Intelligent fault identification of hydraulic pump using deep adaptive normalized CNN and synchrosqueezed wavelet transform
•A normalized CNN is constructed for fault diagnosis of hydraulic piston pump.•Multiple signals are analyzed and used for intelligent fault diagnosis.•Bayesian algorithm is introduced for automatic selection of hyperparameters.•Severity level of different failure and changeable conditions are discus...
Saved in:
| Published in: | Reliability engineering & system safety Vol. 224; p. 108560 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Barking
Elsevier Ltd
01.08.2022
Elsevier BV |
| Subjects: | |
| ISSN: | 0951-8320, 1879-0836 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | •A normalized CNN is constructed for fault diagnosis of hydraulic piston pump.•Multiple signals are analyzed and used for intelligent fault diagnosis.•Bayesian algorithm is introduced for automatic selection of hyperparameters.•Severity level of different failure and changeable conditions are discussed.•The BNCNN presents high accuracy and stability by experimental verification.
Hydraulic piston pump is known as one of the most critical parts in a typical hydraulic transmission system. It is imperative to probe into an accurate fault diagnosis method to guarantee the stability and reliability of the system. Due to the shortcomings of traditional methods, the development of artificial intelligence enlightens the intensive exploration for machinery fault diagnosis. In this research, a normalized convolutional neural network (NCNN) framework with batch normalization strategy is developed for feature extraction and fault identification. First, the batch normalization technology is introduced in the modeling to resolve the change of data distribution. Second, inspired by the intelligent algorithms, Bayesian algorithm is employed to automatically tune the model hyperparameters. The improved model is named BNCNN. Third, BNCNN is used for fault diagnosis based on synchrosqueesed wavelet transform. The experiments in a hydraulic piston pump are employed for the demonstration of the method. Moreover, the superior performance of the proposed method is validated by the contrastive analysis. The results reveal that BNCNN can accurately and steadily complete the fault classification of hydraulic pump. |
|---|---|
| AbstractList | Hydraulic piston pump is known as one of the most critical parts in a typical hydraulic transmission system. It is imperative to probe into an accurate fault diagnosis method to guarantee the stability and reliability of the system. Due to the shortcomings of traditional methods, the development of artificial intelligence enlightens the intensive exploration for machinery fault diagnosis. In this research, a normalized convolutional neural network (NCNN) framework with batch normalization strategy is developed for feature extraction and fault identification. First, the batch normalization technology is introduced in the modeling to resolve the change of data distribution. Second, inspired by the intelligent algorithms, Bayesian algorithm is employed to automatically tune the model hyperparameters. The improved model is named BNCNN. Third, BNCNN is used for fault diagnosis based on synchrosqueesed wavelet transform. The experiments in a hydraulic piston pump are employed for the demonstration of the method. Moreover, the superior performance of the proposed method is validated by the contrastive analysis. The results reveal that BNCNN can accurately and steadily complete the fault classification of hydraulic pump. •A normalized CNN is constructed for fault diagnosis of hydraulic piston pump.•Multiple signals are analyzed and used for intelligent fault diagnosis.•Bayesian algorithm is introduced for automatic selection of hyperparameters.•Severity level of different failure and changeable conditions are discussed.•The BNCNN presents high accuracy and stability by experimental verification. Hydraulic piston pump is known as one of the most critical parts in a typical hydraulic transmission system. It is imperative to probe into an accurate fault diagnosis method to guarantee the stability and reliability of the system. Due to the shortcomings of traditional methods, the development of artificial intelligence enlightens the intensive exploration for machinery fault diagnosis. In this research, a normalized convolutional neural network (NCNN) framework with batch normalization strategy is developed for feature extraction and fault identification. First, the batch normalization technology is introduced in the modeling to resolve the change of data distribution. Second, inspired by the intelligent algorithms, Bayesian algorithm is employed to automatically tune the model hyperparameters. The improved model is named BNCNN. Third, BNCNN is used for fault diagnosis based on synchrosqueesed wavelet transform. The experiments in a hydraulic piston pump are employed for the demonstration of the method. Moreover, the superior performance of the proposed method is validated by the contrastive analysis. The results reveal that BNCNN can accurately and steadily complete the fault classification of hydraulic pump. |
| ArticleNumber | 108560 |
| Author | Zhu, Yong Yuan, Shouqi Tang, Shengnan |
| Author_xml | – sequence: 1 givenname: Shengnan orcidid: 0000-0002-6417-0143 surname: Tang fullname: Tang, Shengnan organization: Institute of Advanced Manufacturing and Modern Equipment Technology, Jiangsu University, Zhenjiang 212013, China – sequence: 2 givenname: Yong surname: Zhu fullname: Zhu, Yong email: zhuyong@ujs.edu.cn organization: International Shipping Research Institute, GongQing Institute of Science and Technology, Jiujiang 332020, China – sequence: 3 givenname: Shouqi surname: Yuan fullname: Yuan, Shouqi organization: National Research Center of Pumps, Jiangsu University, Zhenjiang 212013, China |
| BookMark | eNp9kDFv2zAQhYnAAWI7-QOZCHSWS1EWRQFZCqNNAxjp0swExTsmNGRKJSkXbv98qbpTh0w83L3He_etyMIPHgm5L9mmZKX4eNgEjHHDGee5IWvBrsiylE1bMFmJBVmyti4LWXF2Q1YxHhhj27ZuluT3k0_Y9-4VfaJWT32iDnLtrDM6ucHTwdK3M4Q8coaO03GkU3T-lQLiSDXoMbkTUj-Eo-7dLwS6e36m2gONZ2_ewhB_TIhz_6c-YY-JpqB9tFl_S66t7iPe_XvX5OXL5--7r8X-2-PT7tO-MLyWqdCW66oCAbYSFhpmm06ABCEZiNZst50s81y2FVZNXaPedhY6qLUArlnd2WpNPlz-HcOQw8SkDsMUfF6puJDNTEWIrJIXlcmZY0CrjEt_EeTArlclUzNqdVAzajWjVhfU2cr_s47BHXU4v296uJgwn35yGFQ0Dr1BcAFNUjC49-x_AJaUnfA |
| CitedBy_id | crossref_primary_10_1016_j_aei_2025_103290 crossref_primary_10_1016_j_ress_2024_110362 crossref_primary_10_1109_TIM_2024_3351244 crossref_primary_10_1088_1402_4896_ad723f crossref_primary_10_1007_s11227_025_07075_3 crossref_primary_10_1177_10775463231154448 crossref_primary_10_3390_jmse11081609 crossref_primary_10_1016_j_engappai_2022_105712 crossref_primary_10_1109_JSEN_2025_3539099 crossref_primary_10_3390_agriculture12101609 crossref_primary_10_1109_TIM_2023_3298393 crossref_primary_10_3390_s24072124 crossref_primary_10_1109_ACCESS_2024_3399393 crossref_primary_10_1016_j_ress_2024_110369 crossref_primary_10_3390_app15126586 crossref_primary_10_1016_j_apacoust_2023_109537 crossref_primary_10_1016_j_inffus_2023_02_012 crossref_primary_10_1109_TIM_2024_3385829 crossref_primary_10_1016_j_aei_2024_103041 crossref_primary_10_1016_j_ress_2025_111203 crossref_primary_10_1016_j_ymssp_2025_113291 crossref_primary_10_1016_j_aei_2024_102487 crossref_primary_10_1016_j_jpowsour_2022_232466 crossref_primary_10_1016_j_apacoust_2023_109807 crossref_primary_10_1016_j_measurement_2025_117113 crossref_primary_10_1016_j_ress_2023_109253 crossref_primary_10_1016_j_ress_2024_110539 crossref_primary_10_1109_JSEN_2023_3251654 crossref_primary_10_3390_pr10112274 crossref_primary_10_1088_1361_6501_acf332 crossref_primary_10_1109_JSEN_2025_3571208 crossref_primary_10_3390_jmse11030594 crossref_primary_10_1016_j_anucene_2023_109700 crossref_primary_10_3390_s23198096 crossref_primary_10_1109_TIM_2023_3322488 crossref_primary_10_1016_j_engappai_2023_105936 crossref_primary_10_2478_amns_2023_2_01423 crossref_primary_10_3390_electronics14020341 crossref_primary_10_1007_s10845_023_02259_1 crossref_primary_10_3390_s22249714 crossref_primary_10_1016_j_ress_2023_109343 crossref_primary_10_3390_pr10061167 crossref_primary_10_1016_j_engappai_2023_106756 crossref_primary_10_3390_machines11020138 crossref_primary_10_1016_j_ress_2024_110199 crossref_primary_10_3390_agriculture15070749 crossref_primary_10_1016_j_engappai_2024_108678 crossref_primary_10_1109_TIM_2023_3325868 crossref_primary_10_3390_jmse11071273 crossref_primary_10_1088_1361_6501_ad3f39 crossref_primary_10_1016_j_ymssp_2024_111824 crossref_primary_10_1016_j_ress_2023_109354 crossref_primary_10_3389_fenrg_2022_1096633 crossref_primary_10_1109_JSEN_2023_3263924 crossref_primary_10_1109_ACCESS_2024_3472750 crossref_primary_10_1016_j_eswa_2023_122078 crossref_primary_10_1016_j_ssci_2024_106590 crossref_primary_10_1088_1361_6501_ad1eb3 crossref_primary_10_3390_math13091371 crossref_primary_10_1016_j_compind_2024_104155 crossref_primary_10_1016_j_ress_2024_110563 crossref_primary_10_1088_1361_6501_ad3f3b crossref_primary_10_3390_machines12120869 crossref_primary_10_3390_pr10091869 crossref_primary_10_3390_en16083320 crossref_primary_10_1016_j_aei_2025_103658 crossref_primary_10_1016_j_knosys_2024_112361 crossref_primary_10_3390_jmse11030616 crossref_primary_10_1016_j_ress_2024_110448 crossref_primary_10_1016_j_ress_2024_110208 crossref_primary_10_1109_TIM_2024_3374311 crossref_primary_10_1016_j_ress_2025_111080 crossref_primary_10_3390_pr10122500 crossref_primary_10_1007_s40430_024_04890_2 crossref_primary_10_3390_pr10071328 crossref_primary_10_3390_pr10102066 crossref_primary_10_1016_j_aei_2024_102963 crossref_primary_10_1088_1361_6501_acaf93 crossref_primary_10_1016_j_ymssp_2023_110813 crossref_primary_10_3389_fenrg_2022_998760 crossref_primary_10_1016_j_ress_2023_109178 crossref_primary_10_3390_machines12010079 crossref_primary_10_1016_j_engappai_2023_106548 crossref_primary_10_3390_pr11030743 crossref_primary_10_1109_JSEN_2023_3281428 crossref_primary_10_3390_aerospace10020109 crossref_primary_10_1016_j_ress_2024_110145 crossref_primary_10_3390_signals4010008 crossref_primary_10_1016_j_fuel_2023_129584 crossref_primary_10_3390_pr10051036 crossref_primary_10_1109_TIM_2024_3436111 crossref_primary_10_1088_1361_6501_acb458 crossref_primary_10_1016_j_apacoust_2024_110301 crossref_primary_10_1109_TIM_2024_3398074 crossref_primary_10_1177_10775463231207120 crossref_primary_10_1139_tcsme_2021_0092 crossref_primary_10_3390_s23239371 crossref_primary_10_1016_j_apenergy_2024_123773 crossref_primary_10_1016_j_eswa_2023_121338 crossref_primary_10_1016_j_ress_2023_109387 crossref_primary_10_1016_j_ress_2024_110664 crossref_primary_10_1109_TIM_2025_3595246 crossref_primary_10_3390_pr10071285 crossref_primary_10_1080_10589759_2023_2274015 crossref_primary_10_1016_j_measurement_2023_112551 crossref_primary_10_3390_s23198207 crossref_primary_10_3390_app14051710 crossref_primary_10_1088_1361_6501_ad05a3 crossref_primary_10_3390_electronics14050974 crossref_primary_10_1016_j_jii_2023_100469 crossref_primary_10_3390_jmse12040625 crossref_primary_10_1155_2024_5587168 crossref_primary_10_1016_j_pnucene_2025_105792 crossref_primary_10_1016_j_ymssp_2024_112274 |
