An empirical machine learning method for predicting potential fire control locations for pre-fire planning and operational fire management

During active fire incidents, decisions regarding where and how to safely and effectively deploy resources to meet management objectives are often made under rapidly evolving conditions, with limited time to assess management strategies or for development of backup plans if initial efforts prove uns...

Full description

Saved in:
Bibliographic Details
Published in:International journal of wildland fire Vol. 26; no. 7; pp. 587 - 597
Main Authors: Connor, Christopher D. O’, Calkin, David E., Thompson, Matthew P.
Format: Journal Article
Language:English
Published: 01.01.2017
Subjects:
ISSN:1049-8001, 1448-5516
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract During active fire incidents, decisions regarding where and how to safely and effectively deploy resources to meet management objectives are often made under rapidly evolving conditions, with limited time to assess management strategies or for development of backup plans if initial efforts prove unsuccessful. Under all but the most extreme fire weather conditions, topography and fuels are significant factors affecting potential fire spread and burn severity. We leverage these relationships to quantify the effects of topography, fuel characteristics, road networks and fire suppression effort on the perimeter locations of 238 large fires, and develop a predictive model of potential fire control locations spanning a range of fuel types, topographic features and natural and anthropogenic barriers to fire spread, on a 34 000 km2 landscape in southern Idaho and northern Nevada. The boosted logistic regression model correctly classified final fire perimeter locations on an independent dataset with 69% accuracy without consideration of weather conditions on individual fires. The resulting fire control probability surface has potential for reducing unnecessary exposure for fire responders, coordinating pre-fire planning for operational fire response, and as a network of locations to incorporate into spatial fire planning to better align fire operations with land management objectives.
AbstractList During active fire incidents, decisions regarding where and how to safely and effectively deploy resources to meet management objectives are often made under rapidly evolving conditions, with limited time to assess management strategies or for development of backup plans if initial efforts prove unsuccessful. Under all but the most extreme fire weather conditions, topography and fuels are significant factors affecting potential fire spread and burn severity. We leverage these relationships to quantify the effects of topography, fuel characteristics, road networks and fire suppression effort on the perimeter locations of 238 large fires, and develop a predictive model of potential fire control locations spanning a range of fuel types, topographic features and natural and anthropogenic barriers to fire spread, on a 34000km2 landscape in southern Idaho and northern Nevada. The boosted logistic regression model correctly classified final fire perimeter locations on an independent dataset with 69% accuracy without consideration of weather conditions on individual fires. The resulting fire control probability surface has potential for reducing unnecessary exposure for fire responders, coordinating pre-fire planning for operational fire response, and as a network of locations to incorporate into spatial fire planning to better align fire operations with land management objectives.
During active fire incidents, decisions regarding where and how to safely and effectively deploy resources to meet management objectives are often made under rapidly evolving conditions, with limited time to assess management strategies or for development of backup plans if initial efforts prove unsuccessful. Under all but the most extreme fire weather conditions, topography and fuels are significant factors affecting potential fire spread and burn severity. We leverage these relationships to quantify the effects of topography, fuel characteristics, road networks and fire suppression effort on the perimeter locations of 238 large fires, and develop a predictive model of potential fire control locations spanning a range of fuel types, topographic features and natural and anthropogenic barriers to fire spread, on a 34 000 km2 landscape in southern Idaho and northern Nevada. The boosted logistic regression model correctly classified final fire perimeter locations on an independent dataset with 69% accuracy without consideration of weather conditions on individual fires. The resulting fire control probability surface has potential for reducing unnecessary exposure for fire responders, coordinating pre-fire planning for operational fire response, and as a network of locations to incorporate into spatial fire planning to better align fire operations with land management objectives.
Author Thompson, Matthew P.
Calkin, David E.
Connor, Christopher D. O
Author_xml – sequence: 1
  givenname: Christopher D. O’
  surname: Connor
  fullname: Connor, Christopher D. O’
– sequence: 2
  givenname: David E.
  surname: Calkin
  fullname: Calkin, David E.
– sequence: 3
  givenname: Matthew P.
  surname: Thompson
  fullname: Thompson, Matthew P.
BookMark eNplkE1OwzAQhS1UJNqCuIJ3sAnYsZ2fZVVRQKrEBsQyMva4NUrsYLsLrsCpSdN2A6t5mvnmaebN0MR5BwhdU3JHSUnv31e0oEycoSnlvMqEoMVk0ITXWUUIvUCzGD8HwQtaT9HPwmHoehuski3upNpaB7gFGZx1G9xB2nqNjQ-4D6CtSvtu7xO4ZIcFYwNg5V0KvsWtVzJZ7-KJz8Zx30o3mkmnse8hjNBpuZNObqAb_C7RuZFthKtjnaO31cPr8ilbvzw-LxfrTOWiShmHgmhttBGF0pXgBVd1LmVZFVBTyqkkJZCiNELUIi9LxQRjTEswH4QxCZTN0e3Btw_-awcxNZ2NCtrhTPC72OSEEDZkyOsBvTmgKvgYA5imD7aT4buhpNmn3RzTHsjsD6lsGh9NQdr2H_8LRduFIQ
CitedBy_id crossref_primary_10_3390_atmos15040470
crossref_primary_10_1080_19475705_2023_2281246
crossref_primary_10_1016_j_gloenvcha_2024_102894
crossref_primary_10_1186_s42408_023_00191_6
crossref_primary_10_1007_s40725_019_00084_5
crossref_primary_10_1016_j_tre_2021_102520
crossref_primary_10_1007_s10980_019_00947_z
crossref_primary_10_1016_j_foreco_2022_120707
crossref_primary_10_1016_j_jenvman_2018_10_027
crossref_primary_10_1002_ecs2_70073
crossref_primary_10_1002_ecs2_4070
crossref_primary_10_1016_j_foreco_2021_119958
crossref_primary_10_1186_s42408_022_00139_2
crossref_primary_10_3390_f12020110
crossref_primary_10_3390_fire6010001
crossref_primary_10_1007_s10694_022_01309_z
crossref_primary_10_3390_f12101407
crossref_primary_10_1371_journal_pone_0313591
crossref_primary_10_3390_f12081078
crossref_primary_10_1007_s10758_025_09839_5
crossref_primary_10_1111_risa_13524
crossref_primary_10_1080_10447318_2021_1990518
crossref_primary_10_1016_j_ijdrr_2025_105714
crossref_primary_10_3390_fire5050151
crossref_primary_10_3390_fire6020037
crossref_primary_10_1016_j_envsoft_2020_104895
crossref_primary_10_1186_s42408_019_0048_6
crossref_primary_10_3389_ffgc_2020_587178
crossref_primary_10_1016_j_foreco_2019_117655
crossref_primary_10_3390_fire8020051
crossref_primary_10_1071_WF17089
crossref_primary_10_1071_WF19189
crossref_primary_10_1186_s42408_019_0028_x
crossref_primary_10_3390_fire6030104
crossref_primary_10_1016_j_envsoft_2022_105590
crossref_primary_10_1016_j_scitotenv_2022_154729
crossref_primary_10_3390_f15091581
crossref_primary_10_1016_j_foreco_2019_03_035
crossref_primary_10_1071_WF20124
crossref_primary_10_1080_19475705_2024_2447514
crossref_primary_10_3390_systems7040049
crossref_primary_10_1016_j_rala_2022_01_001
crossref_primary_10_3390_f13050793
crossref_primary_10_1111_nrm_12295
crossref_primary_10_3390_f10040311
crossref_primary_10_1139_cjfr_2017_0271
crossref_primary_10_1007_s40725_019_00085_4
crossref_primary_10_3390_fire5010005
crossref_primary_10_1007_s41060_022_00328_x
crossref_primary_10_1007_s10980_020_01173_8
crossref_primary_10_1111_gcb_70130
crossref_primary_10_1016_j_tfp_2025_100935
crossref_primary_10_1071_WF19131
crossref_primary_10_1088_1748_9326_ac13ee
crossref_primary_10_3390_f11090909
crossref_primary_10_1071_WF22037
crossref_primary_10_1109_ACCESS_2021_3074477
crossref_primary_10_1186_s42408_024_00324_5
crossref_primary_10_1002_hyp_14086
crossref_primary_10_1007_s40725_019_00101_7
crossref_primary_10_3390_f8120469
crossref_primary_10_1016_j_asr_2024_11_005
crossref_primary_10_1016_j_ecolecon_2022_107525
crossref_primary_10_1071_WF24065
crossref_primary_10_3390_fire5050131
crossref_primary_10_1186_s42408_023_00241_z
