Study on typical process route mining method based on multilevel longest common subsequence information entropy and intelligent clustering model
A large number of manufacturing cases are accumulated by manufacturing enterprises in the process of operation and development, and therefore, one of the most effective ways to improve manufacturing efficiency and support innovation is to reuse these case resources reasonably. In reality, the first...
Uloženo v:
| Vydáno v: | International journal of computer integrated manufacturing Ročník 36; číslo 10; s. 1416 - 1430 |
|---|---|
| Hlavní autor: | |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Taylor & Francis
03.10.2023
|
| Témata: | |
| ISSN: | 0951-192X, 1362-3052 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | A large number of manufacturing cases are accumulated by manufacturing enterprises in the process of operation and development, and therefore, one of the most effective ways to improve manufacturing efficiency and support innovation is to reuse these case resources reasonably. In reality, the first problem to be solved is to determine the case resources with high reuse value potential, so as to realize the high-value reuse of manufacturing case resources. With the purpose of scientific determination of the reuse objects and improvement of the reuse flexibility, a typical process route mining method based on multilevel longest common subsequence (LCS) information entropy and intelligent clustering model is proposed in this paper. First, a similarity calculation method of machining process route based on multilevel (LCS) information entropy is proposed, which can more comprehensively and accurately evaluate the similarity of machining process. On this basis, a process route clustering model based on spectral clustering idea and particle swarm optimization-Kmeans clustering algorithm is proposed, which realizes the clustering of process routes as per the similarity; in the end, the typical and representative process routes in each cluster are extracted, and the typical process routes are mined for reuse. In the end, it shows that the method proposed in this paper can effectively mine high-value process reuse objects and then can further support manufacturing case reuse through three verification cases. |
|---|---|
| AbstractList | A large number of manufacturing cases are accumulated by manufacturing enterprises in the process of operation and development, and therefore, one of the most effective ways to improve manufacturing efficiency and support innovation is to reuse these case resources reasonably. In reality, the first problem to be solved is to determine the case resources with high reuse value potential, so as to realize the high-value reuse of manufacturing case resources. With the purpose of scientific determination of the reuse objects and improvement of the reuse flexibility, a typical process route mining method based on multilevel longest common subsequence (LCS) information entropy and intelligent clustering model is proposed in this paper. First, a similarity calculation method of machining process route based on multilevel (LCS) information entropy is proposed, which can more comprehensively and accurately evaluate the similarity of machining process. On this basis, a process route clustering model based on spectral clustering idea and particle swarm optimization-Kmeans clustering algorithm is proposed, which realizes the clustering of process routes as per the similarity; in the end, the typical and representative process routes in each cluster are extracted, and the typical process routes are mined for reuse. In the end, it shows that the method proposed in this paper can effectively mine high-value process reuse objects and then can further support manufacturing case reuse through three verification cases. |
