Exponential Squirrel Search Algorithm-Based Deep Classifier for Intrusion Detection in Cloud Computing with Big Data Assisted Spark Framework
Intrusion detection systems (IDS) are extensively employed for detecting suspicious behaviors in hosts. The ability of distributed IDS solutions makes it viable to combine and handle various kinds of sensors and generate alerts to different hosts positioned in distributed platforms. However, to offe...
Gespeichert in:
| Veröffentlicht in: | Cybernetics and systems Jg. 55; H. 2; S. 331 - 350 |
|---|---|
| Hauptverfasser: | , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Taylor & Francis
17.02.2024
|
| Schlagworte: | |
| ISSN: | 0196-9722, 1087-6553 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Intrusion detection systems (IDS) are extensively employed for detecting suspicious behaviors in hosts. The ability of distributed IDS solutions makes it viable to combine and handle various kinds of sensors and generate alerts to different hosts positioned in distributed platforms. However, to offer secure and feasible services in a cloud platform is an imperative issue due to the impacts of attacks. This paper devises a novel IDS framework using cloud data to counter the influence of attacks. Here, the spark architecture is employed for discovering the intrusions. The pre-processing is applied to the input data for removing artifacts and noise considering input data. Thereafter, the feature extraction and feature fusion are performed in slave nodes. The feature fusion is carried out with the proposed Exponential Squirrel Search Algorithm (ExpSSA) algorithm. The fused features are considered in a deep-stacked autoencoder (Deep SAE) for performing effective intrusion detection. The proposed ExpSSA is adapted to train Deep SAE for tuning optimum weights. The exponential weighted moving average (EWMA) and squirrel search algorithm (SSA) are combined to create the proposed ExpSSA. The proposed ExpSSA-based Deep SAE offered improved performance compared to other techniques with the highest accuracy, detection rate of 0.846, and minimal FPR. |
|---|---|
| AbstractList | Intrusion detection systems (IDS) are extensively employed for detecting suspicious behaviors in hosts. The ability of distributed IDS solutions makes it viable to combine and handle various kinds of sensors and generate alerts to different hosts positioned in distributed platforms. However, to offer secure and feasible services in a cloud platform is an imperative issue due to the impacts of attacks. This paper devises a novel IDS framework using cloud data to counter the influence of attacks. Here, the spark architecture is employed for discovering the intrusions. The pre-processing is applied to the input data for removing artifacts and noise considering input data. Thereafter, the feature extraction and feature fusion are performed in slave nodes. The feature fusion is carried out with the proposed Exponential Squirrel Search Algorithm (ExpSSA) algorithm. The fused features are considered in a deep-stacked autoencoder (Deep SAE) for performing effective intrusion detection. The proposed ExpSSA is adapted to train Deep SAE for tuning optimum weights. The exponential weighted moving average (EWMA) and squirrel search algorithm (SSA) are combined to create the proposed ExpSSA. The proposed ExpSSA-based Deep SAE offered improved performance compared to other techniques with the highest accuracy, detection rate of 0.846, and minimal FPR. |
| Author | Nagendra Prabhu, S. Polepally, Vijayakumar Kalpana, Parsi Jagannadha Rao, D. B. |
| Author_xml | – sequence: 1 givenname: Vijayakumar surname: Polepally fullname: Polepally, Vijayakumar organization: Department of Computer Science & Engineering, Kakatiya Institute of Technology & Science – sequence: 2 givenname: D. B. surname: Jagannadha Rao fullname: Jagannadha Rao, D. B. organization: Department of Computer Science & Engineering, Shri Jagdishprasad Jhabarmal Tibrewala University – sequence: 3 givenname: Parsi surname: Kalpana fullname: Kalpana, Parsi organization: Department of Computer Science, St Francis College for Women – sequence: 4 givenname: S. surname: Nagendra Prabhu fullname: Nagendra Prabhu, S. organization: Department of Computer Science & Engineering, Malla Reddy College of Engineering and Technology |
| BookMark | eNp9kE1OwzAQhS1UJErhCEi-QIrtxE6zo79QCYlFYR0NjtMaEjvYrkoPwZ1x1LJlMzPSe_Np5l2jgbFGIXRHyZiSCbkntBBFztiYkb5QynjGLtAwinkiOE8HaNh7kt50ha69_yCEpGlOh-hn-d1FmgkaGrz52mvnVBwUOLnD02ZrnQ67NpmBVxVeKNXheQPe61orh2vr8NoEt_famqgGJUM_aRNddl_huW27fdBmiw8Rg2d6ixcQAE8jwYdI3HTgPvHKQasO1n3eoMsaGq9uz32E3lbL1_lT8vzyuJ5PnxPJ-CQkBTAqVJ4XUFdVDbkUUHFeSMFlfLHOUpZloECSKquEFCp7ZxPOhKJqIjMBMh0hfuJKZ713qi47p1twx5KSss-0_Mu07DMtz5nGvYfTnjbx9xbizU1VBjg21tUOjNS-TP9H_AIQ6oK_ |
| Cites_doi | 10.1016/j.compeleceng.2017.10.011 10.1155/2018/5105709 10.1109/ACCESS.2018.2810267 10.1016/j.jnca.2019.102507 10.1016/j.icte.2018.01.014 10.1145/2808691 10.1080/03610919208813040 10.1016/j.swevo.2018.02.013 10.1155/2014/396529 10.1145/3299815.3314439 10.1007/s11033-019-04680-3 10.5958/2277-1581.2017.00023.7 10.1016/j.jnca.2016.02.005 10.1016/j.procs.2015.07.040 10.1109/ACCESS.2019.2949890 10.1016/j.future.2019.03.043 10.1007/s10586-018-2557-5 10.3390/sym12101695 10.1007/s10586-020-03082-6 10.7763/IJMO.2015.V5.434 |
| ContentType | Journal Article |
| Copyright | 2022 Taylor & Francis Group, LLC 2022 |
| Copyright_xml | – notice: 2022 Taylor & Francis Group, LLC 2022 |
| DBID | AAYXX CITATION |
| DOI | 10.1080/01969722.2022.2112542 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Sciences (General) |
| EISSN | 1087-6553 |
| EndPage | 350 |
| ExternalDocumentID | 10_1080_01969722_2022_2112542 2112542 |
| Genre | Research Article |
| GroupedDBID | -~X .7F .DC .QJ 0BK 0R~ 29F 2DF 30N 4.4 5GY 5VS AAENE AAGDL AAHIA AAJMT AALDU AAMIU AAPUL AAQRR ABCCY ABFIM ABHAV ABJNI ABLIJ ABPAQ ABPEM ABTAI ABXUL ABXYU ACGEJ ACGFS ACTIO ADCVX ADGTB ADXPE AEISY AENEX AEOZL AEPSL AEYOC AFKVX AFRVT AGDLA AGMYJ AHDZW AIJEM AIYEW AJWEG AKBVH AKOOK ALMA_UNASSIGNED_HOLDINGS ALQZU AQRUH ARCSS AVBZW AWYRJ BLEHA CCCUG CE4 COF CS3 DGEBU DKSSO DU5 EBS E~A E~B F5P FPAXQ GTTXZ H13 HF~ HZ~ H~P IPNFZ J.P KYCEM LJTGL M4Z NA5 NX~ O9- P2P RIG RNANH ROSJB RTWRZ S-T SNACF TASJS TBQAZ TEN TFL TFT TFW TN5 TNC TTHFI TUROJ TWF UT5 UU3 ZGOLN ~S~ AAYXX CITATION |
| ID | FETCH-LOGICAL-c258t-9a216e779afddfa7c6ad559c65c972f43244aeac0d4d6c6e4b28526e1e8c46ac3 |
| IEDL.DBID | TFW |
| ISICitedReferencesCount | 1 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000903959400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0196-9722 |
| IngestDate | Sat Nov 29 03:41:24 EST 2025 Mon Oct 20 23:44:49 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c258t-9a216e779afddfa7c6ad559c65c972f43244aeac0d4d6c6e4b28526e1e8c46ac3 |
| PageCount | 20 |
| ParticipantIDs | informaworld_taylorfrancis_310_1080_01969722_2022_2112542 crossref_primary_10_1080_01969722_2022_2112542 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-02-17 |
| PublicationDateYYYYMMDD | 2024-02-17 |
| PublicationDate_xml | – month: 02 year: 2024 text: 2024-02-17 day: 17 |
| PublicationDecade | 2020 |
| PublicationTitle | Cybernetics and systems |
| PublicationYear | 2024 |
| Publisher | Taylor & Francis |
| Publisher_xml | – name: Taylor & Francis |
| References | Prasad A. V. K. (e_1_3_1_27_1) 2021; 4 Kanimozhi V. (e_1_3_1_16_1) 2019 Veeraiah N. (e_1_3_1_31_1) 2018; 1 e_1_3_1_22_1 e_1_3_1_23_1 e_1_3_1_24_1 e_1_3_1_25_1 Kavuri S. (e_1_3_1_17_1) 2016; 87 e_1_3_1_8_1 e_1_3_1_20_1 e_1_3_1_21_1 e_1_3_1_5_1 Kavuri S. (e_1_3_1_18_1) 2015; 28 e_1_3_1_7_1 e_1_3_1_6_1 e_1_3_1_26_1 e_1_3_1_28_1 e_1_3_1_2_1 e_1_3_1_29_1 Kim J. (e_1_3_1_19_1) 2017 Gali M. (e_1_3_1_9_1) 2021; 4 Prakash S. (e_1_3_1_10_1) 2019 Bae C. (e_1_3_1_4_1) 2012; 8 e_1_3_1_14_1 e_1_3_1_30_1 Anand S. (e_1_3_1_3_1) 2020; 3 e_1_3_1_12_1 Jagdale B. (e_1_3_1_13_1) 2021; 21 e_1_3_1_11_1 e_1_3_1_32_1 e_1_3_1_15_1 |
| References_xml | – volume: 28 start-page: 34 issue: 103 year: 2015 ident: e_1_3_1_18_1 article-title: Cryptographic access control schemes in cloud storage services publication-title: Discovery – volume: 3 start-page: 9 issue: 4 year: 2020 ident: e_1_3_1_3_1 article-title: Intrusion Detection System for Wireless Mesh Networks via Improved Whale Optimization publication-title: Journal of Networking and Communication Systems – volume: 21 start-page: 399 issue: 12 year: 2021 ident: e_1_3_1_13_1 article-title: Design and analysis of fabrication threat management in peer-to-peer collaborative location privacy publication-title: International Journal of Computer Science & Network Security – ident: e_1_3_1_7_1 doi: 10.1016/j.compeleceng.2017.10.011 – ident: e_1_3_1_20_1 doi: 10.1155/2018/5105709 – ident: e_1_3_1_26_1 doi: 10.1109/ACCESS.2018.2810267 – ident: e_1_3_1_28_1 doi: 10.1016/j.jnca.2019.102507 – volume: 8 start-page: 8231 issue: 12 year: 2012 ident: e_1_3_1_4_1 article-title: A novel anomaly-network intrusion detection system using ABC algorithms publication-title: International Journal of Innovative Computing, Information and Control – ident: e_1_3_1_11_1 doi: 10.1016/j.icte.2018.01.014 – ident: e_1_3_1_23_1 doi: 10.1145/2808691 – start-page: 0033 volume-title: Proceedings of International Conference on Communication and Signal Processing (ICCSP) year: 2019 ident: e_1_3_1_16_1 – ident: e_1_3_1_29_1 doi: 10.1080/03610919208813040 – ident: e_1_3_1_14_1 doi: 10.1016/j.swevo.2018.02.013 – ident: e_1_3_1_6_1 doi: 10.1155/2014/396529 – ident: e_1_3_1_8_1 doi: 10.1145/3299815.3314439 – ident: e_1_3_1_15_1 doi: 10.1007/s11033-019-04680-3 – start-page: 439 volume-title: Advances in Computer Communication and Computational Sciences year: 2019 ident: e_1_3_1_10_1 – volume: 87 start-page: 291 issue: 2 year: 2016 ident: e_1_3_1_17_1 article-title: A novel hardware parameters based cloud data encryption and decryption against unauthorized users publication-title: Journal of Theoretical and Applied Information Technology – ident: e_1_3_1_25_1 doi: 10.5958/2277-1581.2017.00023.7 – ident: e_1_3_1_22_1 doi: 10.1016/j.jnca.2016.02.005 – ident: e_1_3_1_5_1 doi: 10.1016/j.procs.2015.07.040 – volume: 1 start-page: 27 issue: 1 year: 2018 ident: e_1_3_1_31_1 article-title: Intrusion detection based on piecewise fuzzy C-means clustering and fuzzy naive Bayes rule publication-title: Multimedia Research – ident: e_1_3_1_32_1 doi: 10.1109/ACCESS.2019.2949890 – ident: e_1_3_1_2_1 doi: 10.1016/j.future.2019.03.043 – ident: e_1_3_1_21_1 doi: 10.1007/s10586-018-2557-5 – volume: 4 start-page: 31 issue: 2 year: 2021 ident: e_1_3_1_27_1 article-title: Deep learning based optimization for detection of attacks in IoT publication-title: Journal of Networking and Communication Systems – start-page: 313 volume-title: Proceedings of IEEE International Conference on Big Data and Smart Computing (BigComp) year: 2017 ident: e_1_3_1_19_1 – ident: e_1_3_1_30_1 doi: 10.3390/sym12101695 – ident: e_1_3_1_12_1 doi: 10.1007/s10586-020-03082-6 – ident: e_1_3_1_24_1 doi: 10.7763/IJMO.2015.V5.434 – volume: 4 start-page: 24 issue: 2 year: 2021 ident: e_1_3_1_9_1 article-title: Deep learning based optimization algorithm for cyber security intrusion detection system publication-title: Journal of Networking and Communication Systems |
| SSID | ssj0003371 |
| Score | 2.323789 |
| Snippet | Intrusion detection systems (IDS) are extensively employed for detecting suspicious behaviors in hosts. The ability of distributed IDS solutions makes it... |
| SourceID | crossref informaworld |
| SourceType | Index Database Publisher |
| StartPage | 331 |
| SubjectTerms | Big data cloud computing deep stacked autoencoder intrusion detection spark architecture |
| Title | Exponential Squirrel Search Algorithm-Based Deep Classifier for Intrusion Detection in Cloud Computing with Big Data Assisted Spark Framework |
| URI | https://www.tandfonline.com/doi/abs/10.1080/01969722.2022.2112542 |
| Volume | 55 |
| WOSCitedRecordID | wos000903959400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAWR databaseName: Taylor & Francis Online Journals customDbUrl: eissn: 1087-6553 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0003371 issn: 0196-9722 databaseCode: TFW dateStart: 19800601 isFulltext: true titleUrlDefault: https://www.tandfonline.com providerName: Taylor & Francis |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQxcAClIcoL3lggCGQJo6djC1tBRKqkFpEt8jxo0RAGrUB8Sf4z5wTB7UDLLBEiWJHse9tfXeH0BlhQro-l47iKnKIlq4T6jABuQKDkngypLpMFL5jw2E4mUT3Fk24sLBKE0PrqlBEqauNcPNkUSPirsqSLswzaVTmAh5DQIwWBs_e8Ph48Piti32f2Y6E1DFT6hyen76yYp1WapcuWZ3B1j_87zbatC4n7lQ80kRrKttBTSvUC3xuK09f7KLP_kc-ywx-CMaPDEZ4ruCmFAbceZnO5mnx9Op0wfJJ3FMqx2VPzVSDbcWwCHybmRwOIDW8LUqQV4bTDEbN3iSuGkiAqcTm8Bd30ynu8YJj4BDDaxKPcj5_xoMaLraHHgb98fWNY_s1OMILwsKJuNemirGIayk1Z4JyCQGLoIGA5WtT-49wUPSuJJIKqkjihYFHVVuFglAu_H3UyGCVBwgHvgRfU_JIuJwoCNEgKgLPKWGKCOqypIUuazrFeVWWI27X1U7tdsdmu2O73S0ULVMzLsrzEF01L4n9X-ce_mHuEdqAR2Jw3m12jBpABXWC1sV7kS7mpyWzfgFksuhQ |
| linkProvider | Taylor & Francis |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV05T8MwFLYQIMEClEOU0wMDDIE0cexkbGmrVpQuLaJb5PgoEZBWbUD8Cf4zzzlQO8ACSxTJdhT73db33kPogjAhbZdLS3EVWERL2_K1H4FcgUGJHOlTnSUK91i_749GwWIujIFVmhha54UiMl1thNtcRpeQuJuspgtzTB6VeYDL4BFQw2se2FoD6xu2H7-1seuyoichtcyaMovnp88s2ael6qULdqe9_R9_vIO2Cq8T13M2qaAVleyiSiHXc3xZFJ--2kOfrY_pJDEQIpg_MDDhmYKXTB5w_WU8mcXp06vVAOMncVOpKc7aasYazCuGXeBuYtI4gNowmmY4rwTHCcyavEmc95AAa4nN_S9uxGPc5CnHwCSG3SQeTPnsGbdLxNg-emi3hrcdq2jZYAnH81Mr4E6NKsYCrqXUnAnKJcQsgnoCtq9N-T_CQdfbkkgqqCKR43sOVTXlC0K5cA_QagK7PETYcyW4m5IHwuZEQZQGgRE4TxFTRFCbRVV0XRIqnOaVOcJaWfC0OO7QHHdYHHcVBYvkDNPsSkTn_UtC99e1R39Ye442OsP7Xtjr9u-O0SYMEQP7rrETtAoUUadoXbyn8Xx2lnHuFwhd7HE |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA6iIl58i29z8KCHardNk_a461oUZRFU9FbSPLSo3bJbxT_hf3aSpqIHveilFJKUJvMOM98gtEeYkH7Ipae4Sjyipe_FOs5BrsCg5IGMqbaFwhdsMIjv7pJLl004dmmVJobWDVCE1dVGuCup24y4IwvpwgJTRmUe4DFEBLTwlAXHApa-Tm8_lXEYMteSkHpmTVvE89Nnvpmnb-ClX8xOOv8PP7yA5pzPibsNkyyiCVUuoUUn1WO876CnD5bR-8lbNSxNAhHMvzJJwiMFL1YacPfpfjgq6odnrwemT-K-UhW2TTULDcYVwybwWWmKOIDWMFrbLK8SFyXMGr5I3HSQAFuJze0v7hX3uM9rjoFFDLNJfFXx0SNO23yxFXSTnlwfn3quYYMngiiuvYQHHaoYS7iWUnMmKJcQsQgaCdi-NuB_hIOm9yWRVFBF8iCOAqo6KhaEchGuoskSdrmGcBRKcDYlT4TPiYIYDcIicJ1ypoigPsvX0WFLp6xqcDmyTgt36o47M8edueNeR8lXama1vRDRTfeSLPx17cYf1u6imct-ml2cDc430SyMEJPz3WFbaBIIorbRtHiti_Fox_LtByhH6xU |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Exponential+Squirrel+Search+Algorithm-Based+Deep+Classifier+for+Intrusion+Detection+in+Cloud+Computing+with+Big+Data+Assisted+Spark+Framework&rft.jtitle=Cybernetics+and+systems&rft.au=Polepally%2C+Vijayakumar&rft.au=Jagannadha+Rao%2C+D.+B.&rft.au=Kalpana%2C+Parsi&rft.au=Nagendra+Prabhu%2C+S.&rft.date=2024-02-17&rft.pub=Taylor+%26+Francis&rft.issn=0196-9722&rft.eissn=1087-6553&rft.volume=55&rft.issue=2&rft.spage=331&rft.epage=350&rft_id=info:doi/10.1080%2F01969722.2022.2112542&rft.externalDocID=2112542 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0196-9722&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0196-9722&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0196-9722&client=summon |