F-RRT: An improved path planning algorithm with improved initial solution and convergence rate

•A tree-extending algorithm for reducing the solution cost is presented.•Generating nodes essential to the optimal path with smaller samples.•Searching for ancestors of the nearest vertex instead of nodes around the random point.•Connecting the random point to the furthest vertex of the tree it can...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Expert systems with applications Jg. 184; S. 115457
Hauptverfasser: Liao, Bin, Wan, Fangyi, Hua, Yi, Ma, Ruirui, Zhu, Shenrui, Qing, Xinlin
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York Elsevier Ltd 01.12.2021
Elsevier BV
Schlagworte:
ISSN:0957-4174, 1873-6793
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract •A tree-extending algorithm for reducing the solution cost is presented.•Generating nodes essential to the optimal path with smaller samples.•Searching for ancestors of the nearest vertex instead of nodes around the random point.•Connecting the random point to the furthest vertex of the tree it can reach. During the last decades, sampling-based algorithms have been used to solve the problem of motion planning. RRT*, as an optimal variant of RRT, provides asymptotic optimality. However, the slow convergence rate and costly initial solution make it inefficient. To overcome these limitations, this paper proposes a modified RRT* algorithm, F-RRT*, which generates a better initial solution and converges faster than RRT*. F-RRT* optimizes the cost of paths by creating a parent node for the random point, instead of selecting it among the existing vertices. The creation process can be divided into two steps, the FindReachest, and CreatNode procedures, which require few calculations, and the triangle inequality is used repeatedly throughout the process, thus, resulting in paths with higher performance than those of RRT*. Since the algorithm proposed in this paper is a tree extending algorithm, its performance can be further enhanced when combined with other sampling strategies. The advantages of the proposed algorithm in the initial solution and fast convergence rate are demonstrated by comparing with RRT*, RRT*-Smart, and Q-RRT* through numerical simulations in this paper.
AbstractList •A tree-extending algorithm for reducing the solution cost is presented.•Generating nodes essential to the optimal path with smaller samples.•Searching for ancestors of the nearest vertex instead of nodes around the random point.•Connecting the random point to the furthest vertex of the tree it can reach. During the last decades, sampling-based algorithms have been used to solve the problem of motion planning. RRT*, as an optimal variant of RRT, provides asymptotic optimality. However, the slow convergence rate and costly initial solution make it inefficient. To overcome these limitations, this paper proposes a modified RRT* algorithm, F-RRT*, which generates a better initial solution and converges faster than RRT*. F-RRT* optimizes the cost of paths by creating a parent node for the random point, instead of selecting it among the existing vertices. The creation process can be divided into two steps, the FindReachest, and CreatNode procedures, which require few calculations, and the triangle inequality is used repeatedly throughout the process, thus, resulting in paths with higher performance than those of RRT*. Since the algorithm proposed in this paper is a tree extending algorithm, its performance can be further enhanced when combined with other sampling strategies. The advantages of the proposed algorithm in the initial solution and fast convergence rate are demonstrated by comparing with RRT*, RRT*-Smart, and Q-RRT* through numerical simulations in this paper.
During the last decades, sampling-based algorithms have been used to solve the problem of motion planning. RRT*, as an optimal variant of RRT, provides asymptotic optimality. However, the slow convergence rate and costly initial solution make it inefficient. To overcome these limitations, this paper proposes a modified RRT* algorithm, F-RRT*, which generates a better initial solution and converges faster than RRT*. F-RRT* optimizes the cost of paths by creating a parent node for the random point, instead of selecting it among the existing vertices. The creation process can be divided into two steps, the FindReachest, and CreatNode procedures, which require few calculations, and the triangle inequality is used repeatedly throughout the process, thus, resulting in paths with higher performance than those of RRT*. Since the algorithm proposed in this paper is a tree extending algorithm, its performance can be further enhanced when combined with other sampling strategies. The advantages of the proposed algorithm in the initial solution and fast convergence rate are demonstrated by comparing with RRT*, RRT*-Smart, and Q-RRT* through numerical simulations in this paper.
ArticleNumber 115457
Author Wan, Fangyi
Qing, Xinlin
Hua, Yi
Zhu, Shenrui
Liao, Bin
Ma, Ruirui
Author_xml – sequence: 1
  givenname: Bin
  surname: Liao
  fullname: Liao, Bin
  email: liaobin@mail.nwpu.edu.cn
  organization: School of Aeronautics, Northwestern Polytechnical University, Xi’an 710072, China
– sequence: 2
  givenname: Fangyi
  surname: Wan
  fullname: Wan, Fangyi
  email: fwan@nwpu.edu.cn
  organization: School of Aeronautics, Northwestern Polytechnical University, Xi’an 710072, China
– sequence: 3
  givenname: Yi
  surname: Hua
  fullname: Hua, Yi
  email: yihua0826@163.com
  organization: School of Aeronautics, Northwestern Polytechnical University, Xi’an 710072, China
– sequence: 4
  givenname: Ruirui
  surname: Ma
  fullname: Ma, Ruirui
  email: maruirui@mail.nwpu.edu.cn
  organization: School of Aeronautics, Northwestern Polytechnical University, Xi’an 710072, China
– sequence: 5
  givenname: Shenrui
  surname: Zhu
  fullname: Zhu, Shenrui
  email: zsravarhm@163.com
  organization: School of Aeronautics, Northwestern Polytechnical University, Xi’an 710072, China
– sequence: 6
  givenname: Xinlin
  surname: Qing
  fullname: Qing, Xinlin
  email: xinlinqing@xmu.edu.cn
  organization: School of Aeronautics, Northwestern Polytechnical University, Xi’an 710072, China
BookMark eNp9kE9LwzAYh4NMcJt-AU8Bz61JmjapeBnDqTAQxrwaYppuKV0yk2zDb29LBcHDLu97-T3vn2cCRtZZDcAtRilGuLhvUh1OMiWI4BTjnObsAowxZ1lSsDIbgTEqc5ZQzOgVmITQIIQZQmwMPhbJarV-gDMLzW7v3VFXcC_jFu5baa2xGyjbjfMmbnfw1NW_lLEmGtnC4NpDNM5CaSuonD1qv9FWaehl1NfgspZt0De_fQreF0_r-UuyfHt-nc-WiSI5j4mUpaR1UaOSFBWqGdL0E2PJCy5zppDiJdZZXmtOM0RVXilECa-yguVEEUx5NgV3w9zuuK-DDlE07uBtt1J0CwjBJaWkS5EhpbwLweta7L3ZSf8tMBK9R9GI3qPoPYrBYwfxf5AyUfYfRy9Nex59HFDdvX402ougTO-mMl6rKCpnzuE_-tuP-Q
CitedBy_id crossref_primary_10_1109_ACCESS_2025_3566306
crossref_primary_10_1016_j_eswa_2025_129118
crossref_primary_10_3390_electronics13204047
crossref_primary_10_3390_app15031165
crossref_primary_10_1109_ACCESS_2025_3579863
crossref_primary_10_3390_s25072189
crossref_primary_10_1080_01691864_2023_2174817
crossref_primary_10_1016_j_oceaneng_2025_121599
crossref_primary_10_1016_j_asoc_2023_110156
crossref_primary_10_1007_s11370_025_00599_w
crossref_primary_10_1007_s40747_023_01111_6
crossref_primary_10_3390_drones7050331
crossref_primary_10_1016_j_rineng_2025_106710
crossref_primary_10_1038_s41598_025_13915_2
crossref_primary_10_1038_s41598_025_00694_z
crossref_primary_10_1016_j_eswa_2024_123571
crossref_primary_10_1007_s00034_023_02410_6
crossref_primary_10_1002_rob_70000
crossref_primary_10_1177_09544054241302663
crossref_primary_10_1371_journal_pone_0324253
crossref_primary_10_1109_LRA_2025_3540627
crossref_primary_10_1007_s44443_025_00186_0
crossref_primary_10_1177_09596518241291182
crossref_primary_10_3233_AIS_220292
crossref_primary_10_1016_j_heliyon_2024_e26403
crossref_primary_10_1134_S0025654425601417
crossref_primary_10_3390_jmse11040702
crossref_primary_10_1007_s11804_025_00623_6
crossref_primary_10_3390_app13179666
crossref_primary_10_1109_JSEN_2024_3498104
crossref_primary_10_1016_j_jocs_2023_101944
crossref_primary_10_1007_s13369_021_06452_3
crossref_primary_10_1007_s40430_024_05301_2
crossref_primary_10_1016_j_compag_2024_109567
crossref_primary_10_1016_j_jksuci_2024_102146
crossref_primary_10_1016_j_jocs_2025_102718
crossref_primary_10_1007_s11370_025_00618_w
crossref_primary_10_3390_drones8120760
crossref_primary_10_1016_j_knosys_2025_114255
crossref_primary_10_3390_wevj15010029
crossref_primary_10_1017_S026357472200087X
crossref_primary_10_1016_j_oceaneng_2023_114595
crossref_primary_10_1016_j_eswa_2022_119137
crossref_primary_10_3390_electronics12214455
crossref_primary_10_3390_s24237596
crossref_primary_10_1007_s41315_025_00486_8
crossref_primary_10_3390_jmse10101460
crossref_primary_10_1016_j_eswa_2023_120403
crossref_primary_10_1108_RIA_12_2024_0285
crossref_primary_10_1016_j_oceaneng_2025_122261
crossref_primary_10_1007_s40430_023_04249_z
crossref_primary_10_1109_ACCESS_2025_3600283
crossref_primary_10_1007_s40747_024_01576_z
crossref_primary_10_1016_j_engappai_2022_105182
crossref_primary_10_3390_electronics12224576
crossref_primary_10_3390_s24247950
crossref_primary_10_1016_j_engappai_2025_110601
crossref_primary_10_1016_j_eswa_2024_124121
crossref_primary_10_1108_ECAM_11_2023_1119
crossref_primary_10_1016_j_engappai_2023_106875
crossref_primary_10_1002_dac_5423
crossref_primary_10_1016_j_eswa_2024_125206
crossref_primary_10_1002_cpe_8245
crossref_primary_10_1016_j_eswa_2025_128219
crossref_primary_10_1016_j_ast_2023_108218
crossref_primary_10_1080_21680566_2024_2447609
crossref_primary_10_1109_ACCESS_2024_3392926
crossref_primary_10_3390_drones7030170
crossref_primary_10_1007_s11370_024_00541_6
crossref_primary_10_1016_j_jocs_2024_102239
crossref_primary_10_1007_s12555_024_1136_1
crossref_primary_10_1016_j_engappai_2024_108362
crossref_primary_10_1007_s10489_024_06124_3
crossref_primary_10_3390_electronics13214233
crossref_primary_10_1007_s12555_023_0383_x
crossref_primary_10_1016_j_engappai_2024_108246
crossref_primary_10_1016_j_geits_2022_100026
crossref_primary_10_1038_s41598_025_09992_y
crossref_primary_10_1007_s11768_023_00139_w
crossref_primary_10_1016_j_heliyon_2024_e32451
crossref_primary_10_3390_app132011290
crossref_primary_10_1016_j_oceaneng_2024_119906
Cites_doi 10.1109/21.148404
10.1177/027836402320556458
10.1016/j.eswa.2019.01.032
10.1016/j.artint.2007.11.009
10.1016/j.eswa.2020.113425
10.1016/j.cad.2009.12.007
10.1109/TITS.2015.2498841
10.1109/TSSC.1968.300136
10.1016/j.artint.2003.12.001
10.1007/s10514-015-9518-0
10.1109/70.127236
10.1177/0278364911406761
ContentType Journal Article
Copyright 2021 Elsevier Ltd
Copyright Elsevier BV Dec 1, 2021
Copyright_xml – notice: 2021 Elsevier Ltd
– notice: Copyright Elsevier BV Dec 1, 2021
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/j.eswa.2021.115457
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Computer and Information Systems Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1873-6793
ExternalDocumentID 10_1016_j_eswa_2021_115457
S0957417421008708
GroupedDBID --K
--M
.DC
.~1
0R~
13V
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARIN
AAXUO
AAYFN
ABBOA
ABFNM
ABMAC
ABMVD
ABUCO
ABYKQ
ACDAQ
ACGFS
ACHRH
ACNTT
ACRLP
ACZNC
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGJBL
AGUBO
AGUMN
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
ALEQD
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
AXJTR
BJAXD
BKOJK
BLXMC
BNSAS
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
IHE
J1W
JJJVA
KOM
LG9
LY1
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
ROL
RPZ
SDF
SDG
SDP
SDS
SES
SPC
SPCBC
SSB
SSD
SSL
SST
SSV
SSZ
T5K
TN5
~G-
29G
9DU
AAAKG
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABKBG
ABUFD
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
R2-
SBC
SET
SEW
WUQ
XPP
ZMT
~HD
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c258t-aa9a4f6f0926d0f70e4b11a868a57c0c891e35fe84304c5dc0428d36752c21483
ISICitedReferencesCount 114
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000696952300011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0957-4174
IngestDate Sun Nov 30 04:19:20 EST 2025
Sat Nov 29 07:06:01 EST 2025
Tue Nov 18 19:37:12 EST 2025
Fri Feb 23 02:42:51 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Path planning
Rapidly-exploring random tree (RRT)
Optimal path planning
Sampling-based algorithms
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c258t-aa9a4f6f0926d0f70e4b11a868a57c0c891e35fe84304c5dc0428d36752c21483
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2582219442
PQPubID 2045477
ParticipantIDs proquest_journals_2582219442
crossref_primary_10_1016_j_eswa_2021_115457
crossref_citationtrail_10_1016_j_eswa_2021_115457
elsevier_sciencedirect_doi_10_1016_j_eswa_2021_115457
PublicationCentury 2000
PublicationDate 2021-12-01
2021-12-00
20211201
PublicationDateYYYYMMDD 2021-12-01
PublicationDate_xml – month: 12
  year: 2021
  text: 2021-12-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Expert systems with applications
PublicationYear 2021
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Hwang, Ahuja (b0035) 1992; 8
Kanehara, Kagami, Kuffner, Thompson, Mizoguhi (b0055) 2007
Karaman, Frazzoli (b0060) 2011; 30
Likhachev, Ferguson, Gordon, Stentz, Thrun (b0095) 2008; 172
Gammell, Srinivasa, Barfoot (b0020) 2014
LaValle, S.M., & Kuffner, J.J. (2001). Rapidly-exploring random trees: Progress and prospects. Algorithmic and computational robotics: new directions, (pp. 293–308).
Akgun, Stilman (b0005) 2011
Ferguson, Stentz (b0015) 2006
Koenig, Likhachev, Furcy (b0075) 2004; 155
Khatib (b0070) 1986
Qureshi, Ayaz (b0110) 2016; 40
Qi, Yang, Sun (b0105) 2020
Wang, Chi, Li, Wang, Meng (b0120) 2020
Islam, Nasir, Malik, Ayaz, Hasan (b0040) 2012
LaValle (b0080) 1998
Maekawa, Noda, Tamura, Ozaki, Machida (b0100) 2010; 42
Sánchez, Latombe (b0115) 2002; 21
Jeong, Lee, Kim (b0045) 2015
González, Pérez, Milanés, Nashashibi (b0025) 2015; 17
Hart, Nilsson, Raphael (b0030) 1968; 4
Li, Wei, Gao, Wang, Fan (b0090) 2020
Karaman, Walter, Perez, Frazzoli, Teller (b0065) 2011
Jeong, Lee, Kim (b0050) 2019; 123
Alexopoulos, Griffin (b0010) 1992; 22
Qureshi (10.1016/j.eswa.2021.115457_b0110) 2016; 40
Akgun (10.1016/j.eswa.2021.115457_b0005) 2011
Kanehara (10.1016/j.eswa.2021.115457_b0055) 2007
Maekawa (10.1016/j.eswa.2021.115457_b0100) 2010; 42
Islam (10.1016/j.eswa.2021.115457_b0040) 2012
Gammell (10.1016/j.eswa.2021.115457_b0020) 2014
10.1016/j.eswa.2021.115457_b0085
Karaman (10.1016/j.eswa.2021.115457_b0065) 2011
Koenig (10.1016/j.eswa.2021.115457_b0075) 2004; 155
Likhachev (10.1016/j.eswa.2021.115457_b0095) 2008; 172
Ferguson (10.1016/j.eswa.2021.115457_b0015) 2006
Karaman (10.1016/j.eswa.2021.115457_b0060) 2011; 30
Qi (10.1016/j.eswa.2021.115457_b0105) 2020
Hwang (10.1016/j.eswa.2021.115457_b0035) 1992; 8
Jeong (10.1016/j.eswa.2021.115457_b0045) 2015
González (10.1016/j.eswa.2021.115457_b0025) 2015; 17
Hart (10.1016/j.eswa.2021.115457_b0030) 1968; 4
LaValle (10.1016/j.eswa.2021.115457_b0080) 1998
Wang (10.1016/j.eswa.2021.115457_b0120) 2020
Alexopoulos (10.1016/j.eswa.2021.115457_b0010) 1992; 22
Li (10.1016/j.eswa.2021.115457_b0090) 2020
Sánchez (10.1016/j.eswa.2021.115457_b0115) 2002; 21
Jeong (10.1016/j.eswa.2021.115457_b0050) 2019; 123
Khatib (10.1016/j.eswa.2021.115457_b0070) 1986
References_xml – volume: 4
  start-page: 100
  year: 1968
  end-page: 107
  ident: b0030
  article-title: A formal basis for the heuristic determination of minimum cost paths
  publication-title: IEEE Transactions on Systems Science and Cybernetics
– volume: 30
  start-page: 846
  year: 2011
  end-page: 894
  ident: b0060
  article-title: Sampling-based algorithms for optimal motion planning
  publication-title: The International Journal of Robotics Research
– start-page: 113425
  year: 2020
  ident: b0090
  article-title: Pq-rrt*: An improved path planning algorithm for mobile robots
  publication-title: Expert Systems with Applications
– start-page: 2997
  year: 2014
  end-page: 3004
  ident: b0020
  article-title: Informed rrt*: Optimal sampling-based path planning focused via direct sampling of an admissible ellipsoidal heuristic
  publication-title: 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems
– volume: 42
  start-page: 350
  year: 2010
  end-page: 359
  ident: b0100
  article-title: Curvature continuous path generation for autonomous vehicle using b-spline curves
  publication-title: Computer-Aided Design
– volume: 22
  start-page: 318
  year: 1992
  end-page: 322
  ident: b0010
  article-title: Path planning for a mobile robot
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics
– start-page: 1651
  year: 2012
  end-page: 1656
  ident: b0040
  article-title: Rrt*-smart: Rapid convergence implementation of rrt* towards optimal solution
  publication-title: 2012 IEEE International Conference on Mechatronics and Automation
– volume: 8
  start-page: 23
  year: 1992
  end-page: 32
  ident: b0035
  article-title: A potential field approach to path planning
  publication-title: IEEE Transactions on Robotics and Automation
– volume: 155
  start-page: 93
  year: 2004
  end-page: 146
  ident: b0075
  article-title: Lifelong planning a*
  publication-title: Artificial Intelligence
– year: 2020
  ident: b0120
  article-title: Neural rrt*: Learning-based optimal path planning
  publication-title: IEEE Transactions on Automation Science and Engineering
– start-page: 67
  year: 2015
  end-page: 76
  ident: b0045
  article-title: Rrt*-quick: A motion planning algorithm with faster convergence rate
  publication-title: Robot Intelligence Technology and Applications 3
– year: 1998
  ident: b0080
  article-title: Rapidly-exploring random trees: A new tool for path planning
– start-page: 396
  year: 1986
  end-page: 404
  ident: b0070
  article-title: Real-time obstacle avoidance for manipulators and mobile robots
  publication-title: Autonomous Robot Vehicles
– start-page: 2640
  year: 2011
  end-page: 2645
  ident: b0005
  article-title: Sampling heuristics for optimal motion planning in high dimensions
  publication-title: 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems
– volume: 172
  start-page: 1613
  year: 2008
  end-page: 1643
  ident: b0095
  article-title: Anytime search in dynamic graphs
  publication-title: Artificial Intelligence
– volume: 40
  start-page: 1079
  year: 2016
  end-page: 1093
  ident: b0110
  article-title: Potential functions based sampling heuristic for optimal path planning
  publication-title: Autonomous Robots
– start-page: 1478
  year: 2011
  end-page: 1483
  ident: b0065
  article-title: Anytime motion planning using the rrt
  publication-title: 2011 IEEE International Conference on Robotics and Automation
– start-page: 5369
  year: 2006
  end-page: 5375
  ident: b0015
  article-title: Anytime rrts
  publication-title: 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems
– volume: 17
  start-page: 1135
  year: 2015
  end-page: 1145
  ident: b0025
  article-title: A review of motion planning techniques for automated vehicles
  publication-title: IEEE Transactions on Intelligent Transportation Systems
– volume: 123
  start-page: 82
  year: 2019
  end-page: 90
  ident: b0050
  article-title: Quick-rrt*: Triangular inequality-based implementation of rrt* with improved initial solution and convergence rate
  publication-title: Expert Systems with Applications
– reference: LaValle, S.M., & Kuffner, J.J. (2001). Rapidly-exploring random trees: Progress and prospects. Algorithmic and computational robotics: new directions, (pp. 293–308).
– year: 2020
  ident: b0105
  article-title: Mod-rrt*: A sampling-based algorithm for robot path planning in dynamic environment
  publication-title: IEEE Transactions on Industrial Electronics.
– volume: 21
  start-page: 5
  year: 2002
  end-page: 26
  ident: b0115
  article-title: On delaying collision checking in prm planning: Application to multi-robot coordination
  publication-title: The International Journal of Robotics Research
– start-page: 991
  year: 2007
  end-page: 996
  ident: b0055
  article-title: Path shortening and smoothing of grid-based path planning with consideration of obstacles
  publication-title: 2007 IEEE International Conference on Systems, Man and Cybernetics
– volume: 22
  start-page: 318
  year: 1992
  ident: 10.1016/j.eswa.2021.115457_b0010
  article-title: Path planning for a mobile robot
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics
  doi: 10.1109/21.148404
– volume: 21
  start-page: 5
  year: 2002
  ident: 10.1016/j.eswa.2021.115457_b0115
  article-title: On delaying collision checking in prm planning: Application to multi-robot coordination
  publication-title: The International Journal of Robotics Research
  doi: 10.1177/027836402320556458
– volume: 123
  start-page: 82
  year: 2019
  ident: 10.1016/j.eswa.2021.115457_b0050
  article-title: Quick-rrt*: Triangular inequality-based implementation of rrt* with improved initial solution and convergence rate
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2019.01.032
– start-page: 1651
  year: 2012
  ident: 10.1016/j.eswa.2021.115457_b0040
  article-title: Rrt*-smart: Rapid convergence implementation of rrt* towards optimal solution
– volume: 172
  start-page: 1613
  year: 2008
  ident: 10.1016/j.eswa.2021.115457_b0095
  article-title: Anytime search in dynamic graphs
  publication-title: Artificial Intelligence
  doi: 10.1016/j.artint.2007.11.009
– start-page: 113425
  year: 2020
  ident: 10.1016/j.eswa.2021.115457_b0090
  article-title: Pq-rrt*: An improved path planning algorithm for mobile robots
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2020.113425
– volume: 42
  start-page: 350
  year: 2010
  ident: 10.1016/j.eswa.2021.115457_b0100
  article-title: Curvature continuous path generation for autonomous vehicle using b-spline curves
  publication-title: Computer-Aided Design
  doi: 10.1016/j.cad.2009.12.007
– start-page: 67
  year: 2015
  ident: 10.1016/j.eswa.2021.115457_b0045
  article-title: Rrt*-quick: A motion planning algorithm with faster convergence rate
– volume: 17
  start-page: 1135
  year: 2015
  ident: 10.1016/j.eswa.2021.115457_b0025
  article-title: A review of motion planning techniques for automated vehicles
  publication-title: IEEE Transactions on Intelligent Transportation Systems
  doi: 10.1109/TITS.2015.2498841
– volume: 4
  start-page: 100
  year: 1968
  ident: 10.1016/j.eswa.2021.115457_b0030
  article-title: A formal basis for the heuristic determination of minimum cost paths
  publication-title: IEEE Transactions on Systems Science and Cybernetics
  doi: 10.1109/TSSC.1968.300136
– start-page: 991
  year: 2007
  ident: 10.1016/j.eswa.2021.115457_b0055
  article-title: Path shortening and smoothing of grid-based path planning with consideration of obstacles
– start-page: 1478
  year: 2011
  ident: 10.1016/j.eswa.2021.115457_b0065
  article-title: Anytime motion planning using the rrt
– volume: 155
  start-page: 93
  year: 2004
  ident: 10.1016/j.eswa.2021.115457_b0075
  article-title: Lifelong planning a*
  publication-title: Artificial Intelligence
  doi: 10.1016/j.artint.2003.12.001
– year: 2020
  ident: 10.1016/j.eswa.2021.115457_b0105
  article-title: Mod-rrt*: A sampling-based algorithm for robot path planning in dynamic environment
  publication-title: IEEE Transactions on Industrial Electronics.
– volume: 40
  start-page: 1079
  year: 2016
  ident: 10.1016/j.eswa.2021.115457_b0110
  article-title: Potential functions based sampling heuristic for optimal path planning
  publication-title: Autonomous Robots
  doi: 10.1007/s10514-015-9518-0
– volume: 8
  start-page: 23
  year: 1992
  ident: 10.1016/j.eswa.2021.115457_b0035
  article-title: A potential field approach to path planning
  publication-title: IEEE Transactions on Robotics and Automation
  doi: 10.1109/70.127236
– start-page: 396
  year: 1986
  ident: 10.1016/j.eswa.2021.115457_b0070
  article-title: Real-time obstacle avoidance for manipulators and mobile robots
– start-page: 2640
  year: 2011
  ident: 10.1016/j.eswa.2021.115457_b0005
  article-title: Sampling heuristics for optimal motion planning in high dimensions
– ident: 10.1016/j.eswa.2021.115457_b0085
– start-page: 2997
  year: 2014
  ident: 10.1016/j.eswa.2021.115457_b0020
  article-title: Informed rrt*: Optimal sampling-based path planning focused via direct sampling of an admissible ellipsoidal heuristic
– volume: 30
  start-page: 846
  year: 2011
  ident: 10.1016/j.eswa.2021.115457_b0060
  article-title: Sampling-based algorithms for optimal motion planning
  publication-title: The International Journal of Robotics Research
  doi: 10.1177/0278364911406761
– start-page: 5369
  year: 2006
  ident: 10.1016/j.eswa.2021.115457_b0015
  article-title: Anytime rrts
– year: 1998
  ident: 10.1016/j.eswa.2021.115457_b0080
– year: 2020
  ident: 10.1016/j.eswa.2021.115457_b0120
  article-title: Neural rrt*: Learning-based optimal path planning
SSID ssj0017007
Score 2.6327016
Snippet •A tree-extending algorithm for reducing the solution cost is presented.•Generating nodes essential to the optimal path with smaller samples.•Searching for...
During the last decades, sampling-based algorithms have been used to solve the problem of motion planning. RRT*, as an optimal variant of RRT, provides...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 115457
SubjectTerms Algorithms
Apexes
Convergence
Motion planning
Optimal path planning
Optimization
Path planning
Rapidly-exploring random tree (RRT)
Sampling
Sampling-based algorithms
Title F-RRT: An improved path planning algorithm with improved initial solution and convergence rate
URI https://dx.doi.org/10.1016/j.eswa.2021.115457
https://www.proquest.com/docview/2582219442
Volume 184
WOSCitedRecordID wos000696952300011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-6793
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017007
  issn: 0957-4174
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Pb9MwFLZKx4ELvxFjA_nArcoUJ05i71bQKkAwoalAuRB5jrN5KtnUpmX89zzHdpIVbWIHLlFkOZaV98V-_vK-9xB6nRhxJxdlEMcpC8CllgErmAQsM0UyopjVVn39mB0estmMfx4MVl4Ls55nVcUuL_nFfzU1tIGxjXT2FuZuB4UGuAejwxXMDtd_MvwkODqaOr5PN5QB-JSm8LCpGN0UKBqJ-cn5QtenPy0N2_bSJpLICEjcBJ3orVpbiaYambwSV7h8kyi5dumgvVCu90u8DffRoqFk3-gWi98s8zoR1clv3YGr8WW_tw2frG-70ouV7hMUEekFe3imMQsoscV4ukWX9pZNkxPI5qn-a0W35MLZnlr-MmmiIrLXdb6aPntjW2uDDX0c21luxsjNGLkd4w7airKEsyHaGr8_mH1ofz9lodXZ-5k7tZUNDNycyXUezcbe3jgs04fovjtp4LFFyCM0UNVj9MBX8cBuUX-CfjSA2cfjCnsgYAMX7OGCW7hgY-Cul4ML9nDBABfcgws2cHmKvkwOpm_fBa7qRiCjhNWBEFzQMi1DHqVFWGahoseECJYykWQylIwTFSelYjQOqUwKaU7dRQwHz0hGcLiOn6FhdV6p5wgbykOyTMYCPMGCkmOZEhGGRSHAM-OMbyPi31wuXUp6Uxllnl9vs200ap-5sAlZbuydeIPkzqW0rmIO-LrxuV1vvdx928scXk8EGzyl0YtbTWIH3eu-i100rBcr9RLdletaLxevHPb-AKiqoNw
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=F-RRT%3A+An+improved+path+planning+algorithm+with+improved+initial+solution+and+convergence+rate&rft.jtitle=Expert+systems+with+applications&rft.au=Liao%2C+Bin&rft.au=Wan%2C+Fangyi&rft.au=Hua%2C+Yi&rft.au=Ma%2C+Ruirui&rft.date=2021-12-01&rft.issn=0957-4174&rft.volume=184&rft.spage=115457&rft_id=info:doi/10.1016%2Fj.eswa.2021.115457&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_eswa_2021_115457
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon