Induction of Non-monotonic Logic Programs To Explain Statistical Learning Models
We present a fast and scalable algorithm to induce non-monotonic logic programs from statistical learning models. We reduce the problem of search for best clauses to instances of the High-Utility Itemset Mining (HUIM) problem. In the HUIM problem, feature values and their importance are treated as t...
Uložené v:
| Vydané v: | Electronic proceedings in theoretical computer science Ročník 306; číslo Proc. ICLP 2019; s. 379 - 388 |
|---|---|
| Hlavný autor: | |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Open Publishing Association
19.09.2019
|
| ISSN: | 2075-2180, 2075-2180 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | We present a fast and scalable algorithm to induce non-monotonic logic programs from statistical learning models. We reduce the problem of search for best clauses to instances of the High-Utility Itemset Mining (HUIM) problem. In the HUIM problem, feature values and their importance are treated as transactions and utilities respectively. We make use of TreeExplainer, a fast and scalable implementation of the Explainable AI tool SHAP, to extract locally important features and their weights from ensemble tree models. Our experiments with UCI standard benchmarks suggest a significant improvement in terms of classification evaluation metrics and running time of the training algorithm compared to ALEPH, a state-of-the-art Inductive Logic Programming (ILP) system. |
|---|---|
| AbstractList | We present a fast and scalable algorithm to induce non-monotonic logic programs from statistical learning models. We reduce the problem of search for best clauses to instances of the High-Utility Itemset Mining (HUIM) problem. In the HUIM problem, feature values and their importance are treated as transactions and utilities respectively. We make use of TreeExplainer, a fast and scalable implementation of the Explainable AI tool SHAP, to extract locally important features and their weights from ensemble tree models. Our experiments with UCI standard benchmarks suggest a significant improvement in terms of classification evaluation metrics and running time of the training algorithm compared to ALEPH, a state-of-the-art Inductive Logic Programming (ILP) system. |
| Author | Shakerin, Farhad |
| Author_xml | – sequence: 1 givenname: Farhad surname: Shakerin fullname: Shakerin, Farhad organization: The University of Texas at Dallas |
| BookMark | eNpNkNtKAzEQhoNUsNbe-QD7AG7Nsbu5lFK1sGqh9TrM5lC2bJOSrKBvb2xFnIuZn__iY_iu0cgHbxG6JXjGKeb3y_V2sZkxPJ8JcoHGFFeipKTGo3_5Ck1T2uM8TFIu52O0XnnzoYcu-CK44jX48hB8GILvdNGEXd7rGHYRDqnYhmL5eeyh88VmgKFLQ6ehLxoL0Xd-V7wEY_t0gy4d9MlOf-8EvT8ut4vnsnl7Wi0emlJTUQ-lNJWurTAAtZPcYGmwax2xhBgncxRWSCCMAgegtpKStq7WLXWMQYWhYhO0OnNNgL06xu4A8UsF6NSpCHGnIOYPe6t4ppnWWcmBcZDZAzcOaikx1sAEzqy7M0vHkFK07o9HsPqRq05yVZarBGHfz5pvXQ |
| Cites_doi | 10.1609/aaai.v33i01.33013052 10.1007/978-3-319-57959-7 10.1017/S1471068417000333 10.23919/MIPRO.2018.8400040 10.1145/2939672.2939785 10.14778/2735508.2735510 10.1007/BF03037089 10.1145/2939672.2939778 10.1017/CBO9780511543357 10.2139/ssrn.3063289 10.1007/s10994-011-5259-2 10.1007/BF00117105 10.1016/j.tcs.2005.07.003 10.1145/1055686.1055687 10.1017/CBO9781139342124 |
| ContentType | Journal Article |
| DBID | AAYXX CITATION DOA |
| DOI | 10.4204/EPTCS.306.51 |
| DatabaseName | CrossRef DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 2075-2180 |
| EndPage | 388 |