crossref_primary_10_3390_f14071458
crossref_primary_10_3390_f12030344
crossref_primary_10_1186_s42408_022_00149_0
crossref_primary_10_1016_j_jenvman_2018_02_020
crossref_primary_10_1007_s10661_018_7052_1
crossref_primary_10_1016_j_foreco_2017_08_039
crossref_primary_10_1088_1748_9326_ab6498
crossref_primary_10_1038_s41598_022_06002_3
crossref_primary_10_1139_er_2020_0019
crossref_primary_10_3390_f12040453
crossref_primary_10_3390_s20092454
crossref_primary_10_1002_ecs2_70385
crossref_primary_10_1016_j_forpol_2024_103351
crossref_primary_10_1016_j_scitotenv_2019_135842
crossref_primary_10_1071_WF19042
crossref_primary_10_3390_rs11151832
crossref_primary_10_1126_science_aay3727
crossref_primary_10_1371_journal_pone_0295392
crossref_primary_10_1016_j_isprsjprs_2019_07_003
crossref_primary_10_3390_fire7080292
Cites_doi 10.1139/X89-153
10.1214/AOS/1016218223
10.1016/J.APGEOG.2011.09.004
10.1890/0012-9658(2007)88[243:BTFEMA]2.0.CO;2
10.1071/WF14216
10.1111/J.1523-1739.2009.01422.X
10.1111/ECOG.00845
10.1071/WF02061
10.1093/forestscience/55.3.249
10.1890/14-1430.1
10.1016/J.ECOLMODEL.2005.03.026
10.1071/WF14190
10.1007/S10021-015-9890-9
10.1111/J.1600-0587.2013.07872.X
10.1071/WF12149
10.1111/J.1365-2656.2008.01390.X
10.1093/forestscience/42.3.267
10.3390/F7030064
10.1016/J.LANDURBPLAN.2013.06.011
10.1155/2011/168473
10.1071/WF11140
10.1016/J.FORECO.2009.08.019
10.1007/S10980-009-9443-8
10.1093/jof/109.5.274
10.1016/J.ENVSOFT.2014.09.018
10.1111/J.1466-8238.2007.00358.X
10.1016/J.FORECO.2016.08.035
10.1371/JOURNAL.PONE.0099699
10.1007/S10666-010-9241-3
10.1890/ES11-00298.1
10.1007/S00267-013-0128-3
10.1890/ES11-00271.1
10.1071/WF13063
10.1016/J.FORECO.2014.06.032
10.1071/WF06107
10.1111/J.1541-0420.2008.01116.X
10.1111/J.1600-0587.2012.07348.X
10.1016/J.FORECO.2015.09.001
10.1111/AEC.12021
10.1007/S00477-011-0462-Z
10.1071/WF15018
10.1016/J.FORECO.2008.04.023
10.1080/14498596.2016.1169952
10.1073/PNAS.1607171113
10.1071/WF10032
10.1111/J.1472-4642.2010.00725.X
ContentType Journal Article
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1071/WF16135
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Forestry
EISSN 1448-5516
EndPage 597
ExternalDocumentID 10_1071_WF16135
GeographicLocations Idaho
Nevada
GeographicLocations_xml – name: Idaho
– name: Nevada
GroupedDBID 0R~
29J
4.4
5GY
88I
AAHBH
AAYXX
ABUWG
AEIBA
AENEX
AEUYN
AFFHD
AFKRA
ALMA_UNASSIGNED_HOLDINGS
ATCPS
AZQEC
BENPR
BHPHI
CCPQU
CITATION
CS3
DU5
DWQXO
EBS
EJD
GNUQQ
HCIFZ
M2P
MV1
NGGKN
P2P
PATMY
PHGZM
PHGZT
PYCSY
RCO
RNS
YV5
ZO4
~KM
7S9
L.6
PUEGO
ID FETCH-LOGICAL-c258t-4e60ddfdf56cd85464c92aa786e91141a07e067f5595277c35333daefb033ae13
ISICitedReferencesCount 104
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000405327500005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1049-8001
IngestDate Thu Sep 04 17:19:11 EDT 2025
Thu Nov 20 00:36:03 EST 2025
Tue Nov 18 22:36:59 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
License https://doi.org/10.1071/journalslicense
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c258t-4e60ddfdf56cd85464c92aa786e91141a07e067f5595277c35333daefb033ae13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 2000316149
PQPubID 24069
PageCount 11
ParticipantIDs proquest_miscellaneous_2000316149
crossref_primary_10_1071_WF16135
crossref_citationtrail_10_1071_WF16135
PublicationCentury 2000
PublicationDate 2017-01-01
PublicationDateYYYYMMDD 2017-01-01
PublicationDate_xml – month: 01
  year: 2017
  text: 2017-01-01
  day: 01
PublicationDecade 2010
PublicationTitle International journal of wildland fire
PublicationYear 2017
References Narayanaraj (2025111813175241400_R44) 2011; 20
Preisler (2025111813175241400_R56) 2004; 13
Finney (2025111813175241400_R22) 2011; 16
Friedman (2025111813175241400_R26) 2000; 28
Anderson (2025111813175241400_R2) 1989; 19
Thompson (2025111813175241400_R66) 2015; 63
2025111813175241400_R11
Short (2025111813175241400_R64) 2015; 24
Parks (2025111813175241400_R51) 2015; 25
2025111813175241400_R13
Podur (2025111813175241400_R55) 2007; 16
Bradstock (2025111813175241400_R5) 2010; 25
2025111813175241400_R53
De’ath (2025111813175241400_R8) 2007; 88
Lobo (2025111813175241400_R37) 2008; 17
2025111813175241400_R47
Phillips (2025111813175241400_R54) 2006; 190
Beier (2025111813175241400_R3) 2010; 24
Thompson (2025111813175241400_R65) 2013; 73
Elith (2025111813175241400_R17) 2011; 17
Mitsopoulos (2025111813175241400_R42) 2016
Margolis (2025111813175241400_R39) 2009; 258
Harris (2025111813175241400_R29) 2015; 18
2025111813175241400_R43
Dunn (2025111813175241400_R15)
Haas (2025111813175241400_R28) 2013; 119
Riley (2025111813175241400_R60) 2013; 22
2025111813175241400_R36
Price (2025111813175241400_R57) 2014; 39
Calkin (2025111813175241400_R7) 2011; 109
2025111813175241400_R38
Merow (2025111813175241400_R40) 2013; 36
Parks (2025111813175241400_R49) 2012; 3
Finney (2025111813175241400_R23) 2011; 25
Abatzoglou (2025111813175241400_R1) 2016; 113
Kane (2025111813175241400_R33) 2015; 358
2025111813175241400_R71
2025111813175241400_R70
Dormann (2025111813175241400_R12) 2013; 36
Noonan-Wright (2025111813175241400_R46) 2011; 2011
Petrovic (2025111813175241400_R52) 2012; 21
Elith (2025111813175241400_R16) 2008; 77
2025111813175241400_R32
2025111813175241400_R35
Dillon (2025111813175241400_R10) 2011; 2
2025111813175241400_R34
2025111813175241400_R73
Iniguez (2025111813175241400_R31) 2008; 256
2025111813175241400_R69
2025111813175241400_R27
Thompson (2025111813175241400_R68) 2016; 25
Ward (2025111813175241400_R72) 2009; 65
Dillon (2025111813175241400_R9) 2011; 71
2025111813175241400_R4
Thompson (2025111813175241400_R67) 2016; 7
O’Connor (2025111813175241400_R48) 2014; 329
2025111813175241400_R24
2025111813175241400_R6
Duff (2025111813175241400_R14) 2015; 24
2025111813175241400_R62
2025111813175241400_R20
2025111813175241400_R63
2025111813175241400_R19
2025111813175241400_R18
Holsinger (2025111813175241400_R30) 2016; 380
Narayanaraj (2025111813175241400_R45) 2012; 32
2025111813175241400_R59
2025111813175241400_R58
Rodríguez y Silva (2025111813175241400_R61) 2014; 23
Finney (2025111813175241400_R21) 2009; 55
Merow (2025111813175241400_R41) 2014; 37
Wu (2025111813175241400_R74) 2013; 52
Parks (2025111813175241400_R50) 2014; 9
Fried (2025111813175241400_R25) 1996; 42
References_xml – ident: 2025111813175241400_R13
– volume: 19
  start-page: 997
  year: 1989
  ident: 2025111813175241400_R2
  article-title: A mathematical model for fire containment.
  publication-title: Canadian Journal of Forest Research
  doi: 10.1139/X89-153
– ident: 2025111813175241400_R36
– volume: 28
  start-page: 337
  year: 2000
  ident: 2025111813175241400_R26
  article-title: Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors).
  publication-title: Annals of Statistics
  doi: 10.1214/AOS/1016218223
– volume: 32
  start-page: 878
  year: 2012
  ident: 2025111813175241400_R45
  article-title: Influences of forest roads on the spatial patterns of human- and lightning-caused wildfire ignitions.
  publication-title: Applied Geography (Sevenoaks, England)
  doi: 10.1016/J.APGEOG.2011.09.004
– ident: 2025111813175241400_R69
– volume: 88
  start-page: 243
  year: 2007
  ident: 2025111813175241400_R8
  article-title: Boosted trees for ecological modeling and prediction.
  publication-title: Ecology
  doi: 10.1890/0012-9658(2007)88[243:BTFEMA]2.0.CO;2
– volume: 25
  start-page: 167
  year: 2016
  ident: 2025111813175241400_R68
  article-title: Quantifying the influence of previously burned areas on suppression effectiveness and avoided exposure: a case study of the Las Conchas Fire.
  publication-title: International Journal of Wildland Fire
  doi: 10.1071/WF14216
– volume: 24
  start-page: 701
  year: 2010
  ident: 2025111813175241400_R3
  article-title: Use of land facets to plan for climate change: conserving the arenas, not the actors.
  publication-title: Conservation Biology
  doi: 10.1111/J.1523-1739.2009.01422.X
– volume: 37
  start-page: 1267
  year: 2014
  ident: 2025111813175241400_R41
  article-title: What do we gain from simplicity versus complexity in species distribution models?
  publication-title: Ecography
  doi: 10.1111/ECOG.00845
– ident: 2025111813175241400_R32
– volume: 13
  start-page: 133
  year: 2004
  ident: 2025111813175241400_R56
  article-title: Probability based models for estimation of wildfire risk.
  publication-title: International Journal of Wildland Fire
  doi: 10.1071/WF02061
– volume: 55
  start-page: 249
  year: 2009
  ident: 2025111813175241400_R21
  article-title: Modeling containment of large wildfires using generalized linear mixed-model analysis.
  publication-title: Forest Science
  doi: 10.1093/forestscience/55.3.249
– volume: 25
  start-page: 1478
  year: 2015
  ident: 2025111813175241400_R51
  article-title: Wildland fire as a self-regulating mechanism: the role of previous burns and weather in limiting fire progression.
  publication-title: Ecological Applications
  doi: 10.1890/14-1430.1
– volume: 190
  start-page: 231
  year: 2006
  ident: 2025111813175241400_R54
  article-title: Maximum entropy modeling of species geographic distributions.
  publication-title: Ecological Modelling
  doi: 10.1016/J.ECOLMODEL.2005.03.026
– ident: 2025111813175241400_R70
– ident: 2025111813175241400_R15
  article-title: A framework for developing safe and efficient large-fire incident response strategies and tactics for a new fire management paradigm.
  publication-title: International Journal of Wildland Fire
– volume: 24
  start-page: 883
  year: 2015
  ident: 2025111813175241400_R64
  article-title: Sources and implications of bias and uncertainty in a century of US wildfire activity data.
  publication-title: International Journal of Wildland Fire
  doi: 10.1071/WF14190
– ident: 2025111813175241400_R59
– volume: 18
  start-page: 1192
  year: 2015
  ident: 2025111813175241400_R29
  article-title: Topography, fuels, and fire exclusion drive fire severity of the Rim Fire in an old-growth mixed-conifer forest, Yosemite National Park, USA.
  publication-title: Ecosystems
  doi: 10.1007/S10021-015-9890-9
– volume: 36
  start-page: 1058
  year: 2013
  ident: 2025111813175241400_R40
  article-title: A practical guide to MaxEnt for modeling species’ distributions: what it does, and why inputs and settings matter.
  publication-title: Ecography
  doi: 10.1111/J.1600-0587.2013.07872.X
– volume: 22
  start-page: 894
  year: 2013
  ident: 2025111813175241400_R60
  article-title: The relationship of large fire occurrence with drought and fire danger indices in the western USA, 1984–2008: the role of temporal scale.
  publication-title: International Journal of Wildland Fire
  doi: 10.1071/WF12149
– volume: 77
  start-page: 802
  year: 2008
  ident: 2025111813175241400_R16
  article-title: A working guide to boosted regression trees.
  publication-title: Journal of Animal Ecology
  doi: 10.1111/J.1365-2656.2008.01390.X
– volume: 42
  start-page: 267
  year: 1996
  ident: 2025111813175241400_R25
  article-title: Simulating wildfire containment with realistic tactics.
  publication-title: Forest Science
  doi: 10.1093/forestscience/42.3.267
– volume: 7
  start-page: 64
  year: 2016
  ident: 2025111813175241400_R67
  article-title: Application of wildfire risk assessment results to wildfire response planning in the Southern Sierra Nevada, California, USA.
  publication-title: Forests
  doi: 10.3390/F7030064
– volume: 119
  start-page: 44
  year: 2013
  ident: 2025111813175241400_R28
  article-title: A national approach for integrating wildfire simulation modeling into wildland–urban interface risk assessments within the United States.
  publication-title: Landscape and Urban Planning
  doi: 10.1016/J.LANDURBPLAN.2013.06.011
– ident: 2025111813175241400_R43
– volume: 2011
  start-page: 168473
  year: 2011
  ident: 2025111813175241400_R46
  article-title: Developing the US wildland fire decision support system.
  publication-title: Journal of Combustion
  doi: 10.1155/2011/168473
– volume: 21
  start-page: 927
  year: 2012
  ident: 2025111813175241400_R52
  article-title: A decision-making framework for wildfire suppression.
  publication-title: International Journal of Wildland Fire
  doi: 10.1071/WF11140
– ident: 2025111813175241400_R4
– ident: 2025111813175241400_R27
– volume: 258
  start-page: 2416
  year: 2009
  ident: 2025111813175241400_R39
  article-title: Fire history and fire–climate relationships along a fire regime gradient in the Santa Fe Municipal Watershed, NM, USA.
  publication-title: Forest Ecology and Management
  doi: 10.1016/J.FORECO.2009.08.019
– volume: 25
  start-page: 607
  year: 2010
  ident: 2025111813175241400_R5
  article-title: Effects of weather, fuel and terrain on fire severity in topographically diverse landscapes of south-eastern Australia.
  publication-title: Landscape Ecology
  doi: 10.1007/S10980-009-9443-8
– volume: 73
  start-page: 18
  year: 2013
  ident: 2025111813175241400_R65
  article-title: Developing standardized strategic response categories for fire management units.
  publication-title: Fire Management Today
– ident: 2025111813175241400_R71
– volume: 109
  start-page: 274
  year: 2011
  ident: 2025111813175241400_R7
  article-title: A real-time risk assessment tool supporting wildland fire decision making.
