ress_2025_111203
crossref_primary_10_1016_j_ymssp_2025_113291
crossref_primary_10_1016_j_aei_2024_102487
crossref_primary_10_1016_j_jpowsour_2022_232466
crossref_primary_10_1016_j_apacoust_2023_109807
crossref_primary_10_1016_j_measurement_2025_117113
crossref_primary_10_1016_j_ress_2023_109253
crossref_primary_10_1016_j_ress_2024_110539
crossref_primary_10_1109_JSEN_2023_3251654
crossref_primary_10_3390_pr10112274
crossref_primary_10_1088_1361_6501_acf332
crossref_primary_10_1109_JSEN_2025_3571208
crossref_primary_10_3390_jmse11030594
crossref_primary_10_1016_j_anucene_2023_109700
crossref_primary_10_3390_s23198096
crossref_primary_10_1109_TIM_2023_3322488
crossref_primary_10_1016_j_engappai_2023_105936
crossref_primary_10_2478_amns_2023_2_01423
crossref_primary_10_3390_electronics14020341
crossref_primary_10_1007_s10845_023_02259_1
crossref_primary_10_3390_s22249714
crossref_primary_10_1016_j_ress_2023_109343
crossref_primary_10_3390_pr10061167
crossref_primary_10_1016_j_engappai_2023_106756
crossref_primary_10_3390_machines11020138
crossref_primary_10_1016_j_ress_2024_110199
crossref_primary_10_3390_agriculture15070749
crossref_primary_10_1016_j_engappai_2024_108678
crossref_primary_10_1109_TIM_2023_3325868
crossref_primary_10_3390_jmse11071273
crossref_primary_10_1088_1361_6501_ad3f39
crossref_primary_10_1016_j_ymssp_2024_111824
crossref_primary_10_1016_j_ress_2023_109354
crossref_primary_10_3389_fenrg_2022_1096633
crossref_primary_10_1109_JSEN_2023_3263924
crossref_primary_10_1109_ACCESS_2024_3472750
crossref_primary_10_1016_j_eswa_2023_122078
crossref_primary_10_1016_j_ssci_2024_106590
crossref_primary_10_1088_1361_6501_ad1eb3
crossref_primary_10_3390_math13091371
crossref_primary_10_1016_j_compind_2024_104155
crossref_primary_10_1016_j_ress_2024_110563
crossref_primary_10_1088_1361_6501_ad3f3b
crossref_primary_10_3390_machines12120869
crossref_primary_10_3390_pr10091869
crossref_primary_10_3390_en16083320
crossref_primary_10_1016_j_aei_2025_103658
crossref_primary_10_1016_j_knosys_2024_112361
crossref_primary_10_3390_jmse11030616
crossref_primary_10_1016_j_ress_2024_110448
crossref_primary_10_1016_j_ress_2024_110208
crossref_primary_10_1109_TIM_2024_3374311
crossref_primary_10_1016_j_ress_2025_111080
crossref_primary_10_3390_pr10122500
crossref_primary_10_1007_s40430_024_04890_2
crossref_primary_10_3390_pr10071328
crossref_primary_10_3390_pr10102066
crossref_primary_10_1016_j_aei_2024_102963
crossref_primary_10_1088_1361_6501_acaf93
crossref_primary_10_1016_j_ymssp_2023_110813
crossref_primary_10_3389_fenrg_2022_998760
crossref_primary_10_1016_j_ress_2023_109178
crossref_primary_10_3390_machines12010079
crossref_primary_10_1016_j_engappai_2023_106548
crossref_primary_10_3390_pr11030743
crossref_primary_10_1109_JSEN_2023_3281428
crossref_primary_10_3390_aerospace10020109
crossref_primary_10_1016_j_ress_2024_110145
crossref_primary_10_3390_signals4010008
crossref_primary_10_1016_j_fuel_2023_129584
crossref_primary_10_3390_pr10051036
crossref_primary_10_1109_TIM_2024_3436111
crossref_primary_10_1088_1361_6501_acb458
crossref_primary_10_1016_j_apacoust_2024_110301
crossref_primary_10_1109_TIM_2024_3398074
crossref_primary_10_1177_10775463231207120
crossref_primary_10_1139_tcsme_2021_0092
crossref_primary_10_3390_s23239371
crossref_primary_10_1016_j_apenergy_2024_123773
crossref_primary_10_1016_j_eswa_2023_121338
crossref_primary_10_1016_j_ress_2023_109387
crossref_primary_10_1016_j_ress_2024_110664
crossref_primary_10_1109_TIM_2025_3595246
crossref_primary_10_3390_pr10071285
crossref_primary_10_1080_10589759_2023_2274015
crossref_primary_10_1016_j_measurement_2023_112551
crossref_primary_10_3390_s23198207
crossref_primary_10_3390_app14051710
crossref_primary_10_1088_1361_6501_ad05a3
crossref_primary_10_3390_electronics14050974
crossref_primary_10_1016_j_jii_2023_100469
crossref_primary_10_3390_jmse12040625
crossref_primary_10_1155_2024_5587168
crossref_primary_10_1016_j_pnucene_2025_105792
crossref_primary_10_1016_j_ymssp_2024_112274
Cites_doi 10.1016/j.ymssp.2019.04.032
10.1016/j.ress.2021.107530
10.1016/j.neucom.2020.04.074
10.1016/j.ress.2021.108278
10.1016/j.aei.2021.101406
10.1016/j.engappai.2020.103966
10.1088/1361-6501/aaf319
10.1016/j.measurement.2020.108580
10.1016/j.eswa.2020.114094
10.3390/machines10010055
10.1016/j.ymssp.2018.03.025
10.1007/s11465-021-0657-z
10.1016/j.measurement.2017.04.041
10.1016/j.engappai.2021.104242
10.1016/j.ress.2021.107938
10.1109/TIE.2017.2762623
10.1016/j.compbiomed.2022.105244
10.1016/j.engfailanal.2022.106300
10.1088/1361-6501/ac491d
10.1016/j.ymssp.2020.106951
10.1016/j.measurement.2021.109565
10.1016/j.apacoust.2021.108336
10.1016/j.ress.2022.108444
10.1109/JPROC.2015.2494218
10.1016/j.apacoust.2020.107399
10.1016/j.ress.2020.107050
10.1016/j.renene.2021.06.088
10.1016/j.aei.2022.101554
10.1088/1361-6501/ac51a6
10.1016/j.knosys.2020.105971
10.1016/j.ymssp.2021.107984
10.1016/j.ress.2022.108356
10.1016/j.ress.2022.108445
10.1016/j.dsp.2015.03.004
10.1016/j.cja.2020.12.037
10.1109/5.726791
10.1016/j.engappai.2020.103765
10.1007/s11431-021-1904-7
10.1016/j.isatra.2022.01.013
10.1016/j.acha.2010.08.002
10.1016/j.asoc.2020.106198
10.1016/j.ress.2020.107284
10.1016/j.neucom.2018.10.049
10.1016/j.ress.2021.108263
10.1016/j.apacoust.2022.108718
10.1016/j.sigpro.2012.11.029
10.1016/j.ress.2021.107878
ContentType Journal Article
Copyright 2022 Elsevier Ltd
Copyright Elsevier BV Aug 2022
Copyright_xml – notice: 2022 Elsevier Ltd
– notice: Copyright Elsevier BV Aug 2022
DBID AAYXX
CITATION
7ST
7TB
8FD
C1K
FR3
SOI
DOI 10.1016/j.ress.2022.108560
DatabaseName CrossRef
Environment Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Environment Abstracts
DatabaseTitle CrossRef
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Environment Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList Engineering Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-0836
ExternalDocumentID 10_1016_j_ress_2022_108560
S0951832022002083
GroupedDBID --K
--M
.~1
0R~
123
1B1
1~.
1~5
29P
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
9JO
AABNK
AACTN
AAEDT
AAEDW
AAFJI
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABEFU
ABFNM
ABJNI
ABMAC
ABMMH
ABTAH
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIWK
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKYCK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOMHK
ASPBG
AVARZ
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PRBVW
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SET
SEW
SPC
SPCBC
SSB
SSO
SST
SSZ
T5K
TN5
WUQ
XPP
ZMT
ZY4
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
7ST
7TB
8FD
AGCQF
C1K
FR3
SOI
ID FETCH-LOGICAL-c258t-af2a33d6df36fd70f7b6d8d680d69c44b81a33893e3755ea4bfdbd5a6d2a05bf3
ISICitedReferencesCount 128
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000800634300006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0951-8320
IngestDate Wed Aug 13 11:07:53 EDT 2025
Tue Nov 18 21:58:12 EST 2025
Sat Nov 29 07:06:58 EST 2025
Fri Feb 23 02:40:40 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Bayesian algorithm
Intelligent fault diagnosis
Normalized CNN
Synchrosqueezed wavelet transform
Hydraulic pump
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c258t-af2a33d6df36fd70f7b6d8d680d69c44b81a33893e3755ea4bfdbd5a6d2a05bf3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-6417-0143
PQID 2687832066
PQPubID 2045406
ParticipantIDs proquest_journals_2687832066
crossref_citationtrail_10_1016_j_ress_2022_108560
crossref_primary_10_1016_j_ress_2022_108560
elsevier_sciencedirect_doi_10_1016_j_ress_2022_108560
PublicationCentury 2000
PublicationDate August 2022
2022-08-00
20220801
PublicationDateYYYYMMDD 2022-08-01
PublicationDate_xml – month: 08
  year: 2022
  text: August 2022
PublicationDecade 2020
PublicationPlace Barking
PublicationPlace_xml – name: Barking
PublicationTitle Reliability engineering & system safety
PublicationYear 2022
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Saeed, Jan, Lee, Koo (bib0010) 2021; 205
Jain, Kumar, Garg (bib0033) 2020; 91
Wei, Huang, Yao, Hu, Fan, Huang (bib0013) 2020; 96
Wang, Shen, Xia, Wang, Zhu, Zhu (bib0031) 2020; 202
Tang, Zhu, Yuan (bib0039) 2021; 50
Zhang, Hu, Yang (bib0018) 2022; 222
Zhu, Li, Tang, Wang, Su, Wang (bib0036) 2022; 192
Chao, Zhang, Xu, Wang, Lyu, Li (bib0002) 2022; 17
Zhao, Zhang, Hai, Yang (bib0041) 2020; 199
Li, Zhao, Sun, Yan, Chen (bib0007) 2021; 215
Krizhevsky, Sutskever, Hinton (bib0050) 2012; 25
Yang, Baraldi, Zio (bib0019) 2022; 220
Shahriari, Swersky, Wang, Adams, Freitas (bib0048) 2016; 104
Xu, Qiu, Gao, Yang, Wang (bib0017) 2022; 222
Xu, Saleh (bib0015) 2021; 211
Cun, Bottou, Bengio, Haffner (bib0049) 1998; 86
Tang, Yuan, Zhu (bib0034) 2022; 52
Qian, Pu, liu, Li, Zhang, Gu, Meng (bib0008) 2022; 33
Tang, Zhu, Yuan (bib0038) 2022
Aslan, Sabanci, Durdu, Unlersen (bib0047) 2022; 142
Zou, Li, Xu (bib0022) 2020; 407
Guo, Yang, Hua, Cao (bib0024) 2021; 178
Zhang, Wang, Lv, Fan, Song (bib0032) 2021; 102
Ciabattoni, Ferracuti, Freddi, Monteri`u (bib0004) 2018; 65
Wang, Li, An, Jiang, Qian, Ji (bib0042) 2019; 329
Iatsenko, McClintock, Stefanovska (bib0044) 2015; 42
Jia, Lei, Lu, Xing (bib0028) 2018; 110
Wang, Li, Han, An, Xin, Qian, Wu (bib0040) 2019; 30
Shao, Fu, Tan, Wang (bib0014) 2021; 173
Thakur, Brevdo, Fuckar, Wu (bib0045) 2013; 93
Tang, Zhu, Yuan (bib0016) 2022; 138
Chao, Wei, Lei, Tao, Liu (bib0026) 2022; 33
Daubechies, Lu, Wu (bib0043) 2011; 30
Xia, Shao, Williams, Lu, Shu, de Silva (bib0020) 2021; 215
Wang, Liu, Guo, Wang (bib0011) 2020; 94
Dibaj, Ettefagh, Hassannejad, Ehghaghi (bib0035) 2021; 167
Zhu, Li, Wang, Tang, Su, Cao (bib0037) 2021; 183
Ye, Yu (bib0021) 2021; 161
Chao, Gao, Tao, Wang, Zhou, Liu (bib0027) 2022; 65
Zhang, Xin, Liu, Chi, Ma (bib0009) 2022; 220
Chen, Liu, Chen (bib0046) 2020; 145
Kumar, Kumar (bib0012) 2017; 108
Debasish, Patil, Herkal, Nagarajaiah, Duenas-Osorio (bib0023) 2022; 169
Kumar, Gandhi, Tang, Vashishtha, Kumar, Zhou, Xiang (bib0003) 2022; 35
Kumar, Parkash, Vashishtha, Tang, Kundu, Xiang (bib0006) 2022; 221
Zhao, Zhang, Yang (bib0029) 2020; 199
Wang, Li, Zhang, Hu, Sun (bib0030) 2021; 180
Ye, Zhang, Xu, Zhu, Xiang, Tang (bib0001) 2019; 129
Gao, Zhu, Liu (bib0005) 2022; 10
