F-RRT: An improved path planning algorithm with improved initial solution and convergence rate
•A tree-extending algorithm for reducing the solution cost is presented.•Generating nodes essential to the optimal path with smaller samples.•Searching for ancestors of the nearest vertex instead of nodes around the random point.•Connecting the random point to the furthest vertex of the tree it can...
Saved in:
| Published in: | Expert systems with applications Vol. 184; p. 115457 |
|---|---|
| Main Authors: | , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
New York
Elsevier Ltd
01.12.2021
Elsevier BV |
| Subjects: | |
| ISSN: | 0957-4174, 1873-6793 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | •A tree-extending algorithm for reducing the solution cost is presented.•Generating nodes essential to the optimal path with smaller samples.•Searching for ancestors of the nearest vertex instead of nodes around the random point.•Connecting the random point to the furthest vertex of the tree it can reach.
During the last decades, sampling-based algorithms have been used to solve the problem of motion planning. RRT*, as an optimal variant of RRT, provides asymptotic optimality. However, the slow convergence rate and costly initial solution make it inefficient. To overcome these limitations, this paper proposes a modified RRT* algorithm, F-RRT*, which generates a better initial solution and converges faster than RRT*. F-RRT* optimizes the cost of paths by creating a parent node for the random point, instead of selecting it among the existing vertices. The creation process can be divided into two steps, the FindReachest, and CreatNode procedures, which require few calculations, and the triangle inequality is used repeatedly throughout the process, thus, resulting in paths with higher performance than those of RRT*. Since the algorithm proposed in this paper is a tree extending algorithm, its performance can be further enhanced when combined with other sampling strategies. The advantages of the proposed algorithm in the initial solution and fast convergence rate are demonstrated by comparing with RRT*, RRT*-Smart, and Q-RRT* through numerical simulations in this paper. |
|---|---|
| AbstractList | •A tree-extending algorithm for reducing the solution cost is presented.•Generating nodes essential to the optimal path with smaller samples.•Searching for ancestors of the nearest vertex instead of nodes around the random point.•Connecting the random point to the furthest vertex of the tree it can reach.
During the last decades, sampling-based algorithms have been used to solve the problem of motion planning. RRT*, as an optimal variant of RRT, provides asymptotic optimality. However, the slow convergence rate and costly initial solution make it inefficient. To overcome these limitations, this paper proposes a modified RRT* algorithm, F-RRT*, which generates a better initial solution and converges faster than RRT*. F-RRT* optimizes the cost of paths by creating a parent node for the random point, instead of selecting it among the existing vertices. The creation process can be divided into two steps, the FindReachest, and CreatNode procedures, which require few calculations, and the triangle inequality is used repeatedly throughout the process, thus, resulting in paths with higher performance than those of RRT*. Since the algorithm proposed in this paper is a tree extending algorithm, its performance can be further enhanced when combined with other sampling strategies. The advantages of the proposed algorithm in the initial solution and fast convergence rate are demonstrated by comparing with RRT*, RRT*-Smart, and Q-RRT* through numerical simulations in this paper. During the last decades, sampling-based algorithms have been used to solve the problem of motion planning. RRT*, as an optimal variant of RRT, provides asymptotic