Quantitative strongest post: a calculus for reasoning about the flow of quantitative information

We present a novel strongest-postcondition-style calculus for quantitative reasoning about non-deterministic programs with loops. Whereas existing quantitative weakest pre allows reasoning about the value of a quantity after a program terminates on a given initial state, quantitative strongest post...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Proceedings of ACM on programming languages Ročník 6; číslo OOPSLA1; s. 1 - 29
Hlavní autoři: Zhang, Linpeng, Kaminski, Benjamin Lucien
Médium: Journal Article
Jazyk:angličtina
Vydáno: 29.04.2022
ISSN:2475-1421, 2475-1421
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:We present a novel strongest-postcondition-style calculus for quantitative reasoning about non-deterministic programs with loops. Whereas existing quantitative weakest pre allows reasoning about the value of a quantity after a program terminates on a given initial state, quantitative strongest post allows reasoning about the value that a quantity had before the program was executed and reached a given final state. We show how strongest post enables reasoning about the flow of quantitative information through programs. Similarly to weakest liberal preconditions, we also develop a quantitative strongest liberal post. As a byproduct, we obtain the entirely unexplored notion of strongest liberal postconditions and show how these foreshadow a potential new program logic - partial incorrectness logic - which would be a more liberal version of O'Hearn's recent incorrectness logic.
ISSN:2475-1421
2475-1421
DOI:10.1145/3527331