Kumar, Gandhi, Zhou, Kumar, Xiang (bib0025) 2020; 167
Xia (10.1016/j.ress.2022.108560_bib0020) 2021; 215
Chao (10.1016/j.ress.2022.108560_bib0027) 2022; 65
Jain (10.1016/j.ress.2022.108560_bib0033) 2020; 91
Zhang (10.1016/j.ress.2022.108560_bib0018) 2022; 222
Tang (10.1016/j.ress.2022.108560_bib0038) 2022
Ye (10.1016/j.ress.2022.108560_bib0021) 2021; 161
Li (10.1016/j.ress.2022.108560_bib0007) 2021; 215
Cun (10.1016/j.ress.2022.108560_bib0049) 1998; 86
Aslan (10.1016/j.ress.2022.108560_bib0047) 2022; 142
Wang (10.1016/j.ress.2022.108560_bib0042) 2019; 329
Kumar (10.1016/j.ress.2022.108560_bib0025) 2020; 167
Ye (10.1016/j.ress.2022.108560_bib0001) 2019; 129
Debasish (10.1016/j.ress.2022.108560_bib0023) 2022; 169
Shahriari (10.1016/j.ress.2022.108560_bib0048) 2016; 104
Wang (10.1016/j.ress.2022.108560_bib0031) 2020; 202
Daubechies (10.1016/j.ress.2022.108560_bib0043) 2011; 30
Zou (10.1016/j.ress.2022.108560_bib0022) 2020; 407
Zhu (10.1016/j.ress.2022.108560_bib0037) 2021; 183
Dibaj (10.1016/j.ress.2022.108560_bib0035) 2021; 167
Wang (10.1016/j.ress.2022.108560_bib0040) 2019; 30
Tang (10.1016/j.ress.2022.108560_bib0039) 2021; 50
Wang (10.1016/j.ress.2022.108560_bib0011) 2020; 94
Guo (10.1016/j.ress.2022.108560_bib0024) 2021; 178
Wang (10.1016/j.ress.2022.108560_bib0030) 2021; 180
Zhao (10.1016/j.ress.2022.108560_bib0029) 2020; 199
Zhu (10.1016/j.ress.2022.108560_bib0036) 2022; 192
Krizhevsky (10.1016/j.ress.2022.108560_bib0050) 2012; 25
Kumar (10.1016/j.ress.2022.108560_bib0006) 2022; 221
Chao (10.1016/j.ress.2022.108560_bib0026) 2022; 33
Saeed (10.1016/j.ress.2022.108560_bib0010) 2021; 205
Iatsenko (10.1016/j.ress.2022.108560_bib0044) 2015; 42
Zhao (10.1016/j.ress.2022.108560_bib0041) 2020; 199
Chao (10.1016/j.ress.2022.108560_bib0002) 2022; 17
Ciabattoni (10.1016/j.ress.2022.108560_bib0004) 2018; 65
Jia (10.1016/j.ress.2022.108560_bib0028) 2018; 110
Yang (10.1016/j.ress.2022.108560_bib0019) 2022; 220
Kumar (10.1016/j.ress.2022.108560_bib0003) 2022; 35
Zhang (10.1016/j.ress.2022.108560_bib0009) 2022; 220
Qian (10.1016/j.ress.2022.108560_bib0008) 2022; 33
Gao (10.1016/j.ress.2022.108560_bib0005) 2022; 10
Chen (10.1016/j.ress.2022.108560_bib0046) 2020; 145
Xu (10.1016/j.ress.2022.108560_bib0015) 2021; 211
Shao (10.1016/j.ress.2022.108560_bib0014) 2021; 173
Wei (10.1016/j.ress.2022.108560_bib0013) 2020; 96
Kumar (10.1016/j.ress.2022.108560_bib0012) 2017; 108
Xu (10.1016/j.ress.2022.108560_bib0017) 2022; 222
Tang (10.1016/j.ress.2022.108560_bib0016) 2022; 138
Thakur (10.1016/j.ress.2022.108560_bib0045) 2013; 93
Tang (10.1016/j.ress.2022.108560_bib0034) 2022; 52
Zhang (10.1016/j.ress.2022.108560_bib0032) 2021; 102
References_xml – volume: 221
  year: 2022
  ident: bib0006
  article-title: State-space modeling and novel entropy-based health indicator for dynamic degradation monitoring of rolling element bearing
  publication-title: Reliab Eng Syst Safe
– volume: 173
  year: 2021
  ident: bib0014
  article-title: Coordinated approach fusing time-shift multiscale dispersion entropy and vibrational Harris hawks optimization-based SVM for fault diagnosis of rolling bearing
  publication-title: Measurement
– volume: 202
  year: 2020
  ident: bib0031
  article-title: Multi-scale deep intra-class transfer learning for bearing fault diagnosis
  publication-title: Reliab Eng Syst Safe
– volume: 91
  year: 2020
  ident: bib0033
  article-title: Sarcasm detection in mash-up language using soft-attention based bi-directional LSTM and feature-rich CNN
  publication-title: Appl Soft Comput
– volume: 94
  year: 2020
  ident: bib0011
  article-title: An engine-fault-diagnosis system based on sound intensity analysis and wavelet packet pre-processing neural network
  publication-title: Eng Appl Artif Intel
– volume: 220
  year: 2022
  ident: bib0009
  article-title: Health status assessment and remaining useful life prediction of aero-engine based on BiGRU and MMoE
  publication-title: Reliab Eng Syst Safe
– volume: 93
  start-page: 1079
  year: 2013
  end-page: 1094
  ident: bib0045
  article-title: The Synchrosqueezing algorithm for time-varying spectral analysis: robustness properties and new paleoclimate applications
  publication-title: Signal Process
– volume: 110
  start-page: 349
  year: 2018
  end-page: 367
  ident: bib0028
  article-title: Deep normalized convolutional neural network for imbalanced fault classification of machinery and its understanding via visualization
  publication-title: Mech Syst Signal Process
– volume: 52
  year: 2022
  ident: bib0034
  article-title: A novel adaptive convolutional neural network for fault diagnosis of hydraulic piston pump with acoustic images
  publication-title: Adv Eng Inform
– volume: 104
  start-page: 148
  year: 2016
  end-page: 175
  ident: bib0048
  article-title: Taking the human out of the loop: a review of Bayesian optimization
  publication-title: Proc IEEE
– volume: 33
  year: 2022
  ident: bib0008
  article-title: Development of a new high-precision friction test platform and experimental study of friction characteristics for pneumatic cylinders
  publication-title: Meas Sci Technol
– volume: 167
  year: 2020
  ident: bib0025
  article-title: Improved deep convolution neural network (CNN) for the identification of defects in the centrifugal pump using acoustic images
  publication-title: Appl Acoust
– volume: 222
  year: 2022
  ident: bib0018
  article-title: Anomaly detection and diagnosis for wind turbines using long short-term memory-based stacked denoising autoencoders and XGBoost
  publication-title: Reliab Eng Syst Safe
– volume: 96
  year: 2020
  ident: bib0013
  article-title: New imbalanced fault diagnosis framework based on Cluster-MWMOTE and MFO-optimized LS-SVM using limited and complex bearing data
  publication-title: Eng Appl Artif Intel
– volume: 167
  year: 2021
  ident: bib0035
  article-title: A hybrid fine-tuned VMD and CNN scheme for untrained compound fault diagnosis of rotating machinery with unequal-severity faults
  publication-title: Expert Syst Appl
– volume: 183
  year: 2021
  ident: bib0037
  article-title: Intelligent fault diagnosis of hydraulic piston pump combining improved lenet-5 and PSO hyperparameter optimization
  publication-title: Appl Acoust
– volume: 220
  year: 2022
  ident: bib0019
  article-title: A method for fault detection in multi-component systems based on sparse autoencoder-based deep neural networks
  publication-title: Reliab Eng Syst Safe
– volume: 329
  start-page: 53
  year: 2019
  end-page: 65
  ident: bib0042
  article-title: Batch-normalized deep neural networks for achieving fast intelligent fault diagnosis of machines
  publication-title: Neurocomputing
– year: 2022
  ident: bib0038
  article-title: Intelligent fault diagnosis of hydraulic piston pump based on deep learning and Bayesian optimization
  publication-title: ISA T
– volume: 65
  start-page: 470
  year: 2022
  end-page: 480
  ident: bib0027
  article-title: Adaptive decision-level fusion strategy for the fault diagnosis of axial piston pumps using multiple channels of vibration signals
  publication-title: Sci China Technol Sci
– volume: 65
  start-page: 4301
  year: 2018
  end-page: 4310
  ident: bib0004
  article-title: Statistical spectral analysis for fault diagnosis of rotating machines
  publication-title: IEEE Trans Ind Electron
– volume: 169
  year: 2022
  ident: bib0023
  article-title: CNN and convolutional autoencoder (CAE) based real-time sensor fault detection, localization, and correction
  publication-title: Mech Syst Signal Process
– volume: 108
  start-page: 119
  year: 2017
  end-page: 133
  ident: bib0012
  article-title: Time-frequency analysis and support vector machine in automatic detection of defect from vibration signal of centrifugal pump
  publication-title: Measurement
– volume: 211
  year: 2021
  ident: bib0015
  article-title: Machine learning for reliability engineering and safety applications: review of current status and future opportunities
  publication-title: Reliab Eng Syst Safe
– volume: 17
  start-page: 1
  year: 2022
  ident: bib0002
  article-title: Integrated slipper retainer mechanism to eliminate slipper wear in high-speed axial piston pumps
  publication-title: Front Mech Eng
– volume: 192
  year: 2022
  ident: bib0036
  article-title: Acoustic signal-based fault detection of hydraulic piston pump using a particle swarm optimization enhancement CNN
  publication-title: Appl Acoust
– volume: 205
  year: 2021
  ident: bib0010
  article-title: Fault diagnosis based on extremely randomized trees in wireless sensor networks
  publication-title: Reliab Eng Syst Safe
– volume: 25
  start-page: 1097
  year: 2012
  end-page: 1105
  ident: bib0050
  article-title: ImageNet classification with deep convolutional neural networks
  publication-title: Adv Neural Inf Process Syst
– volume: 86
  start-page: 2278
  year: 1998
  end-page: 2324
  ident: bib0049
  article-title: Gradient-based learning applied to document recognition
  publication-title: Proc IEEE
– volume: 129
  start-page: 201
  year: 2019
  end-page: 217
  ident: bib0001
  article-title: Theoretical investigation of the contributions of the excitation forces to the vibration of an axial piston pump
  publication-title: Mech Syst Signal Process
– volume: 215
  year: 2021
  ident: bib0007
  article-title: Hierarchical attention graph convolutional network to fuse multi-sensor signals for remaining useful life prediction
  publication-title: Reliab Eng Syst Safe
– volume: 30
  start-page: 1
  year: 2019
  end-page: 14
  ident: bib0040
  article-title: Construction of a batch-normalized autoencoder network and its application in mechanical intelligent fault diagnosis
  publication-title: Meas Sci Technol
– volume: 215
  year: 2021
  ident: bib0020
  article-title: Intelligent fault diagnosis of machinery using digital twin-assisted deep transfer learning
  publication-title: Reliab Eng Syst Safe
– volume: 42
  start-page: 1
  year: 2015
  end-page: 26
  ident: bib0044
  article-title: Linear and synchrosqueezed time–frequency representations revisited: overview, standards of use, resolution, reconstruction, concentration, and algorithms
