Study on typical process route mining method based on multilevel longest common subsequence information entropy and intelligent clustering model

A large number of manufacturing cases are accumulated by manufacturing enterprises in the process of operation and development, and therefore, one of the most effective ways to improve manufacturing efficiency and support innovation is to reuse these case resources reasonably. In reality, the first...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:International journal of computer integrated manufacturing Ročník 36; číslo 10; s. 1416 - 1430
Hlavní autor: Chunlei, Li
Médium: Journal Article
Jazyk:angličtina
Vydáno: Taylor & Francis 03.10.2023
Témata:
ISSN:0951-192X, 1362-3052
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract A large number of manufacturing cases are accumulated by manufacturing enterprises in the process of operation and development, and therefore, one of the most effective ways to improve manufacturing efficiency and support innovation is to reuse these case resources reasonably. In reality, the first problem to be solved is to determine the case resources with high reuse value potential, so as to realize the high-value reuse of manufacturing case resources. With the purpose of scientific determination of the reuse objects and improvement of the reuse flexibility, a typical process route mining method based on multilevel longest common subsequence (LCS) information entropy and intelligent clustering model is proposed in this paper. First, a similarity calculation method of machining process route based on multilevel (LCS) information entropy is proposed, which can more comprehensively and accurately evaluate the similarity of machining process. On this basis, a process route clustering model based on spectral clustering idea and particle swarm optimization-Kmeans clustering algorithm is proposed, which realizes the clustering of process routes as per the similarity; in the end, the typical and representative process routes in each cluster are extracted, and the typical process routes are mined for reuse. In the end, it shows that the method proposed in this paper can effectively mine high-value process reuse objects and then can further support manufacturing case reuse through three verification cases.
AbstractList A large number of manufacturing cases are accumulated by manufacturing enterprises in the process of operation and development, and therefore, one of the most effective ways to improve manufacturing efficiency and support innovation is to reuse these case resources reasonably. In reality, the first problem to be solved is to determine the case resources with high reuse value potential, so as to realize the high-value reuse of manufacturing case resources. With the purpose of scientific determination of the reuse objects and improvement of the reuse flexibility, a typical process route mining method based on multilevel longest common subsequence (LCS) information entropy and intelligent clustering model is proposed in this paper. First, a similarity calculation method of machining process route based on multilevel (LCS) information entropy is proposed, which can more comprehensively and accurately evaluate the similarity of machining process. On this basis, a process route clustering model based on spectral clustering idea and particle swarm optimization-Kmeans clustering algorithm is proposed, which realizes the clustering of process routes as per the similarity; in the end, the typical and representative process routes in each cluster are extracted, and the typical process routes are mined for reuse. In the end, it shows that the method proposed in this paper can effectively mine high-value process reuse objects and then can further support manufacturing case reuse through three verification cases.
Author Chunlei, Li
Author_xml – sequence: 1
  givenname: Li
  orcidid: 0000-0002-7205-6885
  surname: Chunlei
  fullname: Chunlei, Li
  email: 602lcl-602lcl@163.com
  organization: Shaanxi Key Laboratory of Advanced Manufacturing and Evaluation of Robot Key Components, Baoji University of Arts and Sciences
BookMark eNp9kN1KAzEQhYMo2FYfQcgLbE02zf7cKcU_KHihgndLNpnUSDapSVbZt_CR3bX11quBM-ecYb45OnbeAUIXlCwpqcglqTmldf66zEnOljkty3LFj9CMsiLPGOH5MZpNnmwynaJ5jO-EUMYrMkPfT6lXA_YOp2FnpLB4F7yEGHHwfQLcGWfcFneQ3rzCrYigJnPX22QsfILF1rstxISl77pxE_s2wkcPTgI2TvvQiWRGHVwKfjdg4dSoJ7DWbEcNS9vHBOH3iFdgz9CJFjbC-WEu0MvtzfP6Pts83j2srzeZzHmVslq2RAteSyi1oJxKVkoBrNWFaiu2kkUtWKE0E7RQMBIp6lVJQapcVGUtKWMLxPe9MvgYA-hmF0wnwtBQ0kxYmz-szYS1OWAdc1f73OG5Lx-sapIYrA86CCdNbNj_FT8KnYbr
Cites_doi 10.1016/j.cor.2020.105089
10.1371/journal.pone.0274532
10.1007/s00170-014-6772-9
10.1080/25742558.2018.1483565
10.1109/TIT.2020.2996543
10.1007/s12206-021-0631-z
10.1145/322033.322044
10.1155/2021/4553832
10.1142/S0129626421500079
10.2989/SALALS.2009.27.4.2.1022
10.1080/00207543.2020.1759838
10.1016/j.procs.2017.06.038
10.1080/1573062X.2020.1734633
10.3901/JME.2015.15.148
10.1007/s00170-006-0706-0
10.4018/IJSIR.20220401.oa7
10.1007/s00170-016-9502-7
10.2307/2346830
ContentType Journal Article
Copyright 2023 Informa UK Limited, trading as Taylor & Francis Group 2023
Copyright_xml – notice: 2023 Informa UK Limited, trading as Taylor & Francis Group 2023
DBID AAYXX
CITATION
DOI 10.1080/0951192X.2023.2177745
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1362-3052
EndPage 1430
ExternalDocumentID 10_1080_0951192X_2023_2177745
2177745
Genre Research Article
GroupedDBID .4S
.7F
.DC
.QJ
0BK
0R~
29J
30N
4.4
5GY
5VS
8VB
AAENE
AAGDL
AAHIA
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABFIM
ABHAV
ABJNI
ABLIJ
ABPAQ
ABPEM
ABPPZ
ABTAI
ABXUL
ABXYU
ACGEJ
ACGFS
ACTIO
ADCVX
ADGTB
ADMLS
ADXPE
AEISY
AEMOZ
AENEX
AEOZL
AEPSL
AEYOC
AFKVX
AFRVT
AGDLA
AGMYJ
AHDZW
AHQJS
AIJEM
AIYEW
AJWEG
AKBVH
AKOOK
AKVCP
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
AQTUD
ARCSS
AVBZW
AWYRJ
BLEHA
CCCUG
CE4
CS3
DGEBU
DKSSO
EBO
EBR
EBS
EBU
ECS
EDO
EMK
EPL
E~A
E~B
GTTXZ
H13
HF~
HZ~
H~P
I-F
IPNFZ
J.P
K1G
KYCEM
LJTGL
M4Z
MK~
ML~
NA5
NX~
O9-
P2P
QWB
RIG
RNANH
RNS
ROSJB
RTWRZ
S-T
SNACF
TASJS
TBQAZ
TDBHL
TEN
TFL
TFT
TFW
TH9
TNC
TTHFI
TUROJ
TUS
TWF
UPT
UT5
UU3
ZGOLN
ZL0
~S~
AAYXX
CITATION
ID FETCH-LOGICAL-c258t-9cb0fa59ce7fa151c37cae3bf6db834c69a36df3a16de17769471ecd2a879c133
IEDL.DBID TFW
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000932161400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0951-192X
IngestDate Sat Nov 29 06:18:29 EST 2025
Mon Oct 20 23:45:19 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c258t-9cb0fa59ce7fa151c37cae3bf6db834c69a36df3a16de17769471ecd2a879c133
ORCID 0000-0002-7205-6885
PageCount 15
ParticipantIDs crossref_primary_10_1080_0951192X_2023_2177745
informaworld_taylorfrancis_310_1080_0951192X_2023_2177745
PublicationCentury 2000
PublicationDate 2023-10-03
PublicationDateYYYYMMDD 2023-10-03
PublicationDate_xml – month: 10
  year: 2023
  text: 2023-10-03
  day: 03
PublicationDecade 2020
PublicationTitle International journal of computer integrated manufacturing
PublicationYear 2023
Publisher Taylor & Francis
Publisher_xml – name: Taylor & Francis
References Zhao Y. P. (e_1_3_3_24_1) 2021; 1873
Kambhampati S. (e_1_3_3_9_1) 1990
Peng W. P. (e_1_3_3_18_1) 2019; 627
e_1_3_3_17_1
e_1_3_3_19_1
e_1_3_3_14_1
e_1_3_3_13_1
e_1_3_3_16_1
e_1_3_3_15_1
e_1_3_3_10_1
e_1_3_3_12_1
e_1_3_3_11_1
Zhou D. C. (e_1_3_3_25_1) 2015; 21
Cheng F. (e_1_3_3_5_1) 2020
e_1_3_3_7_1
e_1_3_3_8_1
Zhang H. (e_1_3_3_23_1) 2013; 19
e_1_3_3_26_1
e_1_3_3_3_1
e_1_3_3_21_1
e_1_3_3_2_1
e_1_3_3_20_1
Fan W. (e_1_3_3_6_1) 2018
e_1_3_3_4_1
e_1_3_3_22_1
References_xml – ident: e_1_3_3_4_1
  doi: 10.1016/j.cor.2020.105089
– ident: e_1_3_3_10_1
  doi: 10.1371/journal.pone.0274532
– ident: e_1_3_3_26_1
  doi: 10.1007/s00170-014-6772-9
– ident: e_1_3_3_16_1
  doi: 10.1080/25742558.2018.1483565
– volume: 1873
  start-page: 012074
  volume-title: Journal of Physics Conference Series
  year: 2021
  ident: e_1_3_3_24_1
– volume: 19
  start-page: 490
  issue: 3
  year: 2013
  ident: e_1_3_3_23_1
  article-title: Typical Product Process Route Extraction Method Based on Intelligent Clustering Analysis
  publication-title: Computer Integrated Manufacturing Systems
– ident: e_1_3_3_3_1
  doi: 10.1109/TIT.2020.2996543
– ident: e_1_3_3_11_1
  doi: 10.1007/s12206-021-0631-z
– ident: e_1_3_3_8_1
  doi: 10.1145/322033.322044
– ident: e_1_3_3_20_1
  doi: 10.1155/2021/4553832
– ident: e_1_3_3_19_1
  doi: 10.1142/S0129626421500079
– ident: e_1_3_3_17_1
  doi: 10.2989/SALALS.2009.27.4.2.1022
– ident: e_1_3_3_22_1
  doi: 10.1080/00207543.2020.1759838
– volume: 21
  start-page: 694
  issue: 3
  year: 2015
  ident: e_1_3_3_25_1
  article-title: Typical Process Route Discovery Method Based on Granular Computing and Sequence Alignment
  publication-title: Computer Integrated Manufacturing Systems
– ident: e_1_3_3_2_1
  doi: 10.1016/j.procs.2017.06.038
– ident: e_1_3_3_15_1
  doi: 10.1080/1573062X.2020.1734633
– volume: 627
  start-page: 012004
  volume-title: Proceedings of IOP Conference Series: Materials Science and Engineering
  year: 2019
  ident: e_1_3_3_18_1
– start-page: 170
  volume-title: Proceedings of the eighth National conference on Artificial intelligence
  year: 1990
  ident: e_1_3_3_9_1
– ident: e_1_3_3_13_1
  doi: 10.3901/JME.2015.15.148
– ident: e_1_3_3_14_1
  doi: 10.1007/s00170-006-0706-0
– start-page: 674
  volume-title: Proceedings IEEE International Computers, Signals and Systems Conference
  year: 2018
  ident: e_1_3_3_6_1
– ident: e_1_3_3_21_1
  doi: 10.4018/IJSIR.20220401.oa7
– ident: e_1_3_3_12_1
  doi: 10.1007/s00170-016-9502-7
– start-page: 328
  volume-title: Proceedings of IEEE International Conference on Smart Internet of Things
  year: 2020
  ident: e_1_3_3_5_1
– ident: e_1_3_3_7_1
  doi: 10.2307/2346830
SSID ssj0013580
Score 2.3301542
Snippet A large number of manufacturing cases are accumulated by manufacturing enterprises in the process of operation and development, and therefore, one of the most...
SourceID crossref
informaworld
SourceType Index Database
Publisher
StartPage 1416
SubjectTerms information entropy
Manufacturing case reuse
PSO-Kmeans clustering algorithm
similarity measurement
typical process routes
Title Study on typical process route mining method based on multilevel longest common subsequence information entropy and intelligent clustering model
URI https://www.tandfonline.com/doi/abs/10.1080/0951192X.2023.2177745
Volume 36
WOSCitedRecordID wos000932161400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAWR
  databaseName: Taylor & Francis Online Journals
  customDbUrl:
  eissn: 1362-3052
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0013580
  issn: 0951-192X
  databaseCode: TFW
  dateStart: 19880101
  isFulltext: true
  titleUrlDefault: https://www.tandfonline.com
  providerName: Taylor & Francis
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09T8MwELUQYoCBb0T5kgfWlCZu7HhEiIqpYiiiW-TYjlSpJFGTIvVf8JO5cxxoB1hgjBQ7zvnsO9vP7xFyCyHJMGOjYGgjEwwNhzGXWR5gtqt4lGVc5E5sQozHyXQqnz2asPawSlxD5y1RhJurcXCrrO4QcXeYFUBiMu2j9HcfcmpIYfCaOYR-1DCYjF6_zxFip53mxOSxSHeH56daNqLTBnfpWtQZHfxDew_Jvk856X3rI0dkyxbHZG-NiPCEfCCccEXLgjarCruNVu0FArool42lb05GgrZy0xQjn8GXHRpxjrAjOi8LPKmi0DJwbFrDfORB2tT_H3oAxb3kslpR-Bc6-2IDhWLzJTI2uI-gNs8peRk9Th6eAq_VEOgoTppA6myQq1hqK3IFWYRmQivLspybLGFDzaVi3ORMhdxYsACXEBWtNpFKhNSwUD4j20VZ2HNCo9AII2WmoIahkEJaHenYhFojmWU46JF-10dp1VJypGHHdOpNnaKpU2_qHpHrPZk2bi8kb4VLUvZr2Ys_lL0ku_jooH_simw3i6W9Jjv6vZnVixvnqJ9_curX
linkProvider Taylor & Francis
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELagIAEDb0R5emBNaeLEjkeEqIoonYroFjm2I1UqSdSmSP0X_GR8TgLpAAvMyflxPvvO9vn7ELoxLkkRpT3H155yfEXNnIs1dSDaFdSLY8oSSzbBhsNwPObNtzCQVgl76KQEirBrNUxuOIyuU-JuISwwkcm4A9zfHRNUmxgmWEcbgfG1YOWj3uv3TUJg2dMsnTzI1K94fipmxT-toJc2_E5v7z9avI92q6gT35VmcoDWdHqIdhpYhEfoAzIKlzhLcbHMYeRwXr4hwLNsUWj8ZpkkcMk4jcH5KfjZJiROIfMIT7MULquwaZqxbTw3S1KVp42rDoIRYDhOzvIlNp3Bky9AUCM2XQBog60E6HmO0UvvYXTfdyq6Bkd6QVg4XMbdRARcapYIE0hIwqTQJE6oikPiS8oFoSohwqVKGw1QbhyjlsoTIePS7JVPUCvNUn2KsOcqpjiPhSnBZ5xxLT0ZKFdKwLN0u23UqQcpyktUjsitwU4rVUeg6qhSdRvx5lBGhT0OSUrukoj8Knv2B9lrtNUfPQ-iwePw6RxtwyebCUguUKuYLfQl2pTvxWQ-u7JW-wlXN-8C
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PT8MgFCY6jdGDv43zJwevnWtpaTkatdFolh1m3K2hQJMls222zmT_hX-yPEp1O-hFzy2UPh68D3h8H0JXOiRJIpXn-MqTji-pHnOpog6gXU69NKVhZsQmwl4vGg5Z32YTTm1aJayhs5oowszVMLhLmTUZcdeACjQwGXZA-rujMbWGMMEqWtPQmcL6axC_fh8kBEY8zajJQ5nmEs9P1SyFpyXy0oWwE-_8Q4N30bbFnPimdpI9tKLyfbS1wER4gD4gn3COixxX8xL6DZf1DQI8KWaVwm9GRwLXetMYQp-El0064hjyjvC4yOGoCuuWac_GUz0h2SxtbP8PXADDZnJRzrH-Fzz6ogPVxcYzoGwwHwFxnkP0Et8Pbh8cK9bgCC-IKoeJtJvxgAkVZlzDCEFCwRVJMyrTiPiCMk6ozAh3qVTaApTpsKiE9HgUMqFXykeolRe5OkbYc2UoGUu5rsEPWciU8EQgXSGAzdLttlGn6aOkrDk5ErehOrWmTsDUiTV1G7HFnkwqsxmS1colCfm17Mkfyl6ijf5dnDw_9p5O0SY8MWmA5Ay1qslMnaN18V6NppML47OfnMztsw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Study+on+typical+process+route+mining+method+based+on+multilevel+longest+common+subsequence+information+entropy+and+intelligent+clustering+model&rft.jtitle=International+journal+of+computer+integrated+manufacturing&rft.au=Chunlei%2C+Li&rft.date=2023-10-03&rft.issn=0951-192X&rft.eissn=1362-3052&rft.volume=36&rft.issue=10&rft.spage=1416&rft.epage=1430&rft_id=info:doi/10.1080%2F0951192X.2023.2177745&rft.externalDBID=n%2Fa&rft.externalDocID=10_1080_0951192X_2023_2177745
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0951-192X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0951-192X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0951-192X&client=summon