optimality. However, the slow convergence rate and costly initial solution make it inefficient. To overcome these limitations, this paper proposes a modified RRT* algorithm, F-RRT*, which generates a better initial solution and converges faster than RRT*. F-RRT* optimizes the cost of paths by creating a parent node for the random point, instead of selecting it among the existing vertices. The creation process can be divided into two steps, the FindReachest, and CreatNode procedures, which require few calculations, and the triangle inequality is used repeatedly throughout the process, thus, resulting in paths with higher performance than those of RRT*. Since the algorithm proposed in this paper is a tree extending algorithm, its performance can be further enhanced when combined with other sampling strategies. The advantages of the proposed algorithm in the initial solution and fast convergence rate are demonstrated by comparing with RRT*, RRT*-Smart, and Q-RRT* through numerical simulations in this paper. |
| ArticleNumber | 115457 |
| Author | Wan, Fangyi Qing, Xinlin Hua, Yi Zhu, Shenrui Liao, Bin Ma, Ruirui |
| Author_xml | – sequence: 1 givenname: Bin surname: Liao fullname: Liao, Bin email: liaobin@mail.nwpu.edu.cn organization: School of Aeronautics, Northwestern Polytechnical University, Xi’an 710072, China – sequence: 2 givenname: Fangyi surname: Wan fullname: Wan, Fangyi email: fwan@nwpu.edu.cn organization: School of Aeronautics, Northwestern Polytechnical University, Xi’an 710072, China – sequence: 3 givenname: Yi surname: Hua fullname: Hua, Yi email: yihua0826@163.com organization: School of Aeronautics, Northwestern Polytechnical University, Xi’an 710072, China – sequence: 4 givenname: Ruirui surname: Ma fullname: Ma, Ruirui email: maruirui@mail.nwpu.edu.cn organization: School of Aeronautics, Northwestern Polytechnical University, Xi’an 710072, China – sequence: 5 givenname: Shenrui surname: Zhu fullname: Zhu, Shenrui email: zsravarhm@163.com organization: School of Aeronautics, Northwestern Polytechnical University, Xi’an 710072, China – sequence: 6 givenname: Xinlin surname: Qing fullname: Qing, Xinlin email: xinlinqing@xmu.edu.cn organization: School of Aeronautics, Northwestern Polytechnical University, Xi’an 710072, China |
| BookMark | eNp9kE9LwzAYh4NMcJt-AU8Bz61JmjapeBnDqTAQxrwaYppuKV0yk2zDb29LBcHDLu97-T3vn2cCRtZZDcAtRilGuLhvUh1OMiWI4BTjnObsAowxZ1lSsDIbgTEqc5ZQzOgVmITQIIQZQmwMPhbJarV-gDMLzW7v3VFXcC_jFu5baa2xGyjbjfMmbnfw1NW_lLEmGtnC4NpDNM5CaSuonD1qv9FWaehl1NfgspZt0De_fQreF0_r-UuyfHt-nc-WiSI5j4mUpaR1UaOSFBWqGdL0E2PJCy5zppDiJdZZXmtOM0RVXilECa-yguVEEUx5NgV3w9zuuK-DDlE07uBtt1J0CwjBJaWkS5EhpbwLweta7L3ZSf8tMBK9R9GI3qPoPYrBYwfxf5AyUfYfRy9Nex59HFDdvX402ougTO-mMl6rKCpnzuE_-tuP-Q |
| CitedBy_id | crossref_primary_10_1109_ACCESS_2025_3566306 crossref_primary_10_1016_j_eswa_2025_129118 crossref_primary_10_3390_electronics13204047 crossref_primary_10_3390_app15031165 crossref_primary_10_1109_ACCESS_2025_3579863 crossref_primary_10_3390_s25072189 crossref_primary_10_1080_01691864_2023_2174817 crossref_primary_10_1016_j_oceaneng_2025_121599 crossref_primary_10_1016_j_asoc_2023_110156 crossref_primary_10_1007_s11370_025_00599_w crossref_primary_10_1007_s40747_023_01111_6 crossref_primary_10_3390_drones7050331 crossref_primary_10_1016_j_rineng_2025_106710 crossref_primary_10_1038_s41598_025_13915_2 crossref_primary_10_1038_s41598_025_00694_z crossref_primary_10_1016_j_eswa_2024_123571 crossref_primary_10_1007_s00034_023_02410_6 crossref_primary_10_1002_rob_70000 crossref_primary_10_1177_09544054241302663 crossref_primary_10_1371_journal_pone_0324253 crossref_primary_10_1109_LRA_2025_3540627 crossref_primary_10_1007_s44443_025_00186_0 crossref_primary_10_1177_09596518241291182 crossref_primary_10_3233_AIS_220292 crossref_primary_10_1016_j_heliyon_2024_e26403 crossref_primary_10_1134_S0025654425601417 crossref_primary_10_3390_jmse11040702 crossref_primary_10_1007_s11804_025_00623_6 crossref_primary_10_3390_app13179666 crossref_primary_10_1109_JSEN_2024_3498104 crossref_primary_10_1016_j_jocs_2023_101944 crossref_primary_10_1007_s13369_021_06452_3 crossref_primary_10_1007_s40430_024_05301_2 crossref_primary_10_1016_j_compag_2024_109567 crossref_primary_10_1016_j_jksuci_2024_102146 crossref_primary_10_1016_j_jocs_2025_102718 crossref_primary_10_1007_s11370_025_00618_w crossref_primary_10_3390_drones8120760 crossref_primary_10_1016_j_knosys_2025_114255 crossref_primary_10_3390_wevj15010029 crossref_primary_10_1017_S026357472200087X crossref_primary_10_1016_j_oceaneng_2023_114595 crossref_primary_10_1016_j_eswa_2022_119137 crossref_primary_10_3390_electronics12214455 crossref_primary_10_3390_s24237596 crossref_primary_10_1007_s41315_025_00486_8 crossref_primary_10_3390_jmse10101460 crossref_primary_10_1016_j_eswa_2023_120403 crossref_primary_10_1108_RIA_12_2024_0285 crossref_primary_10_1016_j_oceaneng_2025_122261 crossref_primary_10_1007_s40430_023_04249_z crossref_primary_10_1109_ACCESS_2025_3600283 crossref_primary_10_1007_s40747_024_01576_z crossref_primary_10_1016_j_engappai_2022_105182 crossref_primary_10_3390_electronics12224576 crossref_primary_10_3390_s24247950 crossref_primary_10_1016_j_engappai_2025_110601 crossref_primary_10_1016_j_eswa_2024_124121 crossref_primary_10_1108_ECAM_11_2023_1119 crossref_primary_10_1016_j_engappai_2023_106875 crossref_primary_10_1002_dac_5423 crossref_primary_10_1016_j_eswa_2024_125206 crossref_primary_10_1002_cpe_8245 crossref_primary_10_1016_j_eswa_2025_128219 crossref_primary_10_1016_j_ast_2023_108218 crossref_primary_10_1080_21680566_2024_2447609 crossref_primary_10_1109_ACCESS_2024_3392926 crossref_primary_10_3390_drones7030170 crossref_primary_10_1007_s11370_024_00541_6 crossref_primary_10_1016_j_jocs_2024_102239 crossref_primary_10_1007_s12555_024_1136_1 crossref_primary_10_1016_j_engappai_2024_108362 crossref_primary_10_1007_s10489_024_06124_3 crossref_primary_10_3390_electronics13214233 crossref_primary_10_1007_s12555_023_0383_x crossref_primary_10_1016_j_engappai_2024_108246 crossref_primary_10_1016_j_geits_2022_100026 crossref_primary_10_1038_s41598_025_09992_y crossref_primary_10_1007_s11768_023_00139_w crossref_primary_10_1016_j_heliyon_2024_e32451 crossref_primary_10_3390_app132011290 crossref_primary_10_1016_j_oceaneng_2024_119906 |
| Cites_doi | 10.1109/21.148404 10.1177/027836402320556458 10.1016/j.eswa.2019.01.032 10.1016/j.artint.2007.11.009 10.1016/j.eswa.2020.113425 10.1016/j.cad.2009.12.007 10.1109/TITS.2015.2498841 10.1109/TSSC.1968.300136 10.1016/j.artint.2003.12.001 10.1007/s10514-015-9518-0 10.1109/70.127236 10.1177/0278364911406761 |
| ContentType | Journal Article |
| Copyright | 2021 Elsevier Ltd Copyright Elsevier BV Dec 1, 2021 |
| Copyright_xml | – notice: 2021 Elsevier Ltd – notice: Copyright Elsevier BV Dec 1, 2021 |
| DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
| DOI | 10.1016/j.eswa.2021.115457 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Computer and Information Systems Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1873-6793 |
| ExternalDocumentID | 10_1016_j_eswa_2021_115457 S0957417421008708 |
| GroupedDBID | --K --M .DC .~1 0R~ 13V 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN 9JO AAAKF AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARIN AAXUO AAYFN ABBOA ABFNM ABMAC ABMVD ABUCO ABYKQ ACDAQ ACGFS ACHRH ACNTT ACRLP ACZNC ADBBV ADEZE ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGJBL AGUBO AGUMN AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJOXV ALEQD ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD APLSM AXJTR BJAXD BKOJK BLXMC BNSAS CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HAMUX IHE J1W JJJVA KOM LG9 LY1 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 ROL RPZ SDF SDG SDP SDS SES SPC SPCBC SSB SSD SSL SST SSV SSZ T5K TN5 ~G- 29G 9DU AAAKG AAQXK AATTM AAXKI AAYWO AAYXX ABJNI ABKBG ABUFD ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADJOM ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EJD FEDTE FGOYB G-2 HLZ HVGLF HZ~ R2- SBC SET SEW WUQ XPP ZMT ~HD 7SC 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c258t-aa9a4f6f0926d0f70e4b11a868a57c0c891e35fe84304c5dc0428d36752c21483 |