  publication-title: Digit Signal Process
– volume: 142
  year: 2022
  ident: bib0047
  article-title: COVID-19 diagnosis using state-of-the-art CNN architecture features and Bayesian optimization
  publication-title: Comput Biol Med
– volume: 145
  year: 2020
  ident: bib0046
  article-title: Frequency-temporal-logic-based bearing fault diagnosis and fault interpretation using Bayesian optimization with Bayesian neural networks
  publication-title: Mech Syst Signal Process
– volume: 138
  year: 2022
  ident: bib0016
  article-title: An adaptive deep learning model towards fault diagnosis of hydraulic piston pump using pressure signal
  publication-title: Eng Fail Anal
– volume: 222
  year: 2022
  ident: bib0017
  article-title: A novel dual-stream self-attention neural network for remaining useful life estimation of mechanical systems
  publication-title: Reliab Eng Syst Safe
– volume: 199
  year: 2020
  ident: bib0041
  article-title: Intelligent fault diagnosis of rolling bearings based on normalized CNN considering data imbalance and variable working conditions
  publication-title: Knowl Based Syst
– volume: 10
  start-page: 55
  year: 2022
  ident: bib0005
  article-title: Dynamics modelling and control of a novel fuel metering valve actuated by two binary-coded digital valve arrays
  publication-title: Machines
– volume: 407
  start-page: 105
  year: 2020
  end-page: 120
  ident: bib0022
  article-title: An adversarial denoising convolutional neural network for fault diagnosis of rotating machinery under noisy environment and limited sample size case
  publication-title: Neurocomputing
– volume: 178
  start-page: 639
  year: 2021
  end-page: 650
  ident: bib0024
  article-title: Coupling fault diagnosis of wind turbine gearbox based on multitask parallel convolutional neural networks with overall information
  publication-title: Renew Energy
– volume: 199
  year: 2020
  ident: bib0029
  article-title: Intelligent fault diagnosis of rolling bearings based on normalized CNN considering data imbalance and variable working conditions
  publication-title: Knowl Based Syst
– volume: 50
  year: 2021
  ident: bib0039
  article-title: An improved convolutional neural network with an adaptable learning rate towards multi-signal fault diagnosis of hydraulic piston pump
  publication-title: Adv Eng Inform
– volume: 180
  year: 2021
  ident: bib0030
  article-title: Intelligent fault diagnosis of planetary gearbox based on adaptive normalized CNN under complex variable working conditions and data imbalance
  publication-title: Measurement
– volume: 161
  year: 2021
  ident: bib0021
  article-title: Deep morphological convolutional network for feature learning of vibration signals and its applications to gearbox fault diagnosis
  publication-title: Mech Syst Signal Process
– volume: 35
  start-page: 250
  year: 2022
  end-page: 265
  ident: bib0003
  article-title: Adaptive sensitive frequency band selection for VMD to identify defective components of an axial piston pump
  publication-title: Chin J Aeronaut
– volume: 102
  year: 2021
  ident: bib0032
  article-title: Computer vision detection of foreign objects in coal processing using attention CNN
  publication-title: Eng Appl Artif Intel
– volume: 30
  start-page: 243
  year: 2011
  end-page: 261
  ident: bib0043
  article-title: Synchrosqueezed Wavelet Transforms: an empricial mode decomposition-like tool
  publication-title: Appl Comput Harmon Anal
– volume: 33
  year: 2022
  ident: bib0026
  article-title: Improving accuracy of cavitation severity recognition in axial piston pumps by denoising time-frequency images
  publication-title: Meas Sci Technol
– volume: 129
  start-page: 201
  year: 2019
  ident: 10.1016/j.ress.2022.108560_bib0001
  article-title: Theoretical investigation of the contributions of the excitation forces to the vibration of an axial piston pump
  publication-title: Mech Syst Signal Process
  doi: 10.1016/j.ymssp.2019.04.032
– volume: 211
  year: 2021
  ident: 10.1016/j.ress.2022.108560_bib0015
  article-title: Machine learning for reliability engineering and safety applications: review of current status and future opportunities
  publication-title: Reliab Eng Syst Safe
  doi: 10.1016/j.ress.2021.107530
– volume: 407
  start-page: 105
  year: 2020
  ident: 10.1016/j.ress.2022.108560_bib0022
  article-title: An adversarial denoising convolutional neural network for fault diagnosis of rotating machinery under noisy environment and limited sample size case
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2020.04.074
– volume: 220
  year: 2022
  ident: 10.1016/j.ress.2022.108560_bib0019
  article-title: A method for fault detection in multi-component systems based on sparse autoencoder-based deep neural networks
  publication-title: Reliab Eng Syst Safe
  doi: 10.1016/j.ress.2021.108278
– volume: 50
  year: 2021
  ident: 10.1016/j.ress.2022.108560_bib0039
  article-title: An improved convolutional neural network with an adaptable learning rate towards multi-signal fault diagnosis of hydraulic piston pump
  publication-title: Adv Eng Inform
  doi: 10.1016/j.aei.2021.101406
– volume: 96
  year: 2020
  ident: 10.1016/j.ress.2022.108560_bib0013
  article-title: New imbalanced fault diagnosis framework based on Cluster-MWMOTE and MFO-optimized LS-SVM using limited and complex bearing data
  publication-title: Eng Appl Artif Intel
  doi: 10.1016/j.engappai.2020.103966
– volume: 30
  start-page: 1
  year: 2019
  ident: 10.1016/j.ress.2022.108560_bib0040
  article-title: Construction of a batch-normalized autoencoder network and its application in mechanical intelligent fault diagnosis
  publication-title: Meas Sci Technol
  doi: 10.1088/1361-6501/aaf319
– volume: 173
  year: 2021
  ident: 10.1016/j.ress.2022.108560_bib0014
  article-title: Coordinated approach fusing time-shift multiscale dispersion entropy and vibrational Harris hawks optimization-based SVM for fault diagnosis of rolling bearing
  publication-title: Measurement
  doi: 10.1016/j.measurement.2020.108580
– volume: 167
  year: 2021
  ident: 10.1016/j.ress.2022.108560_bib0035
  article-title: A hybrid fine-tuned VMD and CNN scheme for untrained compound fault diagnosis of rotating machinery with unequal-severity faults
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2020.114094
– volume: 10
  start-page: 55
  issue: 1
  year: 2022
  ident: 10.1016/j.ress.2022.108560_bib0005
  article-title: Dynamics modelling and control of a novel fuel metering valve actuated by two binary-coded digital valve arrays
  publication-title: Machines
  doi: 10.3390/machines10010055
– volume: 110
  start-page: 349
  year: 2018
  ident: 10.1016/j.ress.2022.108560_bib0028
  article-title: Deep normalized convolutional neural network for imbalanced fault classification of machinery and its understanding via visualization
  publication-title: Mech Syst Signal Process
  doi: 10.1016/j.ymssp.2018.03.025
– volume: 17
  start-page: 1
  year: 2022
  ident: 10.1016/j.ress.2022.108560_bib0002
  article-title: Integrated slipper retainer mechanism to eliminate slipper wear in high-speed axial piston pumps
  publication-title: Front Mech Eng
  doi: 10.1007/s11465-021-0657-z
– volume: 108
  start-page: 119
  year: 2017
  ident: 10.1016/j.ress.2022.108560_bib0012
  article-title: Time-frequency analysis and support vector machine in automatic detection of defect from vibration signal of centrifugal pump
  publication-title: Measurement
  doi: 10.1016/j.measurement.2017.04.041
– volume: 102
  year: 2021
  ident: 10.1016/j.ress.2022.108560_bib0032
  article-title: Computer vision detection of foreign objects in coal processing using attention CNN
  publication-title: Eng Appl Artif Intel
  doi: 10.1016/j.engappai.2021.104242
– volume: 215
  year: 2021
  ident: 10.1016/j.ress.2022.108560_bib0020
  article-title: Intelligent fault diagnosis of machinery using digital twin-assisted deep transfer learning
  publication-title: Reliab Eng Syst Safe
  doi: 10.1016/j.ress.2021.107938
– volume: 65
  start-page: 4301
  year: 2018
  ident: 10.1016/j.ress.2022.108560_bib0004
  article-title: Statistical spectral analysis for fault diagnosis of rotating machines
  publication-title: IEEE Trans Ind Electron
  doi: 10.1109/TIE.2017.2762623
– volume: 142
  year: 2022
  ident: 10.1016/j.ress.2022.108560_bib0047
  article-title: COVID-19 diagnosis using state-of-the-art CNN architecture features and Bayesian optimization
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2022.105244
– volume: 138
  year: 2022
  ident: 10.1016/j.ress.2022.108560_bib0016
  article-title: An adaptive deep learning model towards fault diagnosis of hydraulic piston pump using pressure signal
  publication-title: Eng Fail Anal
  doi: 10.1016/j.engfailanal.2022.106300
– volume: 33
  issue: 5
  year: 2022
  ident: 10.1016/j.ress.2022.108560_bib0026
  article-title: Improving accuracy of cavitation severity recognition in axial piston pumps by denoising time-frequency images
  publication-title: Meas Sci Technol
  doi: 10.1088/1361-6501/ac491d
– volume: 145
  year: 2020
  ident: 10.1016/j.ress.2022.108560_bib0046
  article-title: Frequency-temporal-logic-based bearing fault diagnosis and fault interpretation using Bayesian optimization with Bayesian neural networks
  publication-title: Mech Syst Signal Process
  doi: 10.1016/j.ymssp.2020.106951
– volume: 180
  year: 2021
  ident: 10.1016/j.ress.2022.108560_bib0030
  article-title: Intelligent fault diagnosis of planetary gearbox based on adaptive normalized CNN under complex variable working conditions and data imbalance
  publication-title: Measurement
  doi: 10.1016/j.measurement.2021.109565
– volume: 183
  year: 2021
  ident: 10.1016/j.ress.2022.108560_bib0037
  article-title: Intelligent fault diagnosis of hydraulic piston pump combining improved lenet-5 and PSO hyperparameter optimization
  publication-title: Appl Acoust
  doi: 10.1016/j.apacoust.2021.108336
– volume: 222
  year: 2022
  ident: 10.1016/j.ress.2022.108560_bib0017
  article-title: A novel dual-stream self-attention neural network for remaining useful life estimation of mechanical systems