| ExternalDocumentID | oai_doaj_org_article_4b5edbfe94a34a91804dfa89900ca350 10_4204_EPTCS_306_51 |
| GroupedDBID | 5VS AAYXX ADBBV ALMA_UNASSIGNED_HOLDINGS BCNDV CITATION E3Z GROUPED_DOAJ KQ8 M~E OK1 |
| ID | FETCH-LOGICAL-c258t-9d7c8e5daa8f94d09d0fbf1e11df90fb5e59a132a4aa2e7992bf8cb2f33a70a73 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001050029200022&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2075-2180 |
| IngestDate | Fri Oct 03 12:51:24 EDT 2025 Sat Nov 29 02:05:29 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | false |
| IsScholarly | true |
| Issue | Proc. ICLP 2019 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c258t-9d7c8e5daa8f94d09d0fbf1e11df90fb5e59a132a4aa2e7992bf8cb2f33a70a73 |
| OpenAccessLink | https://doaj.org/article/4b5edbfe94a34a91804dfa89900ca350 |
| PageCount | 10 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_4b5edbfe94a34a91804dfa89900ca350 crossref_primary_10_4204_EPTCS_306_51 |
| PublicationCentury | 2000 |
| PublicationDate | 2019-09-19 |
| PublicationDateYYYYMMDD | 2019-09-19 |
| PublicationDate_xml | – month: 09 year: 2019 text: 2019-09-19 day: 19 |
| PublicationDecade | 2010 |
| PublicationTitle | Electronic proceedings in theoretical computer science |
| PublicationYear | 2019 |
| Publisher | Open Publishing Association |
| Publisher_xml | – name: Open Publishing Association |
| References | xai Voigt (gdpr) 2017 Zeng (quickfoil) 2014; 8 Riguzzi (alephswiprolog) 2016 Gelfond (gelfond-book) 2014 Shakerin (AAAI2018) 2019 Srinivasan (aleph) 2001 Ribeiro (lime) 2016 Gan (huim) 2018; 8 McMillan (mcmillan) 2005; 345 Muggleton (ilp20) 2012; 86 Baral (baral) 2003 Sakama (sakama05) 2005; 6 Wachter (counterfactual) 2017; 31 Chen (xgboost) 2016 Muggleton (ilp) 1991; 8 Shakerin (fold) 2017; 17 Quinlan (foil) 1990; 5 |
| References_xml | – start-page: 3052 volume-title: AAAI year: 2019 ident: AAAI2018 article-title: Induction of Non-Monotonic Logic Programs to Explain Boosted Tree Models Using LIME doi: 10.1609/aaai.v33i01.33013052 – volume-title: The EU General Data Protection Regulation (GDPR): A Practical Guide year: 2017 ident: gdpr doi: 10.1007/978-3-319-57959-7 – volume: 17 start-page: 1010 year: 2017 ident: fold article-title: A new algorithm to automate inductive learning of default theories publication-title: TPLP doi: 10.1017/S1471068417000333 – volume: 8 issue: 2 year: 2018 ident: huim article-title: A survey of incremental high-utility itemset mining publication-title: Wiley Interdiscip. Rev. Data Min. Knowl. Discov. doi: 10.1609/aaai.v33i01.33013052 – volume-title: Explainable Artificial Intelligence (XAI) ident: xai doi: 10.23919/MIPRO.2018.8400040 – start-page: 785 volume-title: Proceedings of the 22Nd ACM SIGKDD year: 2016 ident: xgboost article-title: XGBoost: A Scalable Tree Boosting System doi: 10.1145/2939672.2939785 – volume-title: The Aleph Manual year: 2001 ident: aleph – volume: 8 start-page: 197 issue: 3 year: 2014 ident: quickfoil article-title: QuickFOIL: Scalable Inductive Logic Programming publication-title: Proc. VLDB Endow. doi: 10.14778/2735508.2735510 – volume: 8 start-page: 295 issue: 4 year: 1991 ident: ilp article-title: Inductive Logic Programming publication-title: New Gen. Comput. doi: 10.1007/BF03037089 – start-page: 1135 volume-title: Proceedings of the 22nd ACM SIGKDD 2016 year: 2016 ident: lime article-title: "Why Should I Trust You?": Explaining the Predictions of Any Classifier doi: 10.1145/2939672.2939778 – volume-title: Knowledge representation, reasoning and declarative problem solving year: 2003 ident: baral doi: 10.1017/CBO9780511543357 – volume: 31 year: 2017 ident: counterfactual article-title: Counterfactual explanations without opening the black box: Automated decisions and the GDPR.(2017) publication-title: Harvard Journal of Law & Technology doi: 10.2139/ssrn.3063289 – volume-title: ALEPH in SWI-Prolog year: 2016 ident: alephswiprolog – volume: 86 start-page: 3 issue: 1 year: 2012 ident: ilp20 article-title: ILP Turns 20 publication-title: Mach. Learn. doi: 10.1007/s10994-011-5259-2 – volume: 5 start-page: 239 year: 1990 ident: foil article-title: Learning Logical Definitions from Relations publication-title: Machine Learning doi: 10.1007/BF00117105 – volume: 345 start-page: 101 issue: 1 year: 2005 ident: mcmillan article-title: An Interpolating Theorem Prover publication-title: Theor. Comput. Sci. doi: 10.1016/j.tcs.2005.07.003 – volume: 6 start-page: 203 issue: 2 year: 2005 ident: sakama05 article-title: Induction from answer sets in nonmonotonic logic programs publication-title: ACM Trans. Comput. Log. doi: 10.1145/1055686.1055687 – volume-title: Knowledge Representation, Reasoning, and the Design of Intelligent Agents: The Answer-Set Programming Approach year: 2014 ident: gelfond-book doi: 10.1017/CBO9781139342124 |
| SSID | ssj0000392496 |
| Score | 2.0999787 |
| Snippet | We present a fast and scalable algorithm to induce non-monotonic logic programs from statistical learning models. We reduce the problem of search for best... |
| SourceID | doaj crossref |
| SourceType | Open Website Index Database |
| StartPage | 379 |
| Title | Induction of Non-monotonic Logic Programs To Explain Statistical Learning Models |
| URI | https://doaj.org/article/4b5edbfe94a34a91804dfa89900ca350 |
| Volume | 306 |
| WOSCitedRecordID | wos001050029200022&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2075-2180 dateEnd: 20201231 omitProxy: false ssIdentifier: ssj0000392496 issn: 2075-2180 databaseCode: DOA dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2075-2180 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000392496 issn: 2075-2180 databaseCode: M~E dateStart: 20090101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NS8QwFAwiHrz4LX6Tgx6jSZs0yVFlxYtLwRW8ldd8eJGt7K4e_e2-pFXWkxcvpZTSlnlt3xuYzBByDhEqXnjJQjDApLeaQSs8sy2P0VdJiWFy2IQej83zs62Xor6SJqy3B-6Bu5KtCr6NwUooJVhhuPQRkCVw7qDs2TrXdolM5X9wmXhFTpbDnsiwj_Fe9S4LLq9G9eT28RKH5UslfvWjJdv-3F_utsjGMBjS6_6BtslKmO6Qze_QBTp8g7ukTmEbeTEC7SIdd1OGL1K3SA63NAUnO1r3kqs5nXQ0SeyQ-9M0U2ZLZrzFYKn6QlMO2ut8jzzdjSa392yIRWCuUGbBrNfOBOUBTLTSc-t5bKMIQvhocVcFZQFJJkiAImhrizYa1xaxLEFz0OU-WZ1203BAaMW9dK6N3lVVWtNqFAhteLBYM43TwSG5-AaneevdLxpkDQnEJoPYIIiNEofkJiH3c07yrM4HsJLNUMnmr0oe_cdFjsk6jjRZBSbsCVldzN7DKVlzHwjy7Cy_JLh9-Bx9Aa6qwss |
| linkProvider | Directory of Open Access Journals |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Induction+of+Non-monotonic+Logic+Programs+To+Explain+Statistical+Learning+Models&rft.jtitle=Electronic+proceedings+in+theoretical+computer+science&rft.au=Farhad+Shakerin&rft.date=2019-09-19&rft.pub=Open+Publishing+Association&rft.issn=2075-2180&rft.eissn=2075-2180&rft.volume=306&rft.issue=Proc.+ICLP+2019&rft.spage=379&rft.epage=388&rft_id=info:doi/10.4204%2FEPTCS.306.51&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_4b5edbfe94a34a91804dfa89900ca350 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2075-2180&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2075-2180&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2075-2180&client=summon |