A multiparty session typing discipline for fault-tolerant event-driven distributed programming
This paper presents a formulation of multiparty session types (MPSTs) for practical fault-tolerant distributed programming. We tackle the challenges faced by session types in the context of distributed systems involving asynchronous and concurrent partial failures – such as supporting dynamic replac...
Uloženo v:
| Vydáno v: | Proceedings of ACM on programming languages Ročník 5; číslo OOPSLA; s. 1 - 30 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
01.10.2021
|
| ISSN: | 2475-1421, 2475-1421 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | This paper presents a formulation of multiparty session types (MPSTs) for practical fault-tolerant distributed programming. We tackle the challenges faced by session types in the context of distributed systems involving asynchronous and concurrent partial failures – such as supporting dynamic replacement of failed parties and retrying failed protocol segments in an ongoing multiparty session – in the presence of unreliable failure detection. Key to our approach is that we develop a novel model of event-driven concurrency for multiparty sessions. Inspired by real-world practices, it enables us to unify the session-typed handling of regular I/O events with failure handling and the combination of features needed to express practical fault-tolerant protocols. Moreover, the characteristics of our model allow us to prove a global progress property for well-typed processes engaged in multiple concurrent sessions, which does not hold in traditional MPST systems.
To demonstrate its practicality, we implement our framework as a toolchain and runtime for Scala, and use it to specify and implement a session-typed version of the cluster management system of the industrial-strength Apache Spark data analytics framework. Our session-typed cluster manager composes with other vanilla Spark components to give a functioning Spark runtime; e.g., it can execute existing third-party Spark applications without code modification. A performance evaluation using the TPC-H benchmark shows our prototype implementation incurs an average overhead below 10%. |
|---|---|
| ISSN: | 2475-1421 2475-1421 |
| DOI: | 10.1145/3485501 |