| Cites_doi | 10.1016/j.ymssp.2019.04.032 10.1016/j.ress.2021.107530 10.1016/j.neucom.2020.04.074 10.1016/j.ress.2021.108278 10.1016/j.aei.2021.101406 10.1016/j.engappai.2020.103966 10.1088/1361-6501/aaf319 10.1016/j.measurement.2020.108580 10.1016/j.eswa.2020.114094 10.3390/machines10010055 10.1016/j.ymssp.2018.03.025 10.1007/s11465-021-0657-z 10.1016/j.measurement.2017.04.041 10.1016/j.engappai.2021.104242 10.1016/j.ress.2021.107938 10.1109/TIE.2017.2762623 10.1016/j.compbiomed.2022.105244 10.1016/j.engfailanal.2022.106300 10.1088/1361-6501/ac491d 10.1016/j.ymssp.2020.106951 10.1016/j.measurement.2021.109565 10.1016/j.apacoust.2021.108336 10.1016/j.ress.2022.108444 10.1109/JPROC.2015.2494218 10.1016/j.apacoust.2020.107399 10.1016/j.ress.2020.107050 10.1016/j.renene.2021.06.088 10.1016/j.aei.2022.101554 10.1088/1361-6501/ac51a6 10.1016/j.knosys.2020.105971 10.1016/j.ymssp.2021.107984 10.1016/j.ress.2022.108356 10.1016/j.ress.2022.108445 10.1016/j.dsp.2015.03.004 10.1016/j.cja.2020.12.037 10.1109/5.726791 10.1016/j.engappai.2020.103765 10.1007/s11431-021-1904-7 10.1016/j.isatra.2022.01.013 10.1016/j.acha.2010.08.002 10.1016/j.asoc.2020.106198 10.1016/j.ress.2020.107284 10.1016/j.neucom.2018.10.049 10.1016/j.ress.2021.108263 10.1016/j.apacoust.2022.108718 10.1016/j.sigpro.2012.11.029 10.1016/j.ress.2021.107878 |
| ContentType | Journal Article |
| Copyright | 2022 Elsevier Ltd Copyright Elsevier BV Aug 2022 |
| Copyright_xml | – notice: 2022 Elsevier Ltd – notice: Copyright Elsevier BV Aug 2022 |
| DBID | AAYXX CITATION 7ST 7TB 8FD C1K FR3 SOI |
| DOI | 10.1016/j.ress.2022.108560 |
| DatabaseName | CrossRef Environment Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Environment Abstracts |
| DatabaseTitle | CrossRef Engineering Research Database Technology Research Database Mechanical & Transportation Engineering Abstracts Environment Abstracts Environmental Sciences and Pollution Management |
| DatabaseTitleList | Engineering Research Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1879-0836 |
| ExternalDocumentID | 10_1016_j_ress_2022_108560 S0951832022002083 |
| GroupedDBID | --K --M .~1 0R~ 123 1B1 1~. 1~5 29P 4.4 457 4G. 5VS 7-5 71M 8P~ 9JN 9JO AABNK AACTN AAEDT AAEDW AAFJI AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABEFU ABFNM ABJNI ABMAC ABMMH ABTAH ABXDB ABYKQ ACDAQ ACGFS ACIWK ACNNM ACRLP ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFRAH AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AJBFU AJOXV AKYCK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOMHK ASPBG AVARZ AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W JJJVA KOM LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PRBVW Q38 R2- RIG ROL RPZ SDF SDG SES SET SEW SPC SPCBC SSB SSO SST SSZ T5K TN5 WUQ XPP ZMT ZY4 ~G- 9DU AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD 7ST 7TB 8FD AGCQF C1K FR3 SOI |
| ID | FETCH-LOGICAL-c258t-af2a33d6df36fd70f7b6d8d680d69c44b81a33893e3755ea4bfdbd5a6d2a05bf3 |
| ISICitedReferencesCount | 128 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000800634300006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0951-8320 |
| IngestDate | Wed Aug 13 11:07:53 EDT 2025 Tue Nov 18 21:58:12 EST 2025 Sat Nov 29 07:06:58 EST 2025 Fri Feb 23 02:40:40 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Bayesian algorithm Intelligent fault diagnosis Normalized CNN Synchrosqueezed wavelet transform Hydraulic pump |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c258t-af2a33d6df36fd70f7b6d8d680d69c44b81a33893e3755ea4bfdbd5a6d2a05bf3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-6417-0143 |
| PQID | 2687832066 |
| PQPubID | 2045406 |
| ParticipantIDs | proquest_journals_2687832066 crossref_citationtrail_10_1016_j_ress_2022_108560 crossref_primary_10_1016_j_ress_2022_108560 elsevier_sciencedirect_doi_10_1016_j_ress_2022_108560 |
| PublicationCentury | 2000 |
| PublicationDate | August 2022 2022-08-00 20220801 |
| PublicationDateYYYYMMDD | 2022-08-01 |
| PublicationDate_xml | – month: 08 year: 2022 text: August 2022 |
| PublicationDecade | 2020 |
| PublicationPlace | Barking |
| PublicationPlace_xml | – name: Barking |
| PublicationTitle | Reliability engineering & system safety |
| PublicationYear | 2022 |
| Publisher | Elsevier Ltd Elsevier BV |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
| References | Saeed, Jan, Lee, Koo (bib0010) 2021; 205 Jain, Kumar, Garg (bib0033) 2020; 91 Wei, Huang, Yao, Hu, Fan, Huang (bib0013) 2020; 96 Wang, Shen, Xia, Wang, Zhu, Zhu (bib0031) 2020; 202 Tang, Zhu, Yuan (bib0039) 2021; 50 Zhang, Hu, Yang (bib0018) 2022; 222 Zhu, Li, Tang, Wang, Su, Wang (bib0036) 2022; 192 Chao, Zhang, Xu, Wang, Lyu, Li (bib0002) 2022; 17 Zhao, Zhang, Hai, Yang (bib0041) 2020; 199 Li, Zhao, Sun, Yan, Chen (bib0007) 2021; 215 Krizhevsky, Sutskever, Hinton (bib0050) 2012; 25 Yang, Baraldi, Zio (bib0019) 2022; 220 Shahriari, Swersky, Wang, Adams, Freitas (bib0048) 2016; 104 Xu, Qiu, Gao, Yang, Wang (bib0017) 2022; 222 Xu, Saleh (bib0015) 2021; 211 Cun, Bottou, Bengio, Haffner (bib0049) 1998; 86 Tang, Yuan, Zhu (bib0034) 2022; 52 Qian, Pu, liu, Li, Zhang, Gu, Meng (bib0008) 2022; 33 Tang, Zhu, Yuan (bib0038) 2022 Aslan, Sabanci, Durdu, Unlersen (bib0047) 2022; 142 Zou, Li, Xu (bib0022) 2020; 407 Guo, Yang, Hua, Cao (bib0024) 2021; 178 Zhang, Wang, Lv, Fan, Song (bib0032) 2021; 102 Ciabattoni, Ferracuti, Freddi, Monteri`u (bib0004) 2018; 65 Wang, Li, An, Jiang, Qian, Ji (bib0042) 2019; 329 Iatsenko, McClintock, Stefanovska (bib0044) 2015; 42 Jia, Lei, Lu, Xing (bib0028) 2018; 110 Wang, Li, Han, An, Xin, Qian, Wu (bib0040) 2019; 30 Shao, Fu, Tan, Wang (bib0014) 2021; 173 Thakur, Brevdo, Fuckar, Wu (bib0045) 2013; 93 Tang, Zhu, Yuan (bib0016) 2022; 138 Chao, Wei, Lei, Tao, Liu (bib0026) 2022; 33 Daubechies, Lu, Wu (bib0043) 2011; 30 Xia, Shao, Williams, Lu, Shu, de Silva (bib0020) 2021; 215 Wang, Liu, Guo, Wang (bib0011) 2020; 94 Dibaj, Ettefagh, Hassannejad, Ehghaghi (bib0035) 2021; 167 Zhu, Li, Wang, Tang, Su, Cao (bib0037) 2021; 183 Ye, Yu (bib0021) 2021; 161 Chao, Gao, Tao, Wang, Zhou, Liu (bib0027) 2022; 65 Zhang, Xin, Liu, Chi, Ma (bib0009) 2022; 220 Chen, Liu, Chen (bib0046) 2020; 145 Kumar, Kumar (bib0012) 2017; 108 Debasish, Patil, Herkal, Nagarajaiah, Duenas-Osorio (bib0023) 2022; 169 Kumar, Gandhi, Tang, Vashishtha, Kumar, Zhou, Xiang (bib0003) 2022; 35 Kumar, Parkash, Vashishtha, Tang, Kundu, Xiang (bib0006) 2022; 221 Zhao, Zhang, Yang (bib0029) 2020; 199 Wang, Li, Zhang, Hu, Sun (bib0030) 2021; 180 Ye, Zhang, Xu, Zhu, Xiang, Tang (bib0001) 