  publication-title: Reliab Eng Syst Safe
  doi: 10.1016/j.ress.2022.108444
– volume: 104
  start-page: 148
  year: 2016
  ident: 10.1016/j.ress.2022.108560_bib0048
  article-title: Taking the human out of the loop: a review of Bayesian optimization
  publication-title: Proc IEEE
  doi: 10.1109/JPROC.2015.2494218
– volume: 167
  year: 2020
  ident: 10.1016/j.ress.2022.108560_bib0025
  article-title: Improved deep convolution neural network (CNN) for the identification of defects in the centrifugal pump using acoustic images
  publication-title: Appl Acoust
  doi: 10.1016/j.apacoust.2020.107399
– volume: 202
  year: 2020
  ident: 10.1016/j.ress.2022.108560_bib0031
  article-title: Multi-scale deep intra-class transfer learning for bearing fault diagnosis
  publication-title: Reliab Eng Syst Safe
  doi: 10.1016/j.ress.2020.107050
– volume: 178
  start-page: 639
  year: 2021
  ident: 10.1016/j.ress.2022.108560_bib0024
  article-title: Coupling fault diagnosis of wind turbine gearbox based on multitask parallel convolutional neural networks with overall information
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2021.06.088
– volume: 52
  year: 2022
  ident: 10.1016/j.ress.2022.108560_bib0034
  article-title: A novel adaptive convolutional neural network for fault diagnosis of hydraulic piston pump with acoustic images
  publication-title: Adv Eng Inform
  doi: 10.1016/j.aei.2022.101554
– volume: 33
  issue: 6
  year: 2022
  ident: 10.1016/j.ress.2022.108560_bib0008
  article-title: Development of a new high-precision friction test platform and experimental study of friction characteristics for pneumatic cylinders
  publication-title: Meas Sci Technol
  doi: 10.1088/1361-6501/ac51a6
– volume: 199
  year: 2020
  ident: 10.1016/j.ress.2022.108560_bib0029
  article-title: Intelligent fault diagnosis of rolling bearings based on normalized CNN considering data imbalance and variable working conditions
  publication-title: Knowl Based Syst
  doi: 10.1016/j.knosys.2020.105971
– volume: 161
  year: 2021
  ident: 10.1016/j.ress.2022.108560_bib0021
  article-title: Deep morphological convolutional network for feature learning of vibration signals and its applications to gearbox fault diagnosis
  publication-title: Mech Syst Signal Process
  doi: 10.1016/j.ymssp.2021.107984
– volume: 221
  year: 2022
  ident: 10.1016/j.ress.2022.108560_bib0006
  article-title: State-space modeling and novel entropy-based health indicator for dynamic degradation monitoring of rolling element bearing
  publication-title: Reliab Eng Syst Safe
  doi: 10.1016/j.ress.2022.108356
– volume: 222
  year: 2022
  ident: 10.1016/j.ress.2022.108560_bib0018
  article-title: Anomaly detection and diagnosis for wind turbines using long short-term memory-based stacked denoising autoencoders and XGBoost
  publication-title: Reliab Eng Syst Safe
  doi: 10.1016/j.ress.2022.108445
– volume: 42
  start-page: 1
  year: 2015
  ident: 10.1016/j.ress.2022.108560_bib0044
  article-title: Linear and synchrosqueezed time–frequency representations revisited: overview, standards of use, resolution, reconstruction, concentration, and algorithms
  publication-title: Digit Signal Process
  doi: 10.1016/j.dsp.2015.03.004
– volume: 35
  start-page: 250
  year: 2022
  ident: 10.1016/j.ress.2022.108560_bib0003
  article-title: Adaptive sensitive frequency band selection for VMD to identify defective components of an axial piston pump
  publication-title: Chin J Aeronaut
  doi: 10.1016/j.cja.2020.12.037
– volume: 86
  start-page: 2278
  year: 1998
  ident: 10.1016/j.ress.2022.108560_bib0049
  article-title: Gradient-based learning applied to document recognition
  publication-title: Proc IEEE
  doi: 10.1109/5.726791
– volume: 94
  year: 2020
  ident: 10.1016/j.ress.2022.108560_bib0011
  article-title: An engine-fault-diagnosis system based on sound intensity analysis and wavelet packet pre-processing neural network
  publication-title: Eng Appl Artif Intel
  doi: 10.1016/j.engappai.2020.103765
– volume: 65
  start-page: 470
  issue: 2
  year: 2022
  ident: 10.1016/j.ress.2022.108560_bib0027
  article-title: Adaptive decision-level fusion strategy for the fault diagnosis of axial piston pumps using multiple channels of vibration signals
  publication-title: Sci China Technol Sci
  doi: 10.1007/s11431-021-1904-7
– year: 2022
  ident: 10.1016/j.ress.2022.108560_bib0038
  article-title: Intelligent fault diagnosis of hydraulic piston pump based on deep learning and Bayesian optimization
  publication-title: ISA T
  doi: 10.1016/j.isatra.2022.01.013
– volume: 30
  start-page: 243
  year: 2011
  ident: 10.1016/j.ress.2022.108560_bib0043
  article-title: Synchrosqueezed Wavelet Transforms: an empricial mode decomposition-like tool
  publication-title: Appl Comput Harmon Anal
  doi: 10.1016/j.acha.2010.08.002
– volume: 91
  year: 2020
  ident: 10.1016/j.ress.2022.108560_bib0033
  article-title: Sarcasm detection in mash-up language using soft-attention based bi-directional LSTM and feature-rich CNN
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2020.106198
– volume: 205
  year: 2021
  ident: 10.1016/j.ress.2022.108560_bib0010
  article-title: Fault diagnosis based on extremely randomized trees in wireless sensor networks
  publication-title: Reliab Eng Syst Safe
  doi: 10.1016/j.ress.2020.107284
– volume: 25
  start-page: 1097
  year: 2012
  ident: 10.1016/j.ress.2022.108560_bib0050
  article-title: ImageNet classification with deep convolutional neural networks
  publication-title: Adv Neural Inf Process Syst
– volume: 329
  start-page: 53
  year: 2019
  ident: 10.1016/j.ress.2022.108560_bib0042
  article-title: Batch-normalized deep neural networks for achieving fast intelligent fault diagnosis of machines
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2018.10.049
– volume: 199
  year: 2020
  ident: 10.1016/j.ress.2022.108560_bib0041
  article-title: Intelligent fault diagnosis of rolling bearings based on normalized CNN considering data imbalance and variable working conditions
  publication-title: Knowl Based Syst
  doi: 10.1016/j.knosys.2020.105971
– volume: 169
  year: 2022
  ident: 10.1016/j.ress.2022.108560_bib0023
  article-title: CNN and convolutional autoencoder (CAE) based real-time sensor fault detection, localization, and correction
  publication-title: Mech Syst Signal Process
– volume: 220
  year: 2022
  ident: 10.1016/j.ress.2022.108560_bib0009
  article-title: Health status assessment and remaining useful life prediction of aero-engine based on BiGRU and MMoE
  publication-title: Reliab Eng Syst Safe
  doi: 10.1016/j.ress.2021.108263
– volume: 192
  year: 2022
  ident: 10.1016/j.ress.2022.108560_bib0036
  article-title: Acoustic signal-based fault detection of hydraulic piston pump using a particle swarm optimization enhancement CNN
  publication-title: Appl Acoust
  doi: 10.1016/j.apacoust.2022.108718
– volume: 93
  start-page: 1079
  year: 2013
  ident: 10.1016/j.ress.2022.108560_bib0045
  article-title: The Synchrosqueezing algorithm for time-varying spectral analysis: robustness properties and new paleoclimate applications
  publication-title: Signal Process
  doi: 10.1016/j.sigpro.2012.11.029
– volume: 215
  year: 2021
  ident: 10.1016/j.ress.2022.108560_bib0007
  article-title: Hierarchical attention graph convolutional network to fuse multi-sensor signals for remaining useful life prediction
  publication-title: Reliab Eng Syst Safe
  doi: 10.1016/j.ress.2021.107878
SSID ssj0004957
Score 2.6469572
Snippet •A normalized CNN is constructed for fault diagnosis of hydraulic piston pump.•Multiple signals are analyzed and used for intelligent fault diagnosis.•Bayesian...
Hydraulic piston pump is known as one of the most critical parts in a typical hydraulic transmission system. It is imperative to probe into an accurate fault...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 108560
SubjectTerms Algorithms
Artificial intelligence
Artificial neural networks
Bayesian algorithm
Bayesian analysis
Fault diagnosis
Feature extraction
Hydraulic equipment
Hydraulic pump
Hydraulic transmissions
Hydraulics
Intelligent fault diagnosis
Neural networks
Normalized CNN
Reliability engineering
Synchrosqueezed wavelet transform
Wavelet transforms
Title Intelligent fault identification of hydraulic pump using deep adaptive normalized CNN and synchrosqueezed wavelet transform
URI https://dx.doi.org/10.1016/j.ress.2022.108560
https://www.proquest.com/docview/2687832066
Volume 224
WOSCitedRecordID wos000800634300006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-0836
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004957
  issn: 0951-8320
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6FlgMcEE-1UNAe6Mly5efaPlaQiKIqcEhRxMVae9dKqshxE6c08Gv4p8zsrh-tIIIDF8vZtRPL35eZ2dl5EPLW5R7WPMns0MkSOygc385AjcJH0L45Q9yFajYRjcfxdJp8Hgx-Nrkw14uoLOObm6T6r1DDGICNqbP_AHf7pTAA5wA6HAF2OP4V8Gdtkc3aKvhmUVtzYUKCOvNwK1YwNc-tCuC0NsphIKSsLC54paKJSjRmF_Pv6AEej9Uew3pb5jPQqrj4xfFvHLtW1NhmQhu_fUsXY511DfCtJbuih4pquny0teaFqUKifQfGcz2Dy8uOtF9nG6UnlkbHqi5ixm07W26u5n3HBax5m7A5401rM2q-3PJKujYIGb1VI7VMjqNEFdHuC23PC3pi1_2tMtB-icsT9Fuc4BNgQGXInE71Ndv940_p6OL8PJ0Mp5Njf1Rd2diWDLfvj_33miL3yL4XhQkIzv3Ts-H0Y5d8m-hyss2Tm8wsHUR496f_ZP3csQOUcTN5TB6ZVQk91Wx6QgayfEoe9mpVPiM_eryiilf0Nq_osqAtryjyiipeUeQVbXhFO15R4BUFXtE7vKKGV7Tl1XNyMRpO3n2wTecOO_fCuLZ54XHfF0wUPitE5BRRxkQsWOwIluRBkMUuzIOpLP0oDCUPskJkIuRMeNwJs8J_QfbKZSkPCPUDKWEwcRgYuzmLuBvloe9lgcglh8XxIXGbN5rmpqw9dldZpE384mWKKKSIQqpROCRWe0-li7rsvDpsgEqNWarNzRSItvO-owbV1MgHmGdxhCxh7OXu6VfkQfenOSJ79WojX5P7-XU9X6_eGBL-AoQRvDw
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Intelligent+fault+identification+of+hydraulic+pump+using+deep+adaptive+normalized+CNN+and+synchrosqueezed+wavelet+transform&rft.jtitle=Reliability+engineering+%26+system+safety&rft.au=Tang%2C+Shengnan&rft.au=Zhu%2C+Yong&rft.au=Yuan%2C+Shouqi&rft.date=2022-08-01&rft.pub=Elsevier+BV&rft.issn=0951-8320&rft.eissn=1879-0836&rft.volume=224&rft.spage=1&rft_id=info:doi/10.1016%2Fj.ress.2022.108560&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0951-8320&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0951-8320&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0951-8320&client=summon