| ISICitedReferencesCount | 114 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000696952300011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0957-4174 |
| IngestDate | Sun Nov 30 04:19:20 EST 2025 Sat Nov 29 07:06:01 EST 2025 Tue Nov 18 19:37:12 EST 2025 Fri Feb 23 02:42:51 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Path planning Rapidly-exploring random tree (RRT) Optimal path planning Sampling-based algorithms |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c258t-aa9a4f6f0926d0f70e4b11a868a57c0c891e35fe84304c5dc0428d36752c21483 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 2582219442 |
| PQPubID | 2045477 |
| ParticipantIDs | proquest_journals_2582219442 crossref_primary_10_1016_j_eswa_2021_115457 crossref_citationtrail_10_1016_j_eswa_2021_115457 elsevier_sciencedirect_doi_10_1016_j_eswa_2021_115457 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-12-01 2021-12-00 20211201 |
| PublicationDateYYYYMMDD | 2021-12-01 |
| PublicationDate_xml | – month: 12 year: 2021 text: 2021-12-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | Expert systems with applications |
| PublicationYear | 2021 |
| Publisher | Elsevier Ltd Elsevier BV |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
| References | Hwang, Ahuja (b0035) 1992; 8 Kanehara, Kagami, Kuffner, Thompson, Mizoguhi (b0055) 2007 Karaman, Frazzoli (b0060) 2011; 30 Likhachev, Ferguson, Gordon, Stentz, Thrun (b0095) 2008; 172 Gammell, Srinivasa, Barfoot (b0020) 2014 LaValle, S.M., & Kuffner, J.J. (2001). Rapidly-exploring random trees: Progress and prospects. Algorithmic and computational robotics: new directions, (pp. 293–308). Akgun, Stilman (b0005) 2011 Ferguson, Stentz (b0015) 2006 Koenig, Likhachev, Furcy (b0075) 2004; 155 Khatib (b0070) 1986 Qureshi, Ayaz (b0110) 2016; 40 Qi, Yang, Sun (b0105) 2020 Wang, Chi, Li, Wang, Meng (b0120) 2020 Islam, Nasir, Malik, Ayaz, Hasan (b0040) 2012 LaValle (b0080) 1998 Maekawa, Noda, Tamura, Ozaki, Machida (b0100) 2010; 42 Sánchez, Latombe (b0115) 2002; 21 Jeong, Lee, Kim (b0045) 2015 González, Pérez, Milanés, Nashashibi (b0025) 2015; 17 Hart, Nilsson, Raphael (b0030) 1968; 4 Li, Wei, Gao, Wang, Fan (b0090) 2020 Karaman, Walter, Perez, Frazzoli, Teller (b0065) 2011 Jeong, Lee, Kim (b0050) 2019; 123 Alexopoulos, Griffin (b0010) 1992; 22 Qureshi (10.1016/j.eswa.2021.115457_b0110) 2016; 40 Akgun (10.1016/j.eswa.2021.115457_b0005) 2011 Kanehara (10.1016/j.eswa.2021.115457_b0055) 2007 Maekawa (10.1016/j.eswa.2021.115457_b0100) 2010; 42 Islam (10.1016/j.eswa.2021.115457_b0040) 2012 Gammell (10.1016/j.eswa.2021.115457_b0020) 2014 10.1016/j.eswa.2021.115457_b0085 Karaman (10.1016/j.eswa.2021.115457_b0065) 2011 Koenig (10.1016/j.eswa.2021.115457_b0075) 2004; 155 Likhachev (10.1016/j.eswa.2021.115457_b0095) 2008; 172 Ferguson (10.1016/j.eswa.2021.115457_b0015) 2006 Karaman (10.1016/j.eswa.2021.115457_b0060) 2011; 30 Qi (10.1016/j.eswa.2021.115457_b0105) 2020 Hwang (10.1016/j.eswa.2021.115457_b0035) 1992; 8 Jeong (10.1016/j.eswa.2021.115457_b0045) 2015 González (10.1016/j.eswa.2021.115457_b0025) 2015; 17 Hart (10.1016/j.eswa.2021.115457_b0030) 1968; 4 LaValle (10.1016/j.eswa.2021.115457_b0080) 1998 Wang (10.1016/j.eswa.2021.115457_b0120) 2020 Alexopoulos (10.1016/j.eswa.2021.115457_b0010) 1992; 22 Li (10.1016/j.eswa.2021.115457_b0090) 2020 Sánchez (10.1016/j.eswa.2021.115457_b0115) 2002; 21 Jeong (10.1016/j.eswa.2021.115457_b0050) 2019; 123 Khatib (10.1016/j.eswa.2021.115457_b0070) 1986 |
| References_xml | – volume: 4 start-page: 100 year: 1968 end-page: 107 ident: b0030 article-title: A formal basis for the heuristic determination of minimum cost paths publication-title: IEEE Transactions on Systems Science and Cybernetics – volume: 30 start-page: 846 year: 2011 end-page: 894 ident: b0060 article-title: Sampling-based algorithms for optimal motion planning publication-title: The International Journal of Robotics Research – start-page: 113425 year: 2020 ident: b0090 article-title: Pq-rrt*: An improved path planning algorithm for mobile robots publication-title: Expert Systems with Applications – start-page: 2997 year: 2014 end-page: 3004 ident: b0020 article-title: Informed rrt*: Optimal sampling-based path planning focused via direct sampling of an admissible ellipsoidal heuristic publication-title: 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems – volume: 42 start-page: 350 year: 2010 end-page: 359 ident: b0100 article-title: Curvature continuous path generation for autonomous vehicle using b-spline curves publication-title: Computer-Aided Design – volume: 22 start-page: 318 year: 1992 end-page: 322 ident: b0010 article-title: Path planning for a mobile robot publication-title: IEEE Transactions on Systems, Man, and Cybernetics – start-page: 1651 year: 2012 end-page: 1656 ident: b0040 article-title: Rrt*-smart: Rapid convergence implementation of rrt* towards optimal solution publication-title: 2012 IEEE International Conference on Mechatronics and Automation – volume: 8 start-page: 23 year: 1992 end-page: 32 ident: b0035 article-title: A potential field approach to path planning publication-title: IEEE Transactions on Robotics and Automation – volume: 155 start-page: 93 year: 2004 end-page: 146 ident: b0075 article-title: Lifelong planning a* publication-title: Artificial Intelligence – year: 2020 ident: b0120 article-title: Neural rrt*: Learning-based optimal path planning publication-title: IEEE Transactions on Automation Science and Engineering – start-page: 67 year: 2015 end-page: 76 ident: b0045 article-title: Rrt*-quick: A motion planning algorithm with faster convergence rate publication-title: Robot Intelligence Technology and Applications 3 – year: 1998 ident: b0080 article-title: Rapidly-exploring random trees: A new tool for path planning – start-page: 396 year: 1986 end-page: 404 ident: b0070 article-title: Real-time obstacle avoidance for manipulators and mobile robots publication-title: Autonomous Robot Vehicles – start-page: 2640 year: 2011 end-page: 2645 ident: b0005 article-title: Sampling heuristics for optimal motion planning in high dimensions publication-title: 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems – volume: 172 start-page: 1613 year: 2008 end-page: 1643 ident: b0095 article-title: Anytime search in dynamic graphs publication-title: Artificial Intelligence – volume: 40 start-page: 1079 year: 2016 end-page: 1093 ident: b0110 article-title: Potential functions based sampling heuristic for optimal path planning publication-title: Autonomous Robots – start-page: 1478 year: 2011 end-page: 1483 ident: b0065 article-title: Anytime motion planning using the rrt publication-title: 2011 IEEE International Conference on Robotics and Automation – start-page: 5369 year: 2006 end-page: 5375 ident: b0015 article-title: Anytime rrts publication-title: 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems – volume: 17 start-page: 1135 year: 2015 end-page: 1145 ident: b0025 article-title: A review of motion planning techniques for automated vehicles publication-title: IEEE Transactions on Intelligent Transportation Systems – volume: 123 start-page: 82 year: 2019 end-page: 90 ident: b0050 article-title: Quick-rrt*: Triangular inequality-based implementation of rrt* with improved initial solution and convergence rate publication-title: Expert Systems with Applications – reference: LaValle, S.M., & Kuffner, J.J. (2001). Rapidly-exploring random trees: Progress and prospects. Algorithmic and computational robotics: new directions, (pp. 293–308). – year: 2020 ident: b0105 article-title: Mod-rrt*: A sampling-based algorithm for robot path planning in dynamic environment publication-title: IEEE Transactions on Industrial Electronics. – volume: 21 start-page: 5 year: 2002 end-page: 26 ident: b0115 article-title: On delaying collision checking in prm planning: Application to multi-robot coordination publication-title: The International Journal of Robotics Research – start-page: 991 year: 2007 end-page: 996 ident: b0055 article-title: Path shortening and smoothing of grid-based path planning with consideration of obstacles publication-title: 2007 IEEE International Conference on Systems, Man and Cybernetics – volume: 22 start-page: 318 year: 1992 ident: 10.1016/j.eswa.2021.115457_b0010 article-title: Path planning for a mobile robot publication-title: IEEE Transactions on Systems, Man, and Cybernetics doi: 10.1109/21.148404 – volume: 21 start-page: 5 year: 2002 ident: 10.1016/j.eswa.2021.115457_b0115 article-title: On delaying collision checking in prm planning: Application to multi-robot coordination publication-title: The International Journal of Robotics Research doi: 10.1177/027836402320556458 – volume: 123 start-page: 82 year: 2019 ident: 10.1016/j.eswa.2021.115457_b0050 article-title: Quick-rrt*: Triangular inequality-based implementation of rrt* with improved initial solution and convergence rate publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2019.01.032 – start-page: 1651 year: 2012 ident: 10.1016/j.eswa.2021.115457_b0040 article-title: Rrt*-smart: Rapid convergence implementation of rrt* towards optimal solution – volume: 172 start-page: 1613 year: 2008 ident: 10.1016/j.eswa.2021.115457_b0095 article-title: Anytime search in dynamic graphs publication-title: Artificial Intelligence doi: 10.1016/j.artint.2007.11.009 – start-page: 113425 year: 2020 ident: 10.1016/j.eswa.2021.115457_b0090 article-title: Pq-rrt*: An improved path planning algorithm for mobile robots publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2020.113425 – volume: 42 start-page: 350 year: 2010 ident: 10.1016/j.eswa.2021.115457_b0100 article-title: Curvature continuous path generation for autonomous vehicle using b-spline curves publication-title: Computer-Aided Design doi: 10.1016/j.cad.2009.12.007 – start-page: 67 year: 2015 ident: 10.1016/j.eswa.2021.115457_b0045 article-title: Rrt*-quick: A motion planning algorithm with faster convergence rate – volume: 17 start-page: 1135 year: 2015 ident: 10.1016/j.eswa.2021.115457_b0025 article-title: A review of motion planning techniques for automated vehicles publication-title: IEEE Transactions on Intelligent Transportation Systems doi: 10.1109/TITS.2015.2498841 – volume: 4 start-page: 100 year: 1968 ident: 10.1016/j.eswa.2021.115457_b0030 article-title: A formal basis for the heuristic determination of minimum cost paths publication-title: IEEE Transactions on Systems Science and Cybernetics doi: 10.1109/TSSC.1968.300136 – start-page: 991 year: 2007 ident: 10.1016/j.eswa.2021.115457_b0055 article-title: Path shortening and smoothing of grid-based path planning with consideration of obstacles – start-page: 1478 year: 2011 ident: 10.1016/j.eswa.2021.115457_b0065 article-title: Anytime motion planning using the rrt – volume: 155 start-page: 93 year: 2004 ident: 10.1016/j.eswa.2021.115457_b0075 article-title: Lifelong planning a* publication-title: Artificial Intelligence doi: 10.1016/j.artint.2003.12.001 – year: 2020 ident: 10.1016/j.eswa.2021.115457_b0105 article-title: Mod-rrt*: A sampling-based algorithm for robot path planning in dynamic environment publication-title: IEEE Transactions on Industrial Electronics. – volume: 