2019; 129 Gao, Zhu, Liu (bib0005) 2022; 10 Kumar, Gandhi, Zhou, Kumar, Xiang (bib0025) 2020; 167 Xia (10.1016/j.ress.2022.108560_bib0020) 2021; 215 Chao (10.1016/j.ress.2022.108560_bib0027) 2022; 65 Jain (10.1016/j.ress.2022.108560_bib0033) 2020; 91 Zhang (10.1016/j.ress.2022.108560_bib0018) 2022; 222 Tang (10.1016/j.ress.2022.108560_bib0038) 2022 Ye (10.1016/j.ress.2022.108560_bib0021) 2021; 161 Li (10.1016/j.ress.2022.108560_bib0007) 2021; 215 Cun (10.1016/j.ress.2022.108560_bib0049) 1998; 86 Aslan (10.1016/j.ress.2022.108560_bib0047) 2022; 142 Wang (10.1016/j.ress.2022.108560_bib0042) 2019; 329 Kumar (10.1016/j.ress.2022.108560_bib0025) 2020; 167 Ye (10.1016/j.ress.2022.108560_bib0001) 2019; 129 Debasish (10.1016/j.ress.2022.108560_bib0023) 2022; 169 Shahriari (10.1016/j.ress.2022.108560_bib0048) 2016; 104 Wang (10.1016/j.ress.2022.108560_bib0031) 2020; 202 Daubechies (10.1016/j.ress.2022.108560_bib0043) 2011; 30 Zou (10.1016/j.ress.2022.108560_bib0022) 2020; 407 Zhu (10.1016/j.ress.2022.108560_bib0037) 2021; 183 Dibaj (10.1016/j.ress.2022.108560_bib0035) 2021; 167 Wang (10.1016/j.ress.2022.108560_bib0040) 2019; 30 Tang (10.1016/j.ress.2022.108560_bib0039) 2021; 50 Wang (10.1016/j.ress.2022.108560_bib0011) 2020; 94 Guo (10.1016/j.ress.2022.108560_bib0024) 2021; 178 Wang (10.1016/j.ress.2022.108560_bib0030) 2021; 180 Zhao (10.1016/j.ress.2022.108560_bib0029) 2020; 199 Zhu (10.1016/j.ress.2022.108560_bib0036) 2022; 192 Krizhevsky (10.1016/j.ress.2022.108560_bib0050) 2012; 25 Kumar (10.1016/j.ress.2022.108560_bib0006) 2022; 221 Chao (10.1016/j.ress.2022.108560_bib0026) 2022; 33 Saeed (10.1016/j.ress.2022.108560_bib0010) 2021; 205 Iatsenko (10.1016/j.ress.2022.108560_bib0044) 2015; 42 Zhao (10.1016/j.ress.2022.108560_bib0041) 2020; 199 Chao (10.1016/j.ress.2022.108560_bib0002) 2022; 17 Ciabattoni (10.1016/j.ress.2022.108560_bib0004) 2018; 65 Jia (10.1016/j.ress.2022.108560_bib0028) 2018; 110 Yang (10.1016/j.ress.2022.108560_bib0019) 2022; 220 Kumar (10.1016/j.ress.2022.108560_bib0003) 2022; 35 Zhang (10.1016/j.ress.2022.108560_bib0009) 2022; 220 Qian (10.1016/j.ress.2022.108560_bib0008) 2022; 33 Gao (10.1016/j.ress.2022.108560_bib0005) 2022; 10 Chen (10.1016/j.ress.2022.108560_bib0046) 2020; 145 Xu (10.1016/j.ress.2022.108560_bib0015) 2021; 211 Shao (10.1016/j.ress.2022.108560_bib0014) 2021; 173 Wei (10.1016/j.ress.2022.108560_bib0013) 2020; 96 Kumar (10.1016/j.ress.2022.108560_bib0012) 2017; 108 Xu (10.1016/j.ress.2022.108560_bib0017) 2022; 222 Tang (10.1016/j.ress.2022.108560_bib0016) 2022; 138 Thakur (10.1016/j.ress.2022.108560_bib0045) 2013; 93 Tang (10.1016/j.ress.2022.108560_bib0034) 2022; 52 Zhang (10.1016/j.ress.2022.108560_bib0032) 2021; 102 |
| References_xml | – volume: 221 year: 2022 ident: bib0006 article-title: State-space modeling and novel entropy-based health indicator for dynamic degradation monitoring of rolling element bearing publication-title: Reliab Eng Syst Safe – volume: 173 year: 2021 ident: bib0014 article-title: Coordinated approach fusing time-shift multiscale dispersion entropy and vibrational Harris hawks optimization-based SVM for fault diagnosis of rolling bearing publication-title: Measurement – volume: 202 year: 2020 ident: bib0031 article-title: Multi-scale deep intra-class transfer learning for bearing fault diagnosis publication-title: Reliab Eng Syst Safe – volume: 91 year: 2020 ident: bib0033 article-title: Sarcasm detection in mash-up language using soft-attention based bi-directional LSTM and feature-rich CNN publication-title: Appl Soft Comput – volume: 94 year: 2020 ident: bib0011 article-title: An engine-fault-diagnosis system based on sound intensity analysis and wavelet packet pre-processing neural network publication-title: Eng Appl Artif Intel – volume: 220 year: 2022 ident: bib0009 article-title: Health status assessment and remaining useful life prediction of aero-engine based on BiGRU and MMoE publication-title: Reliab Eng Syst Safe – volume: 93 start-page: 1079 year: 2013 end-page: 1094 ident: bib0045 article-title: The Synchrosqueezing algorithm for time-varying spectral analysis: robustness properties and new paleoclimate applications publication-title: Signal Process – volume: 110 start-page: 349 year: 2018 end-page: 367 ident: bib0028 article-title: Deep normalized convolutional neural network for imbalanced fault classification of machinery and its understanding via visualization publication-title: Mech Syst Signal Process – volume: 52 year: 2022 ident: bib0034 article-title: A novel adaptive convolutional neural network for fault diagnosis of hydraulic piston pump with acoustic images publication-title: Adv Eng Inform – volume: 104 start-page: 148 year: 2016 end-page: 175 ident: bib0048 article-title: Taking the human out of the loop: a review of Bayesian optimization publication-title: Proc IEEE – volume: 33 year: 2022 ident: bib0008 article-title: Development of a new high-precision friction test platform and experimental study of friction characteristics for pneumatic cylinders publication-title: Meas Sci Technol – volume: 167 year: 2020 ident: bib0025 article-title: Improved deep convolution neural network (CNN) for the identification of defects in the centrifugal pump using acoustic images publication-title: Appl Acoust – volume: 222 year: 2022 ident: bib0018 article-title: Anomaly detection and diagnosis for wind turbines using long short-term memory-based stacked denoising autoencoders and XGBoost publication-title: Reliab Eng Syst Safe – volume: 96 year: 2020 ident: bib0013 article-title: New imbalanced fault diagnosis framework based on Cluster-MWMOTE and MFO-optimized LS-SVM using limited and complex bearing data publication-title: Eng Appl Artif Intel – volume: 167 year: 2021 ident: bib0035 article-title: A hybrid fine-tuned VMD and CNN scheme for untrained compound fault diagnosis of rotating machinery with unequal-severity faults publication-title: Expert Syst Appl – volume: 183 year: 2021 ident: bib0037 article-title: Intelligent fault diagnosis of hydraulic piston pump combining improved lenet-5 and PSO hyperparameter optimization publication-title: Appl Acoust – volume: 220 year: 2022 ident: bib0019 article-title: A method for fault detection in multi-component systems based on sparse autoencoder-based deep neural networks publication-title: Reliab Eng Syst Safe – volume: 329 start-page: 53 year: 2019 end-page: 65 ident: bib0042 article-title: Batch-normalized deep neural networks for achieving fast intelligent fault diagnosis of machines publication-title: Neurocomputing – year: 2022 ident: bib0038 article-title: Intelligent fault diagnosis of hydraulic piston pump based on deep learning and Bayesian optimization publication-title: ISA T – volume: 65 start-page: 470 year: 2022 end-page: 480 ident: bib0027 article-title: Adaptive decision-level fusion strategy for the fault diagnosis of axial piston pumps using multiple channels of vibration signals publication-title: Sci China Technol Sci – volume: 65 start-page: 4301 year: 2018 end-page: 4310 ident: bib0004 article-title: Statistical spectral analysis for fault diagnosis of rotating machines publication-title: IEEE Trans Ind Electron – volume: 169 year: 2022 ident: bib0023 article-title: CNN and convolutional autoencoder (CAE) based real-time sensor fault detection, localization, and correction publication-title: Mech Syst Signal Process – volume: 108 start-page: 119 year: 2017 end-page: 133 ident: bib0012 article-title: Time-frequency analysis and support vector machine in automatic detection of defect from vibration signal of centrifugal pump publication-title: Measurement – volume: 211 year: 2021 ident: bib0015 article-title: Machine learning for reliability engineering and safety applications: review of current status and future opportunities publication-title: Reliab Eng Syst Safe – volume: 17 start-page: 1 year: 2022 ident: bib0002 article-title: Integrated slipper retainer mechanism to eliminate slipper wear in high-speed axial piston pumps publication-title: Front Mech Eng – volume: 192 year: 2022 ident: bib0036 article-title: Acoustic signal-based fault detection of hydraulic piston pump using a particle swarm optimization enhancement CNN publication-title: Appl Acoust – volume: 205 year: 2021 ident: bib0010 article-title: Fault diagnosis based on extremely randomized trees in wireless sensor networks publication-title: Reliab Eng Syst Safe – volume: 25 start-page: 1097 year: 2012 end-page: 1105 ident: bib0050 article-title: ImageNet classification with deep convolutional neural networks publication-title: Adv Neural Inf Process Syst – volume: 86 start-page: 2278 year: 1998 end-page: 2324 ident: bib0049 article-title: Gradient-based learning applied to document recognition publication-title: Proc IEEE – volume: 129 start-page: 201 year: 2019 end-page: 217 ident: bib0001 article-title: Theoretical investigation of the contributions of the excitation forces to the vibration of an axial piston pump publication-title: Mech Syst Signal Process – volume: 215 year: 2021 ident: bib0007 article-title: Hierarchical attention graph convolutional network to fuse multi-sensor signals for remaining useful life prediction publication-title: Reliab Eng Syst Safe – volume: 30 start-page: 1 year: 2019 end-page: 14 ident: bib0040 article-title: Construction of a batch-normalized autoencoder network and its application in mechanical intelligent fault diagnosis publication-title: Meas Sci Technol – volume: 215 year: 2021 ident: bib0020 article-title: Intelligent fault diagnosis of machinery using digital twin-assisted deep transfer learning publication-title: Reliab Eng Syst Safe – volume: 42 start-page: 1 year: 2015 end-page: 26 ident: bib0044 article-title: Linear and synchrosqueezed time–frequency representations revisited: overview, standards of use, resolution, reconstruction, concentration, and algorithms publication-title: Digit Signal Process – volume: 142 year: 2022 ident: bib0047 article-title: COVID-19 diagnosis using state-of-the-art CNN architecture features and Bayesian optimization publication-title: Comput Biol Med – volume: 145 year: 2020 ident: bib0046 article-title: Frequency-temporal-logic-based bearing fault diagnosis and fault interpretation using Bayesian optimization with Bayesian neural networks publication-title: Mech Syst Signal Process – volume: 138 year: 2022 ident: bib0016 article-title: An adaptive deep learning model towards fault diagnosis of hydraulic piston pump using pressure signal publication-title: Eng Fail Anal – volume: 222 year: 2022 ident: bib0017 article-title: A novel dual-stream self-attention neural network for remaining useful life estimation of mechanical systems publication-title: Reliab Eng Syst Safe – volume: 199 year: 2020 ident: bib0041 article-title: Intelligent fault diagnosis of rolling bearings based on normalized CNN considering data imbalance and variable working conditions publication-title: Knowl Based Syst – volume: 10 start-page: 55 year: 2022 ident: bib0005 article-title: Dynamics modelling and control of a novel fuel metering valve actuated by two binary-coded digital valve arrays publication-title: Machines – volume: 407 start-page: 105 year: 2020 end-page: 120 ident: bib0022 article-title: An adversarial denoising convolutional neural network for fault diagnosis of rotating machinery under noisy environment and limited sample size case publication-title: Neurocomputing – volume: 178 start-page: 639 year: 2021 end-page: 650 ident: bib0024 article-title: Coupling fault diagnosis of wind turbine gearbox based on multitask parallel convolutional neural networks with overall information publication-title: Renew Energy – volume: 199 year: 2020 ident: bib0029 article-title: Intelligent fault diagnosis of rolling bearings based on normalized CNN considering data imbalance and variable working conditions publication-title: Knowl Based Syst – volume: 50 year: 2021 ident: bib0039 article-title: An improved convolutional neural network with an adaptable learning rate towards multi-signal fault diagnosis of hydraulic piston pump publication-title: Adv Eng Inform – volume: 180 year: 2021 ident: bib0030 article-title: Intelligent fault diagnosis of planetary gearbox based on adaptive normalized CNN under complex variable working conditions and data imbalance publication-title: Measurement – volume: 161 year: 2021 ident: bib0021 article-title: Deep morphological convolutional network for feature learning of vibration signals and its applications to gearbox fault diagnosis publication-title: Mech Syst Signal Process – volume: 35 start-page: 250 year: 2022 end-page: 265 ident: bib0003 article-title: Adaptive sensitive frequency band selection for VMD to identify defective components of an axial piston pump publication-title: Chin J Aeronaut – volume: 102 year: 2021 ident: bib0032 article-title: Computer vision detection of foreign objects in coal processing using attention CNN publication-title: Eng Appl Artif Intel – volume: 30 start-page: 243 year: 2011 end-page: 261 ident: bib0043 article-title: Synchrosqueezed Wavelet Transforms: an empricial mode decomposition-like tool publication-title: Appl Comput Harmon Anal – volume: 33 year: 2022 ident: bib0026 article-title: Improving accuracy of cavitation severity recognition in axial piston pumps by denoising time-frequency images publication-title: Meas Sci Technol – volume: 129 start-page: 201 year: 2019 ident: 10.1016/j.ress.2022.108560_bib0001 article-title: Theoretical investigation of the contributions of the excitation forces to the vibration of an axial piston pump publication-title: Mech Syst Signal Process doi: 10.1016/j.ymssp.2019.04.032 – volume: 211 year: 2021 ident: 10.1016/j.ress.2022.108560_bib0015 article-title: Machine learning for reliability engineering and safety applications: review of current status and future opportunities publication-title: Reliab Eng Syst Safe doi: 10.1016/j.ress.2021.107530 – volume: 407 start-page: 105 year: 2020 ident: 10.1016/j.ress.2022.108560_bib0022 article-title: An adversarial denoising convolutional neural network for fault diagnosis of rotating machinery under noisy environment and limited sample size case publication-title: Neurocomputing doi: 10.1016/j.neucom.2020.04.074 – volume: 220 year: 2022 ident: 10.1016/j.ress.2022.108560_bib0019 article-title: A method for fault detection in multi-component systems based on sparse autoencoder-based deep neural networks publication-title: Reliab Eng Syst Safe doi: 10.1016/j.ress.2021.108278 – volume: 50 year: 2021 ident: 10.1016/j.ress.2022.108560_bib0039 article-title: An improved convolutional neural network with an adaptable learning rate towards multi-signal fault diagnosis of hydraulic piston pump publication-title: Adv Eng Inform doi: 10.1016/j.aei.2021.101406 – volume: 96 year: 2020 ident: 10.1016/j.ress.2022.108560_bib0013 article-title: New imbalanced fault diagnosis framework based on Cluster-MWMOTE and MFO-optimized LS-SVM using limited and complex bearing data publication-title: Eng Appl Artif Intel doi: 10.1016/j.engappai.2020.103966 – volume: 30 start-page: 1 year: 2019 ident: 10.1016/j.ress.2022.108560_bib0040 article-title: Construction of a batch-normalized autoencoder network and its application in mechanical intelligent fault diagnosis publication-title: Meas Sci Technol doi: 10.1088/1361-6501/aaf319 – volume: 173 year: 2021 ident: 10.1016/j.ress.2022.108560_bib0014 article-title: Coordinated approach fusing time-shift multiscale dispersion entropy and vibrational Harris hawks optimization-based SVM for fault diagnosis of rolling bearing publication-title: Measurement doi: 10.1016/j.measurement.2020.108580 – volume: 167 year: 2021 ident: 10.1016/j.ress.2022.108560_bib0035 article-title: A hybrid fine-tuned VMD and CNN scheme for untrained compound fault diagnosis of rotating machinery with unequal-severity faults publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2020.114094 – volume: 10 start-page: 55 issue: 1 year: 2022 ident: 10.1016/j.ress.2022.108560_bib0005 article-title: Dynamics modelling and control of a novel fuel metering valve actuated by two binary-coded digital valve arrays publication-title: Machines doi: 10.3390/machines10010055 – volume: 110 start-page: 349 year: 2018 ident: 10.1016/j.ress.2022.108560_bib0028 article-title: Deep normalized convolutional neural network for imbalanced fault classification of machinery and its understanding via visualization publication-title: Mech Syst Signal Process doi: 10.1016/j.ymssp.2018.03.025 – volume: 17 start-page: 1 year: 2022 ident: 10.1016/j.ress.2022.108560_bib0002 article-title: Integrated slipper retainer mechanism to eliminate slipper wear in high-speed axial piston pumps publication-title: Front Mech Eng doi: 10.1007/s11465-021-0657-z – volume: 108 start-page: 119 year: 2017 ident: 10.1016/j.ress.2022.108560_bib0012 article-title: Time-frequency analysis and support vector machine in automatic detection of defect from vibration signal of centrifugal pump publication-title: Measurement doi: 10.1016/j.measurement.2017.04.041 – volume: 102 year: 2021 ident: 10.1016/j.ress.2022.108560_bib0032 article-title: Computer vision detection of foreign objects in coal processing using attention CNN publication-title: Eng Appl Artif Intel doi: 10.1016/j.engappai.2021.104242 – volume: 215 year: 2021 ident: 10.1016/j.ress.2022.108560_bib0020 article-title: Intelligent fault diagnosis of machinery using digital twin-assisted deep transfer learning publication-title: Reliab Eng Syst Safe doi: 10.1016/j.ress.2021.107938 – volume: 65 start-page: 4301 year: 2018 ident: 10.1016/j.ress.2022.108560_bib0004 article-title: Statistical spectral analysis for fault diagnosis of rotating machines publication-title: IEEE Trans Ind Electron doi: 10.1109/TIE.2017.2762623 – volume: 142 year: 2022 ident: 10.1016/j.ress.2022.108560_bib0047 article-title: COVID-19 diagnosis using state-of-the-art CNN architecture features and Bayesian optimization publication-title: Comput Biol Med doi: 10.1016/j.compbiomed.2022.105244 – volume: 138 year: 2022 ident: 10.1016/j.ress.2022.108560_bib0016 article-title: An adaptive deep learning model towards fault diagnosis of hydraulic piston pump using pressure signal publication-title: Eng Fail Anal doi: 10.1016/j.engfailanal.2022.106300 – volume: 33 issue: 5 year: 2022 ident: 10.1016/j.ress.2022.108560_bib0026 article-title: Improving accuracy of cavitation severity recognition in axial piston pumps by denoising time-frequency images publication-title: Meas Sci Technol doi: 10.1088/1361-6501/ac491d – volume: 145 year: 2020 ident: 10.1016/j.ress.2022.108560_bib0046 article-title: Frequency-temporal-logic-based bearing fault diagnosis and fault interpretation using Bayesian optimization with Bayesian neural networks publication-title: Mech Syst Signal Process doi: 10.1016/j.ymssp.2020.106951 – volume: 180 year: 2021 ident: 10.1016/j.ress.2022.108560_bib0030 article-title: Intelligent fault diagnosis of planetary gearbox based on adaptive normalized CNN under complex variable working conditions and data imbalance publication-title: Measurement doi: 10.1016/j.measurement.2021.109565 – volume: 183 year: 2021 ident: 10.1016/j.ress.2022.108560_bib0037 article-title: Intelligent fault diagnosis of hydraulic piston pump combining improved lenet-5 and PSO hyperparameter optimization publication-title: Appl Acoust doi: 10.1016/j.apacoust.2021.108336 – volume: 222 year: 2022 ident: 10.1016/j.ress.2022.108560_bib0017 article-title: A novel dual-stream self-attention neural network for remaining useful life estimation of mechanical systems publication-title: Reliab Eng Syst Safe doi: 10.1016/j.ress.2022.108444 – volume: 104 start-page: 148 year: 2016 ident: 10.1016/j.ress.2022.108560_bib0048 article-title: Taking the human out of the loop: a review of Bayesian optimization publication-title: Proc IEEE doi: 10.1109/JPROC.2015.2494218 – volume: 167 year: 2020 ident: 10.1016/j.ress.2022.108560_bib0025 article-title: Improved deep convolution neural network (CNN) for the identification of defects in the centrifugal pump using acoustic images publication-title: Appl Acoust doi: 10.1016/j.apacoust.2020.107399 – volume: 202 year: 2020 ident: 10.1016/j.ress.2022.108560_bib0031 article-title: Multi-scale deep intra-class transfer learning for bearing fault diagnosis publication-title: Reliab Eng Syst Safe doi: 10.1016/j.ress.2020.107050 – volume: 178 start-page: 639 year: 2021 ident: 10.1016/j.ress.2022.108560_bib0024 article-title: Coupling fault diagnosis of wind turbine gearbox based on multitask parallel convolutional neural networks with overall information publication-title: Renew Energy doi: 10.1016/j.renene.2021.06.088 – volume: 52 year: 2022 ident: 10.1016/j.ress.2022.108560_bib0034 article-title: A novel adaptive convolutional neural network for fault diagnosis of hydraulic piston pump with acoustic images publication-title: Adv Eng Inform doi: 10.1016/j.aei.2022.101554 – volume: 33 issue: 6 year: 2022 ident: 10.1016/j.ress.2022.108560_bib0008 article-title: Development of a new high-precision friction test platform and experimental study of friction characteristics for pneumatic cylinders publication-title: Meas Sci Technol doi: 10.1088/1361-6501/ac51a6 – volume: 199 year: 2020 ident: 10.1016/j.ress.2022.108560_bib0029 article-title: Intelligent fault diagnosis of rolling bearings based on normalized CNN considering data imbalance and variable working conditions publication-title: Knowl Based Syst doi: 10.1016/j.knosys.2020.105971 – volume: 161 year: 2021 ident: 10.1016/j.ress.2022.108560_bib0021 article-title: Deep morphological convolutional network for feature learning of vibration signals and its applications to gearbox fault diagnosis publication-title: Mech Syst Signal Process doi: 10.1016/j.ymssp.2021.107984 – volume: 221 year: 2022 ident: 10.1016/j.ress.2022.108560_bib0006 article-title: State-space modeling and novel entropy-based health indicator for dynamic degradation monitoring of rolling element bearing publication-title: Reliab Eng Syst Safe doi: 10.1016/j.ress.2022.108356 – volume: 222 year: 2022 ident: 10.1016/j.ress.2022.108560_bib0018 article-title: Anomaly detection and diagnosis for wind turbines using long short-term memory-based stacked denoising autoencoders and XGBoost publication-title: Reliab Eng Syst Safe doi: 10.1016/j.ress.2022.108445 – volume: 42 start-page: 1 year: 2015 ident: 10.1016/j.ress.2022.108560_bib0044 article-title: Linear and synchrosqueezed time–frequency representations revisited: overview, standards of use, resolution, reconstruction, concentration, and algorithms publication-title: Digit Signal Process doi: 10.1016/j.dsp.2015.03.004 – volume: 35 start-page: 250 year: 2022 ident: 10.1016/j.ress.2022.108560_bib0003 article-title: Adaptive sensitive frequency band selection for VMD to identify defective components of an axial piston pump publication-title: Chin J Aeronaut doi: 10.1016/j.cja.2020.12.037 – volume: 86 start-page: 2278 year: 1998 ident: 10.1016/j.ress.2022.108560_bib0049 article-title: Gradient-based learning applied to document recognition publication-title: Proc IEEE doi: 10.1109/5.726791 – volume: 94 year: 2020 ident: 10.1016/j.ress.2022.108560_bib0011 article-title: An engine-fault-diagnosis system based on sound intensity analysis and wavelet packet pre-processing neural network publication-title: Eng Appl Artif Intel doi: 10.1016/j.engappai.2020.103765 – volume: 65 start-page: 470 issue: 2 year: 2022 ident: 10.1016/j.ress.2022.108560_bib0027 article-title: Adaptive decision-level fusion strategy for the fault diagnosis of axial piston pumps using multiple channels of vibration signals publication-title: Sci China Technol Sci doi: 10.1007/s11431-021-1904-7 – year: 2022 ident: 10.1016/j.ress.2022.108560_bib0038 article-title: Intelligent fault diagnosis of hydraulic piston pump based on deep learning and Bayesian optimization publication-title: ISA T doi: 10.1016/j.isatra.2022.01.013 – volume: 30 start-page: 243 year: 2011 ident: 10.1016/j.ress.2022.108560_bib0043 article-title: Synchrosqueezed Wavelet Transforms: an empricial mode decomposition-like tool publication-title: Appl Comput Harmon Anal doi: 10.1016/j.acha.2010.08.002 – volume: 91 year: 2020 ident: 10.1016/j.ress.2022.108560_bib0033 article-title: Sarcasm detection in mash-up language using soft-attention based bi-directional LSTM and feature-rich CNN publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2020.106198 – volume: 205 year: 2021 ident: 10.1016/j.ress.2022.108560_bib0010 article-title: Fault diagnosis based on extremely randomized trees in wireless sensor networks publication-title: Reliab Eng Syst Safe doi: 10.1016/j.ress.2020.107284 – volume: 25 start-page: 1097 year: 2012 ident: 10.1016/j.ress.2022.108560_bib0050 article-title: ImageNet classification with deep convolutional neural networks publication-title: Adv Neural Inf Process Syst – volume: 329 start-page: 53 year: 2019 ident: 10.1016/j.ress.2022.108560_bib0042 article-title: Batch-normalized deep neural networks for achieving fast intelligent fault diagnosis of machines publication-title: Neurocomputing doi: 10.1016/j.neucom.2018.10.049 – volume: 199 year: 2020 ident: 10.1016/j.ress.2022.108560_bib0041 article-title: Intelligent fault diagnosis of rolling bearings based on normalized CNN considering data imbalance and variable working conditions publication-title: Knowl Based Syst doi: 10.1016/j.knosys.2020.105971 – volume: 169 year: 2022 ident: 10.1016/j.ress.2022.108560_bib0023 article-title: CNN and convolutional autoencoder (CAE) based real-time sensor fault detection, localization, and correction publication-title: Mech Syst Signal Process – volume: 220 year: 2022 ident: 10.1016/j.ress.2022.108560_bib0009 article-title: Health status assessment and remaining useful life prediction of aero-engine based on BiGRU and MMoE publication-title: Reliab Eng Syst Safe doi: 10.1016/j.ress.2021.108263 – volume: 192 year: 2022 ident: 10.1016/j.ress.2022.108560_bib0036 article-title: Acoustic signal-based fault detection of hydraulic piston pump using a particle swarm optimization enhancement CNN publication-title: Appl Acoust doi: 10.1016/j.apacoust.2022.108718 – volume: 93 start-page: 1079 year: 2013 ident: 10.1016/j.ress.2022.108560_bib0045 article-title: The Synchrosqueezing algorithm for time-varying spectral analysis: robustness properties and new paleoclimate applications publication-title: Signal Process doi: 10.1016/j.sigpro.2012.11.029 – volume: 215 year: 2021 ident: 10.1016/j.ress.2022.108560_bib0007 article-title: Hierarchical attention graph convolutional network to fuse multi-sensor signals for remaining useful life prediction publication-title: Reliab Eng Syst Safe doi: 10.1016/j.ress.2021.107878 |
| SSID | ssj0004957 |
| Score | 2.6469572 |
| Snippet | •A normalized CNN is constructed for fault diagnosis of hydraulic piston pump.•Multiple signals are analyzed and used for intelligent fault diagnosis.•Bayesian... Hydraulic piston pump is known as one of the most critical parts in a typical hydraulic transmission system. It is imperative to probe into an accurate fault... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 108560 |
| SubjectTerms | Algorithms Artificial intelligence Artificial neural networks Bayesian algorithm Bayesian analysis Fault diagnosis Feature extraction Hydraulic equipment Hydraulic pump Hydraulic transmissions Hydraulics Intelligent fault diagnosis Neural networks Normalized CNN Reliability engineering Synchrosqueezed wavelet transform Wavelet transforms |
| Title | Intelligent fault identification of hydraulic pump using deep adaptive normalized CNN and synchrosqueezed wavelet transform |
| URI | https://dx.doi.org/10.1016/j.ress.2022.108560 https://www.proquest.com/docview/2687832066 |
| Volume | 224 |
| WOSCitedRecordID | wos000800634300006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1879-0836 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004957 issn: 0951-8320 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6FlgMcEE-1UNAe6Mly5efaPlaQiKIqcEhRxMVae9dKqshxE6c08Gv4p8zsrh-tIIIDF8vZtRPL35eZ2dl5EPLW5R7WPMns0MkSOygc385AjcJH0L45Q9yFajYRjcfxdJp8Hgx-Nrkw14uoLOObm6T6r1DDGICNqbP_AHf7pTAA5wA6HAF2OP4V8Gdtkc3aKvhmUVtzYUKCOvNwK1YwNc-tCuC0NsphIKSsLC54paKJSjRmF_Pv6AEej9Uew3pb5jPQqrj4xfFvHLtW1NhmQhu_fUsXY511DfCtJbuih4pquny0teaFqUKifQfGcz2Dy8uOtF9nG6UnlkbHqi5ixm07W26u5n3HBax5m7A5401rM2q-3PJKujYIGb1VI7VMjqNEFdHuC23PC3pi1_2tMtB-icsT9Fuc4BNgQGXInE71Ndv940_p6OL8PJ0Mp5Njf1Rd2diWDLfvj_33miL3yL4XhQkIzv3Ts-H0Y5d8m-hyss2Tm8wsHUR496f_ZP3csQOUcTN5TB6ZVQk91Wx6QgayfEoe9mpVPiM_eryiilf0Nq_osqAtryjyiipeUeQVbXhFO15R4BUFXtE7vKKGV7Tl1XNyMRpO3n2wTecOO_fCuLZ54XHfF0wUPitE5BRRxkQsWOwIluRBkMUuzIOpLP0oDCUPskJkIuRMeNwJs8J_QfbKZSkPCPUDKWEwcRgYuzmLuBvloe9lgcglh8XxIXGbN5rmpqw9dldZpE384mWKKKSIQqpROCRWe0-li7rsvDpsgEqNWarNzRSItvO-owbV1MgHmGdxhCxh7OXu6VfkQfenOSJ79WojX5P7-XU9X6_eGBL-AoQRvDw |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Intelligent+fault+identification+of+hydraulic+pump+using+deep+adaptive+normalized+CNN+and+synchrosqueezed+wavelet+transform&rft.jtitle=Reliability+engineering+%26+system+safety&rft.au=Tang%2C+Shengnan&rft.au=Zhu%2C+Yong&rft.au=Yuan%2C+Shouqi&rft.date=2022-08-01&rft.pub=Elsevier+BV&rft.issn=0951-8320&rft.eissn=1879-0836&rft.volume=224&rft.spage=1&rft_id=info:doi/10.1016%2Fj.ress.2022.108560&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0951-8320&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0951-8320&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0951-8320&client=summon |