| Author | Chunlei, Li |
| Author_xml | – sequence: 1 givenname: Li orcidid: 0000-0002-7205-6885 surname: Chunlei fullname: Chunlei, Li email: 602lcl-602lcl@163.com organization: Shaanxi Key Laboratory of Advanced Manufacturing and Evaluation of Robot Key Components, Baoji University of Arts and Sciences |
| BookMark | eNp9kN1KAzEQhYMo2FYfQcgLbE02zf7cKcU_KHihgndLNpnUSDapSVbZt_CR3bX11quBM-ecYb45OnbeAUIXlCwpqcglqTmldf66zEnOljkty3LFj9CMsiLPGOH5MZpNnmwynaJ5jO-EUMYrMkPfT6lXA_YOp2FnpLB4F7yEGHHwfQLcGWfcFneQ3rzCrYigJnPX22QsfILF1rstxISl77pxE_s2wkcPTgI2TvvQiWRGHVwKfjdg4dSoJ7DWbEcNS9vHBOH3iFdgz9CJFjbC-WEu0MvtzfP6Pts83j2srzeZzHmVslq2RAteSyi1oJxKVkoBrNWFaiu2kkUtWKE0E7RQMBIp6lVJQapcVGUtKWMLxPe9MvgYA-hmF0wnwtBQ0kxYmz-szYS1OWAdc1f73OG5Lx-sapIYrA86CCdNbNj_FT8KnYbr |
| Cites_doi | 10.1016/j.cor.2020.105089 10.1371/journal.pone.0274532 10.1007/s00170-014-6772-9 10.1080/25742558.2018.1483565 10.1109/TIT.2020.2996543 10.1007/s12206-021-0631-z 10.1145/322033.322044 10.1155/2021/4553832 10.1142/S0129626421500079 10.2989/SALALS.2009.27.4.2.1022 10.1080/00207543.2020.1759838 10.1016/j.procs.2017.06.038 10.1080/1573062X.2020.1734633 10.3901/JME.2015.15.148 10.1007/s00170-006-0706-0 10.4018/IJSIR.20220401.oa7 10.1007/s00170-016-9502-7 10.2307/2346830 |
| ContentType | Journal Article |
| Copyright | 2023 Informa UK Limited, trading as Taylor & Francis Group 2023 |
| Copyright_xml | – notice: 2023 Informa UK Limited, trading as Taylor & Francis Group 2023 |
| DBID | AAYXX CITATION |
| DOI | 10.1080/0951192X.2023.2177745 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1362-3052 |
| EndPage | 1430 |
| ExternalDocumentID | 10_1080_0951192X_2023_2177745 2177745 |
| Genre | Research Article |
| GroupedDBID | .4S .7F .DC .QJ 0BK 0R~ 29J 30N 4.4 5GY 5VS 8VB AAENE AAGDL AAHIA AAJMT AALDU AAMIU AAPUL AAQRR ABCCY ABFIM ABHAV ABJNI ABLIJ ABPAQ ABPEM ABPPZ ABTAI ABXUL ABXYU ACGEJ ACGFS ACTIO ADCVX ADGTB ADMLS ADXPE AEISY AEMOZ AENEX AEOZL AEPSL AEYOC AFKVX AFRVT AGDLA AGMYJ AHDZW AHQJS AIJEM AIYEW AJWEG AKBVH AKOOK AKVCP ALMA_UNASSIGNED_HOLDINGS ALQZU AQRUH AQTUD ARCSS AVBZW AWYRJ BLEHA CCCUG CE4 CS3 DGEBU DKSSO EBO EBR EBS EBU ECS EDO EMK EPL E~A E~B GTTXZ H13 HF~ HZ~ H~P I-F IPNFZ J.P K1G KYCEM LJTGL M4Z MK~ ML~ NA5 NX~ O9- P2P QWB RIG RNANH RNS ROSJB RTWRZ S-T SNACF TASJS TBQAZ TDBHL TEN TFL TFT TFW TH9 TNC TTHFI TUROJ TUS TWF UPT UT5 UU3 ZGOLN ZL0 ~S~ AAYXX CITATION |
| ID | FETCH-LOGICAL-c258t-9cb0fa59ce7fa151c37cae3bf6db834c69a36df3a16de17769471ecd2a879c133 |
| IEDL.DBID | TFW |
| ISICitedReferencesCount | 1 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000932161400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0951-192X |
| IngestDate | Sat Nov 29 06:18:29 EST 2025 Mon Oct 20 23:45:19 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 10 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c258t-9cb0fa59ce7fa151c37cae3bf6db834c69a36df3a16de17769471ecd2a879c133 |
| ORCID | 0000-0002-7205-6885 |
| PageCount | 15 |
| ParticipantIDs | crossref_primary_10_1080_0951192X_2023_2177745 informaworld_taylorfrancis_310_1080_0951192X_2023_2177745 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-10-03 |
| PublicationDateYYYYMMDD | 2023-10-03 |
| PublicationDate_xml | – month: 10 year: 2023 text: 2023-10-03 day: 03 |
| PublicationDecade | 2020 |
| PublicationTitle | International journal of computer integrated manufacturing |
| PublicationYear | 2023 |
| Publisher | Taylor & Francis |
| Publisher_xml | – name: Taylor & Francis |
| References | Zhao Y. P. (e_1_3_3_24_1) 2021; 1873 Kambhampati S. (e_1_3_3_9_1) 1990 Peng W. P. (e_1_3_3_18_1) 2019; 627 e_1_3_3_17_1 e_1_3_3_19_1 e_1_3_3_14_1 e_1_3_3_13_1 e_1_3_3_16_1 e_1_3_3_15_1 e_1_3_3_10_1 e_1_3_3_12_1 e_1_3_3_11_1 Zhou D. C. (e_1_3_3_25_1) 2015; 21 Cheng F. (e_1_3_3_5_1) 2020 e_1_3_3_7_1 e_1_3_3_8_1 Zhang H. (e_1_3_3_23_1) 2013; 19 e_1_3_3_26_1 e_1_3_3_3_1 e_1_3_3_21_1 e_1_3_3_2_1 e_1_3_3_20_1 Fan W. (e_1_3_3_6_1) 2018 e_1_3_3_4_1 e_1_3_3_22_1 |
| References_xml | – ident: e_1_3_3_4_1 doi: 10.1016/j.cor.2020.105089 – ident: e_1_3_3_10_1 doi: 10.1371/journal.pone.0274532 – ident: e_1_3_3_26_1 doi: 10.1007/s00170-014-6772-9 – ident: e_1_3_3_16_1 doi: 10.1080/25742558.2018.1483565 – volume: 1873 start-page: 012074 volume-title: Journal of Physics Conference Series year: 2021 ident: e_1_3_3_24_1 – volume: 19 start-page: 490 issue: 3 year: 2013 ident: e_1_3_3_23_1 article-title: Typical Product Process Route Extraction Method Based on Intelligent Clustering Analysis publication-title: Computer Integrated Manufacturing Systems – ident: e_1_3_3_3_1 doi: 10.1109/TIT.2020.2996543 – ident: e_1_3_3_11_1 doi: 10.1007/s12206-021-0631-z – ident: e_1_3_3_8_1 doi: 10.1145/322033.322044 – ident: e_1_3_3_20_1 doi: 10.1155/2021/4553832 – ident: e_1_3_3_19_1 doi: 10.1142/S0129626421500079 – ident: e_1_3_3_17_1 doi: 10.2989/SALALS.2009.27.4.2.1022 – ident: e_1_3_3_22_1 doi: 10.1080/00207543.2020.1759838 – volume: 21 start-page: 694 issue: 3 year: 2015 ident: e_1_3_3_25_1 article-title: Typical Process Route Discovery Method Based on Granular Computing and Sequence Alignment publication-title: Computer Integrated Manufacturing Systems – ident: e_1_3_3_2_1 doi: 10.1016/j.procs.2017.06.038 – ident: e_1_3_3_15_1 doi: 10.1080/1573062X.2020.1734633 – volume: 627 start-page: 012004 volume-title: Proceedings of IOP Conference Series: Materials Science and Engineering year: 2019 ident: e_1_3_3_18_1 – start-page: 170 volume-title: Proceedings of the eighth National conference on Artificial intelligence year: 1990 ident: e_1_3_3_9_1 – ident: e_1_3_3_13_1 doi: 10.3901/JME.2015.15.148 – ident: e_1_3_3_14_1 doi: 10.1007/s00170-006-0706-0 – start-page: 674 volume-title: Proceedings IEEE International Computers, Signals and Systems Conference year: 2018 ident: e_1_3_3_6_1 – ident: e_1_3_3_21_1 doi: 10.4018/IJSIR.20220401.oa7 – ident: e_1_3_3_12_1 doi: 10.1007/s00170-016-9502-7 – start-page: 328 volume-title: Proceedings of IEEE International Conference on Smart Internet of Things year: 2020 ident: e_1_3_3_5_1 – ident: e_1_3_3_7_1 doi: 10.2307/2346830 |
| SSID | ssj0013580 |
| Score | 2.3301542 |
| Snippet | A large number of manufacturing cases are accumulated by manufacturing enterprises in the process of operation and development, and therefore, one of the most... |
| SourceID | crossref informaworld |
| SourceType | Index Database Publisher |
| StartPage | 1416 |
| SubjectTerms | information entropy Manufacturing case reuse PSO-Kmeans clustering algorithm similarity measurement typical process routes |
| Title | Study on typical process route mining method based on multilevel longest common subsequence information entropy and intelligent clustering model |
| URI | https://www.tandfonline.com/doi/abs/10.1080/0951192X.2023.2177745 |
| Volume | 36 |
| WOSCitedRecordID | wos000932161400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAWR databaseName: Taylor & Francis Online Journals customDbUrl: eissn: 1362-3052 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0013580 issn: 0951-192X databaseCode: TFW dateStart: 19880101 isFulltext: true titleUrlDefault: https://www.tandfonline.com providerName: Taylor & Francis |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09T8MwELUQYoCBb0T5kgfWlCZu7HhEiIqpYiiiW-TYjlSpJFGTIvVf8JO5cxxoB1hgjBQ7zvnsO9vP7xFyCyHJMGOjYGgjEwwNhzGXWR5gtqt4lGVc5E5sQozHyXQqnz2asPawSlxD5y1RhJurcXCrrO4QcXeYFUBiMu2j9HcfcmpIYfCaOYR-1DCYjF6_zxFip53mxOSxSHeH56daNqLTBnfpWtQZHfxDew_Jvk856X3rI0dkyxbHZG-NiPCEfCCccEXLgjarCruNVu0FArool42lb05GgrZy0xQjn8GXHRpxjrAjOi8LPKmi0DJwbFrDfORB2tT_H3oAxb3kslpR-Bc6-2IDhWLzJTI2uI-gNs8peRk9Th6eAq_VEOgoTppA6myQq1hqK3IFWYRmQivLspybLGFDzaVi3ORMhdxYsACXEBWtNpFKhNSwUD4j20VZ2HNCo9AII2WmoIahkEJaHenYhFojmWU46JF-10dp1VJypGHHdOpNnaKpU2_qHpHrPZk2bi8kb4VLUvZr2Ys_lL0ku_jooH_simw3i6W9Jjv6vZnVixvnqJ9_curX |
| linkProvider | Taylor & Francis |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELagIAEDb0R5emBNaeLEjkeEqIoonYroFjm2I1UqSdSmSP0X_GR8TgLpAAvMyflxPvvO9vn7ELoxLkkRpT3H155yfEXNnIs1dSDaFdSLY8oSSzbBhsNwPObNtzCQVgl76KQEirBrNUxuOIyuU-JuISwwkcm4A9zfHRNUmxgmWEcbgfG1YOWj3uv3TUJg2dMsnTzI1K94fipmxT-toJc2_E5v7z9avI92q6gT35VmcoDWdHqIdhpYhEfoAzIKlzhLcbHMYeRwXr4hwLNsUWj8ZpkkcMk4jcH5KfjZJiROIfMIT7MULquwaZqxbTw3S1KVp42rDoIRYDhOzvIlNp3Bky9AUCM2XQBog60E6HmO0UvvYXTfdyq6Bkd6QVg4XMbdRARcapYIE0hIwqTQJE6oikPiS8oFoSohwqVKGw1QbhyjlsoTIePS7JVPUCvNUn2KsOcqpjiPhSnBZ5xxLT0ZKFdKwLN0u23UqQcpyktUjsitwU4rVUeg6qhSdRvx5lBGhT0OSUrukoj8Knv2B9lrtNUfPQ-iwePw6RxtwyebCUguUKuYLfQl2pTvxWQ-u7JW-wlXN-8C |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PT8MgFCY6jdGDv43zJwevnWtpaTkatdFolh1m3K2hQJMls222zmT_hX-yPEp1O-hFzy2UPh68D3h8H0JXOiRJIpXn-MqTji-pHnOpog6gXU69NKVhZsQmwl4vGg5Z32YTTm1aJayhs5oowszVMLhLmTUZcdeACjQwGXZA-rujMbWGMMEqWtPQmcL6axC_fh8kBEY8zajJQ5nmEs9P1SyFpyXy0oWwE-_8Q4N30bbFnPimdpI9tKLyfbS1wER4gD4gn3COixxX8xL6DZf1DQI8KWaVwm9GRwLXetMYQp-El0064hjyjvC4yOGoCuuWac_GUz0h2SxtbP8PXADDZnJRzrH-Fzz6ogPVxcYzoGwwHwFxnkP0Et8Pbh8cK9bgCC-IKoeJtJvxgAkVZlzDCEFCwRVJMyrTiPiCMk6ozAh3qVTaApTpsKiE9HgUMqFXykeolRe5OkbYc2UoGUu5rsEPWciU8EQgXSGAzdLttlGn6aOkrDk5ErehOrWmTsDUiTV1G7HFnkwqsxmS1colCfm17Mkfyl6ijf5dnDw_9p5O0SY8MWmA5Ay1qslMnaN18V6NppML47OfnMztsw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Study+on+typical+process+route+mining+method+based+on+multilevel+longest+common+subsequence+information+entropy+and+intelligent+clustering+model&rft.jtitle=International+journal+of+computer+integrated+manufacturing&rft.au=Chunlei%2C+Li&rft.date=2023-10-03&rft.issn=0951-192X&rft.eissn=1362-3052&rft.volume=36&rft.issue=10&rft.spage=1416&rft.epage=1430&rft_id=info:doi/10.1080%2F0951192X.2023.2177745&rft.externalDBID=n%2Fa&rft.externalDocID=10_1080_0951192X_2023_2177745 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0951-192X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0951-192X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0951-192X&client=summon |