40 start-page: 1079 year: 2016 ident: 10.1016/j.eswa.2021.115457_b0110 article-title: Potential functions based sampling heuristic for optimal path planning publication-title: Autonomous Robots doi: 10.1007/s10514-015-9518-0 – volume: 8 start-page: 23 year: 1992 ident: 10.1016/j.eswa.2021.115457_b0035 article-title: A potential field approach to path planning publication-title: IEEE Transactions on Robotics and Automation doi: 10.1109/70.127236 – start-page: 396 year: 1986 ident: 10.1016/j.eswa.2021.115457_b0070 article-title: Real-time obstacle avoidance for manipulators and mobile robots – start-page: 2640 year: 2011 ident: 10.1016/j.eswa.2021.115457_b0005 article-title: Sampling heuristics for optimal motion planning in high dimensions – ident: 10.1016/j.eswa.2021.115457_b0085 – start-page: 2997 year: 2014 ident: 10.1016/j.eswa.2021.115457_b0020 article-title: Informed rrt*: Optimal sampling-based path planning focused via direct sampling of an admissible ellipsoidal heuristic – volume: 30 start-page: 846 year: 2011 ident: 10.1016/j.eswa.2021.115457_b0060 article-title: Sampling-based algorithms for optimal motion planning publication-title: The International Journal of Robotics Research doi: 10.1177/0278364911406761 – start-page: 5369 year: 2006 ident: 10.1016/j.eswa.2021.115457_b0015 article-title: Anytime rrts – year: 1998 ident: 10.1016/j.eswa.2021.115457_b0080 – year: 2020 ident: 10.1016/j.eswa.2021.115457_b0120 article-title: Neural rrt*: Learning-based optimal path planning |
| SSID | ssj0017007 |
| Score | 2.6327016 |
| Snippet | •A tree-extending algorithm for reducing the solution cost is presented.•Generating nodes essential to the optimal path with smaller samples.•Searching for... During the last decades, sampling-based algorithms have been used to solve the problem of motion planning. RRT*, as an optimal variant of RRT, provides... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 115457 |
| SubjectTerms | Algorithms Apexes Convergence Motion planning Optimal path planning Optimization Path planning Rapidly-exploring random tree (RRT) Sampling Sampling-based algorithms |
| Title | F-RRT: An improved path planning algorithm with improved initial solution and convergence rate |
| URI | https://dx.doi.org/10.1016/j.eswa.2021.115457 https://www.proquest.com/docview/2582219442 |
| Volume | 184 |
| WOSCitedRecordID | wos000696952300011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1873-6793 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017007 issn: 0957-4174 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwELZQxwMv_EaMDeQH3qpUiePEzt4KWgVITGgUUV6wHNsZmUY2tekY_z2-2E5KBRMg8RJFlhNHd5-d8_nuO4SeS010yoG5VRYyoiXhkcxUGqWVzEysCsmI7opNsKMjvlgU7_xRzKorJ8Cahl9dFRf_VdW2zSobUmf_Qt39S22DvbdKt1erdnv9I8XPouPjuff31Z3LwNqUUHgYKkZ3BYrG8uzkfFm3X746N2zfq4ZIIkgg8R_ok96aS5eiacbAK_GTLx-IkltPBx0S5TaOxPtwn1p2LtkXdY_Fj87zOpPNyfd6AFdny37qG94623ZdL9f1poOCJFvBHn3mzBCm5NyPLKKJq9AzMW7x5SyNcuYqJg6rM_3lSu-cDqcTs_oG9FEkmQCxkCO73mLQfg-DwVgEmIwYpIbvEJYVfIR2pq8PF2_6YycWu_z68HE-y8oFBG6P9DtLZuuf3hkq87vott9h4KlDxj10wzT30Z1QvQP7xfwB-twB5QBPGxwAgAEmOMAE9zDBoNihl4cJDjDBFiZ4AyYYYPIQfZgdzl--iny1jUiRjLeRtJOVVnkVFyTXccViQ8skkTznMmMqVrxITJpVhtM0pirTCnbbOrUbTqKI3VSnj9CoOW_MY4R1kZWJlroixFCuq1KVcZWr0lhr05DS7KIkSE4oT0UPFVHORIg5PBUgbQHSFk7au2jcP3PhiFiu7Z0FhQhvSjoTUVj8XPvcftCe8HN6Jax4iP2xU0qe_ONr99CtYWbso1G7XJun6Ka6bOvV8plH4Q-EQ6Qp |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=F-RRT%3A+An+improved+path+planning+algorithm+with+improved+initial+solution+and+convergence+rate&rft.jtitle=Expert+systems+with+applications&rft.au=Liao%2C+Bin&rft.au=Wan%2C+Fangyi&rft.au=Hua%2C+Yi&rft.au=Ma%2C+Ruirui&rft.date=2021-12-01&rft.pub=Elsevier+Ltd&rft.issn=0957-4174&rft.eissn=1873-6793&rft.volume=184&rft_id=info:doi/10.1016%2Fj.eswa.2021.115457&rft.externalDocID=S0957417421008708 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon |