Exponential Squirrel Search Algorithm-Based Deep Classifier for Intrusion Detection in Cloud Computing with Big Data Assisted Spark Framework

Intrusion detection systems (IDS) are extensively employed for detecting suspicious behaviors in hosts. The ability of distributed IDS solutions makes it viable to combine and handle various kinds of sensors and generate alerts to different hosts positioned in distributed platforms. However, to offe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cybernetics and systems Jg. 55; H. 2; S. 331 - 350
Hauptverfasser: Polepally, Vijayakumar, Jagannadha Rao, D. B., Kalpana, Parsi, Nagendra Prabhu, S.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Taylor & Francis 17.02.2024
Schlagworte:
ISSN:0196-9722, 1087-6553
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Intrusion detection systems (IDS) are extensively employed for detecting suspicious behaviors in hosts. The ability of distributed IDS solutions makes it viable to combine and handle various kinds of sensors and generate alerts to different hosts positioned in distributed platforms. However, to offer secure and feasible services in a cloud platform is an imperative issue due to the impacts of attacks. This paper devises a novel IDS framework using cloud data to counter the influence of attacks. Here, the spark architecture is employed for discovering the intrusions. The pre-processing is applied to the input data for removing artifacts and noise considering input data. Thereafter, the feature extraction and feature fusion are performed in slave nodes. The feature fusion is carried out with the proposed Exponential Squirrel Search Algorithm (ExpSSA) algorithm. The fused features are considered in a deep-stacked autoencoder (Deep SAE) for performing effective intrusion detection. The proposed ExpSSA is adapted to train Deep SAE for tuning optimum weights. The exponential weighted moving average (EWMA) and squirrel search algorithm (SSA) are combined to create the proposed ExpSSA. The proposed ExpSSA-based Deep SAE offered improved performance compared to other techniques with the highest accuracy, detection rate of 0.846, and minimal FPR.
AbstractList Intrusion detection systems (IDS) are extensively employed for detecting suspicious behaviors in hosts. The ability of distributed IDS solutions makes it viable to combine and handle various kinds of sensors and generate alerts to different hosts positioned in distributed platforms. However, to offer secure and feasible services in a cloud platform is an imperative issue due to the impacts of attacks. This paper devises a novel IDS framework using cloud data to counter the influence of attacks. Here, the spark architecture is employed for discovering the intrusions. The pre-processing is applied to the input data for removing artifacts and noise considering input data. Thereafter, the feature extraction and feature fusion are performed in slave nodes. The feature fusion is carried out with the proposed Exponential Squirrel Search Algorithm (ExpSSA) algorithm. The fused features are considered in a deep-stacked autoencoder (Deep SAE) for performing effective intrusion detection. The proposed ExpSSA is adapted to train Deep SAE for tuning optimum weights. The exponential weighted moving average (EWMA) and squirrel search algorithm (SSA) are combined to create the proposed ExpSSA. The proposed ExpSSA-based Deep SAE offered improved performance compared to other techniques with the highest accuracy, detection rate of 0.846, and minimal FPR.
Author Nagendra Prabhu, S.
Polepally, Vijayakumar
Kalpana, Parsi
Jagannadha Rao, D. B.
Author_xml – sequence: 1
  givenname: Vijayakumar
  surname: Polepally
  fullname: Polepally, Vijayakumar
  organization: Department of Computer Science & Engineering, Kakatiya Institute of Technology & Science
– sequence: 2
  givenname: D. B.
  surname: Jagannadha Rao
  fullname: Jagannadha Rao, D. B.
  organization: Department of Computer Science & Engineering, Shri Jagdishprasad Jhabarmal Tibrewala University
– sequence: 3
  givenname: Parsi
  surname: Kalpana
  fullname: Kalpana, Parsi
  organization: Department of Computer Science, St Francis College for Women
– sequence: 4
  givenname: S.
  surname: Nagendra Prabhu
  fullname: Nagendra Prabhu, S.
