Outer reflected forward-backward splitting algorithm with inertial extrapolation step

This paper studies an outer reflected forward-backward splitting algorithm with an inertial step to find a zero of the sum of three monotone operators composing the maximal monotone operator, Lipschitz monotone operator, and a cocoercive operator in real Hilbert spaces. One of the interesting featur...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Optimization Ročník 74; číslo 15; s. 3901 - 3924
Hlavní autoři: Shehu, Yekini, Jolaoso, Lateef O., Okeke, C. C., Xu, Renqi
Médium: Journal Article
Jazyk:angličtina
Vydáno: Taylor & Francis 18.11.2025
Témata:
ISSN:0233-1934, 1029-4945
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:This paper studies an outer reflected forward-backward splitting algorithm with an inertial step to find a zero of the sum of three monotone operators composing the maximal monotone operator, Lipschitz monotone operator, and a cocoercive operator in real Hilbert spaces. One of the interesting features of the proposed method is that both the Lipschitz monotone operator and the cocoercive operator are computed explicitly each with one evaluation per iteration. We obtain weak and strong convergence results under some easy-to-verify assumptions. We also obtain a non-asymptotic $ O(1/n) $ O ( 1 / n ) convergence rate of our proposed algorithm in a non-ergodic sense. We finally give some numerical illustrations arising from compressed sensing and image processing and show that our proposed method is effective and competitive with other related methods in the literature.
ISSN:0233-1934
1029-4945
DOI:10.1080/02331934.2024.2391004