  organization: Department of Computer Science & Engineering, Malla Reddy College of Engineering and Technology
BookMark eNp9kE1OwzAQhS1UJErhCEi-QIrtxE6zo79QCYlFYR0NjtMaEjvYrkoPwZ1x1LJlMzPSe_Np5l2jgbFGIXRHyZiSCbkntBBFztiYkb5QynjGLtAwinkiOE8HaNh7kt50ha69_yCEpGlOh-hn-d1FmgkaGrz52mvnVBwUOLnD02ZrnQ67NpmBVxVeKNXheQPe61orh2vr8NoEt_famqgGJUM_aRNddl_huW27fdBmiw8Rg2d6ixcQAE8jwYdI3HTgPvHKQasO1n3eoMsaGq9uz32E3lbL1_lT8vzyuJ5PnxPJ-CQkBTAqVJ4XUFdVDbkUUHFeSMFlfLHOUpZloECSKquEFCp7ZxPOhKJqIjMBMh0hfuJKZ713qi47p1twx5KSss-0_Mu07DMtz5nGvYfTnjbx9xbizU1VBjg21tUOjNS-TP9H_AIQ6oK_
Cites_doi 10.1016/j.compeleceng.2017.10.011
10.1155/2018/5105709
10.1109/ACCESS.2018.2810267
10.1016/j.jnca.2019.102507
10.1016/j.icte.2018.01.014
10.1145/2808691
10.1080/03610919208813040
10.1016/j.swevo.2018.02.013
10.1155/2014/396529
10.1145/3299815.3314439
10.1007/s11033-019-04680-3
10.5958/2277-1581.2017.00023.7
10.1016/j.jnca.2016.02.005
10.1016/j.procs.2015.07.040
10.1109/ACCESS.2019.2949890
10.1016/j.future.2019.03.043
10.1007/s10586-018-2557-5
10.3390/sym12101695
10.1007/s10586-020-03082-6
10.7763/IJMO.2015.V5.434
ContentType Journal Article
Copyright 2022 Taylor & Francis Group, LLC 2022
Copyright_xml – notice: 2022 Taylor & Francis Group, LLC 2022
DBID AAYXX
CITATION
DOI 10.1080/01969722.2022.2112542
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 1087-6553
EndPage 350
ExternalDocumentID 10_1080_01969722_2022_2112542
2112542
Genre Research Article
GroupedDBID -~X
.7F
.DC
.QJ
0BK
0R~
29F
2DF
30N
4.4
5GY
5VS
AAENE
AAGDL
AAHIA
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABFIM
ABHAV
ABJNI
ABLIJ
ABPAQ
ABPEM
ABTAI
ABXUL
ABXYU
ACGEJ
ACGFS
ACTIO
ADCVX
ADGTB
ADXPE
AEISY
AENEX
AEOZL
AEPSL
AEYOC
AFKVX
AFRVT
AGDLA
AGMYJ
AHDZW
AIJEM
AIYEW
AJWEG
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
ARCSS
AVBZW
AWYRJ
BLEHA
CCCUG
CE4
COF
CS3
DGEBU
DKSSO
DU5
EBS
E~A
E~B
F5P
FPAXQ
GTTXZ
H13
HF~
HZ~
H~P
IPNFZ
J.P
KYCEM
LJTGL
M4Z
NA5
NX~
O9-
P2P
RIG
RNANH
ROSJB
RTWRZ
S-T
SNACF
TASJS
TBQAZ
TEN
TFL
TFT
TFW
TN5
TNC
TTHFI
TUROJ
TWF
UT5
UU3
ZGOLN
~S~
AAYXX
CITATION
ID FETCH-LOGICAL-c258t-9a216e779afddfa7c6ad559c65c972f43244aeac0d4d6c6e4b28526e1e8c46ac3
IEDL.DBID TFW
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000903959400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0196-9722
IngestDate Sat Nov 29 03:41:24 EST 2025
Mon Oct 20 23:44:49 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c258t-9a216e779afddfa7c6ad559c65c972f43244aeac0d4d6c6e4b28526e1e8c46ac3
PageCount 20
ParticipantIDs informaworld_taylorfrancis_310_1080_01969722_2022_2112542
crossref_primary_10_1080_01969722_2022_2112542
PublicationCentury 2000
PublicationDate 2024-02-17
PublicationDateYYYYMMDD 2024-02-17
PublicationDate_xml – month: 02
  year: 2024
  text: 2024-02-17
  day: 17
PublicationDecade 2020
PublicationTitle Cybernetics and systems
PublicationYear 2024
Publisher Taylor & Francis
Publisher_xml – name: Taylor & Francis
References Prasad A. V. K. (e_1_3_1_27_1) 2021; 4
Kanimozhi V. (e_1_3_1_16_1) 2019
Veeraiah N. (e_1_3_1_31_1) 2018; 1
e_1_3_1_22_1
e_1_3_1_23_1
e_1_3_1_24_1
e_1_3_1_25_1
Kavuri S. (e_1_3_1_17_1) 2016; 87
e_1_3_1_8_1
e_1_3_1_20_1
e_1_3_1_21_1
e_1_3_1_5_1
Kavuri S. (e_1_3_1_18_1) 2015; 28
e_1_3_1_7_1
e_1_3_1_6_1
e_1_3_1_26_1
e_1_3_1_28_1
e_1_3_1_2_1
e_1_3_1_29_1
Kim J. (e_1_3_1_19_1) 2017
Gali M. (e_1_3_1_9_1) 2021; 4
Prakash S. (e_1_3_1_10_1) 2019
Bae C. (e_1_3_1_4_1) 2012; 8
e_1_3_1_14_1
e_1_3_1_30_1
Anand S. (e_1_3_1_3_1) 2020; 3
e_1_3_1_12_1
Jagdale B. (e_1_3_1_13_1) 2021; 21
e_1_3_1_11_1
e_1_3_1_32_1
e_1_3_1_15_1
References_xml – volume: 28
  start-page: 34
  issue: 103
  year: 2015
  ident: e_1_3_1_18_1
  article-title: Cryptographic access control schemes in cloud storage services
  publication-title: Discovery
– volume: 3
  start-page: 9
  issue: 4
  year: 2020
  ident: e_1_3_1_3_1
  article-title: Intrusion Detection System for Wireless Mesh Networks via Improved Whale Optimization
  publication-title: Journal of Networking and Communication Systems
– volume: 21
  start-page: 399
  issue: 12
  year: 2021
  ident: e_1_3_1_13_1
  article-title: Design and analysis of fabrication threat management in peer-to-peer collaborative location privacy
  publication-title: International Journal of Computer Science & Network Security
– ident: e_1_3_1_7_1
  doi: 10.1016/j.compeleceng.2017.10.011
– ident: e_1_3_1_20_1
  doi: 10.1155/2018/5105709
– ident: e_1_3_1_26_1
  doi: 10.1109/ACCESS.2018.2810267
– ident: e_1_3_1_28_1
  doi: 10.1016/j.jnca.2019.102507
– volume: 8
  start-page: 8231
  issue: 12
  year: 2012
  ident: e_1_3_1_4_1
  article-title: A novel anomaly-network intrusion detection system using ABC algorithms
  publication-title: International Journal of Innovative Computing, Information and Control
– ident: e_1_3_1_11_1
  doi: 10.1016/j.icte.2018.01.014
– ident: e_1_3_1_23_1
  doi: 10.1145/2808691
– start-page: 0033
  volume-title: Proceedings of International Conference on Communication and Signal Processing (ICCSP)
  year: 2019
  ident: e_1_3_1_16_1
– ident: e_1_3_1_29_1
  doi: 10.1080/03610919208813040
– ident: e_1_3_1_14_1
  doi: 10.1016/j.swevo.2018.02.013
– ident: e_1_3_1_6_1
  doi: 10.1155/2014/396529
– ident: e_1_3_1_8_1
  doi: 10.1145/3299815.3314439
– ident: e_1_3_1_15_1
  doi: 10.1007/s11033-019-04680-3
– start-page: 439
  volume-title: Advances in Computer Communication and Computational Sciences
  year: 2019
  ident: e_1_3_1_10_1
– volume: 87
  start-page: 291
  issue: 2
  year: 2016
  ident: e_1_3_1_17_1
  article-title: A novel hardware parameters based cloud data encryption and decryption against unauthorized users
  publication-title: Journal of Theoretical and Applied Information Technology
– ident: e_1_3_1_25_1
  doi: 10.5958/2277-1581.2017.00023.7
– ident: e_1_3_1_22_1
  doi: 10.1016/j.jnca.2016.02.005
– ident: e_1_3_1_5_1
  doi: 10.1016/j.procs.2015.07.040
– volume: 1
  start-page: 27
  issue: 1
  year: 2018
  ident: e_1_3_1_31_1
  article-title: Intrusion detection based on piecewise fuzzy C-means clustering and fuzzy naive Bayes rule
  publication-title: Multimedia Research
– ident: e_1_3_1_32_1
  doi: 10.1109/ACCESS.2019.2949890
– ident: e_1_3_1_2_1
  doi: 10.1016/j.future.2019.03.043
– ident: e_1_3_1_21_1
  doi: 10.1007/s10586-018-2557-5
– volume: 4
  start-page: 31
  issue: 2
  year: 2021
  ident: e_1_3_1_27_1
  article-title: Deep learning based optimization for detection of attacks in IoT
  publication-title: Journal of Networking and Communication Systems
– start-page: 313
  volume-title: Proceedings of IEEE International Conference on Big Data and Smart Computing (BigComp)
  year: 2017
  ident: e_1_3_1_19_1
– ident: e_1_3_1_30_1
  doi: 10.3390/sym12101695
– ident: e_1_3_1_12_1
  doi: 10.1007/s10586-020-03082-6
– ident: e_1_3_1_24_1
  doi: 10.7763/IJMO.2015.V5.434
– volume: 4
  start-page: 24
  issue: 2
  year: 2021
  ident: e_1_3_1_9_1
  article-title: Deep learning based optimization algorithm for cyber security intrusion detection system
  publication-title: Journal of Networking and Communication Systems
SSID ssj0003371
Score 2.323789
Snippet Intrusion detection systems (IDS) are extensively employed for detecting suspicious behaviors in hosts. The ability of distributed IDS solutions makes it...
SourceID crossref
informaworld
SourceType Index Database
Publisher
StartPage 331
SubjectTerms Big data
cloud computing
deep stacked autoencoder
intrusion detection
spark architecture
Title Exponential Squirrel Search Algorithm-Based Deep Classifier for Intrusion Detection in Cloud Computing with Big Data Assisted Spark Framework
URI https://www.tandfonline.com/doi/abs/10.1080/01969722.2022.2112542
Volume 55
WOSCitedRecordID wos000903959400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAWR
  databaseName: Taylor & Francis Online Journals
  customDbUrl:
  eissn: 1087-6553
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003371
  issn: 0196-9722
  databaseCode: TFW
  dateStart: 19800601
  isFulltext: true
  titleUrlDefault: https://www.tandfonline.com
  providerName: Taylor & Francis
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQxcAClIcoL3lggCGQJo6djC1tBRKqkFpEt8jxo0RAGrUB8Sf4z5wTB7UDLLBEiWJHse9tfXeH0BlhQro-l47iKnKIlq4T6jABuQKDkngypLpMFL5jw2E4mUT3Fk24sLBKE0PrqlBEqauNcPNkUSPirsqSLswzaVTmAh5DQIwWBs_e8Ph48Piti32f2Y6E1DFT6hyen76yYp1WapcuWZ3B1j_87zbatC4n7lQ80kRrKttBTSvUC3xuK09f7KLP_kc-ywx-CMaPDEZ4ruCmFAbceZnO5mnx9Op0wfJJ3FMqx2VPzVSDbcWwCHybmRwOIDW8LUqQV4bTDEbN3iSuGkiAqcTm8Bd30ynu8YJj4BDDaxKPcj5_xoMaLraHHgb98fWNY_s1OMILwsKJuNemirGIayk1Z4JyCQGLoIGA5WtT-49wUPSuJJIKqkjihYFHVVuFglAu_H3UyGCVBwgHvgRfU_JIuJwoCNEgKgLPKWGKCOqypIUuazrFeVWWI27X1U7tdsdmu2O73S0ULVMzLsrzEF01L4n9X-ce_mHuEdqAR2Jw3m12jBpABXWC1sV7kS7mpyWzfgFksuhQ
linkProvider Taylor & Francis
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV05T8MwFLYQIMEClEOU0wMDDIE0cexkbGmrVpQuLaJb5PgoEZBWbUD8Cf4zzzlQO8ACSxTJdhT73db33kPogjAhbZdLS3EVWERL2_K1H4FcgUGJHOlTnSUK91i_749GwWIujIFVmhha54UiMl1thNtcRpeQuJuspgtzTB6VeYDL4BFQw2se2FoD6xu2H7-1seuyoichtcyaMovnp88s2ael6qULdqe9_R9_vIO2Cq8T13M2qaAVleyiSiHXc3xZFJ--2kOfrY_pJDEQIpg_MDDhmYKXTB5w_WU8mcXp06vVAOMncVOpKc7aasYazCuGXeBuYtI4gNowmmY4rwTHCcyavEmc95AAa4nN_S9uxGPc5CnHwCSG3SQeTPnsGbdLxNg-emi3hrcdq2jZYAnH81Mr4E6NKsYCrqXUnAnKJcQsgnoCtq9N-T_CQdfbkkgqqCKR43sOVTXlC0K5cA_QagK7PETYcyW4m5IHwuZEQZQGgRE4TxFTRFCbRVV0XRIqnOaVOcJaWfC0OO7QHHdYHHcVBYvkDNPsSkTn_UtC99e1R39Ye442OsP7Xtjr9u-O0SYMEQP7rrETtAoUUadoXbyn8Xx2lnHuFwhd7HE
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA6iIl58i29z8KCHardNk_a461oUZRFU9FbSPLSo3bJbxT_hf3aSpqIHveilFJKUJvMOM98gtEeYkH7Ipae4Sjyipe_FOs5BrsCg5IGMqbaFwhdsMIjv7pJLl004dmmVJobWDVCE1dVGuCup24y4IwvpwgJTRmUe4DFEBLTwlAXHApa-Tm8_lXEYMteSkHpmTVvE89Nnvpmnb-ClX8xOOv8PP7yA5pzPibsNkyyiCVUuoUUn1WO876CnD5bR-8lbNSxNAhHMvzJJwiMFL1YacPfpfjgq6odnrwemT-K-UhW2TTULDcYVwybwWWmKOIDWMFrbLK8SFyXMGr5I3HSQAFuJze0v7hX3uM9rjoFFDLNJfFXx0SNO23yxFXSTnlwfn3quYYMngiiuvYQHHaoYS7iWUnMmKJcQsQgaCdi-NuB_hIOm9yWRVFBF8iCOAqo6KhaEchGuoskSdrmGcBRKcDYlT4TPiYIYDcIicJ1ypoigPsvX0WFLp6xqcDmyTgt36o47M8edueNeR8lXama1vRDRTfeSLPx17cYf1u6imct-ml2cDc430SyMEJPz3WFbaBIIorbRtHiti_Fox_LtByhH6xU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Exponential+Squirrel+Search+Algorithm-Based+Deep+Classifier+for+Intrusion+Detection+in+Cloud+Computing+with+Big+Data+Assisted+Spark+Framework&rft.jtitle=Cybernetics+and+systems&rft.au=Polepally%2C+Vijayakumar&rft.au=Jagannadha+Rao%2C+D.+B.&rft.au=Kalpana%2C+Parsi&rft.au=Nagendra+Prabhu%2C+S.&rft.date=2024-02-17&rft.pub=Taylor+%26+Francis&rft.issn=0196-9722&rft.eissn=1087-6553&rft.volume=55&rft.issue=2&rft.spage=331&rft.epage=350&rft_id=info:doi/10.1080%2F01969722.2022.2112542&rft.externalDocID=2112542
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0196-9722&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0196-9722&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0196-9722&client=summon