  publication-title: Journal of Forestry
  doi: 10.1093/jof/109.5.274
– ident: 2025111813175241400_R58
– volume: 63
  start-page: 61
  year: 2015
  ident: 2025111813175241400_R66
  article-title: Development and application of a geospatial wildfire exposure and risk calculation tool.
  publication-title: Environmental Modelling & Software
  doi: 10.1016/J.ENVSOFT.2014.09.018
– volume: 17
  start-page: 145
  year: 2008
  ident: 2025111813175241400_R37
  article-title: AUC: a misleading measure of the performance of predictive distribution models.
  publication-title: Global Ecology and Biogeography
  doi: 10.1111/J.1466-8238.2007.00358.X
– ident: 2025111813175241400_R38
– ident: 2025111813175241400_R63
– volume: 380
  start-page: 59
  year: 2016
  ident: 2025111813175241400_R30
  article-title: Weather, fuels, and topography impede wildland fire spread in western US landscapes.
  publication-title: Forest Ecology and Management
  doi: 10.1016/J.FORECO.2016.08.035
– volume: 9
  start-page: e99699
  year: 2014
  ident: 2025111813175241400_R50
  article-title: Fire activity and severity in the western US vary along proxy gradients representing fuel amount and fuel moisture.
  publication-title: PLoS One
  doi: 10.1371/JOURNAL.PONE.0099699
– ident: 2025111813175241400_R19
– volume: 16
  start-page: 153
  year: 2011
  ident: 2025111813175241400_R22
  article-title: A method for ensemble wildland fire simulation.
  publication-title: Environmental Modeling and Assessment
  doi: 10.1007/S10666-010-9241-3
– ident: 2025111813175241400_R34
– ident: 2025111813175241400_R11
– volume: 3
  start-page: 12
  year: 2012
  ident: 2025111813175241400_R49
  article-title: Spatial bottom-up controls on fire likelihood vary across western North America.
  publication-title: Ecosphere
  doi: 10.1890/ES11-00298.1
– volume: 52
  start-page: 821
  year: 2013
  ident: 2025111813175241400_R74
  article-title: Determining relative contributions of vegetation and topography to burn severity from LANDSAT imagery.
  publication-title: Environmental Management
  doi: 10.1007/S00267-013-0128-3
– volume: 2
  start-page: 130
  year: 2011
  ident: 2025111813175241400_R10
  article-title: Both topography and climate affected forest and woodland burn severity in two regions of the western US, 1984 to 2006.
  publication-title: Ecosphere
  doi: 10.1890/ES11-00271.1
– ident: 2025111813175241400_R24
– volume: 23
  start-page: 544
  year: 2014
  ident: 2025111813175241400_R61
  article-title: A methodology for determining operational priorities for prevention and suppression of wildland fires.
  publication-title: International Journal of Wildland Fire
  doi: 10.1071/WF13063
– ident: 2025111813175241400_R47
– ident: 2025111813175241400_R53
– ident: 2025111813175241400_R20
– volume: 329
  start-page: 264
  year: 2014
  ident: 2025111813175241400_R48
  article-title: Fire severity, size, and climate associations diverge from historical precedent along an ecological gradient in the Pinaleño Mountains, Arizona, USA.
  publication-title: Forest Ecology and Management
  doi: 10.1016/J.FORECO.2014.06.032
– volume: 16
  start-page: 285
  year: 2007
  ident: 2025111813175241400_R55
  article-title: A simulation model of the growth and suppression of large forest fires in Ontario.
  publication-title: International Journal of Wildland Fire
  doi: 10.1071/WF06107
– volume: 65
  start-page: 554
  year: 2009
  ident: 2025111813175241400_R72
  article-title: Presence-only data and the EM algorithm.
  publication-title: Biometrics
  doi: 10.1111/J.1541-0420.2008.01116.X
– ident: 2025111813175241400_R62
– volume: 36
  start-page: 27
  year: 2013
  ident: 2025111813175241400_R12
  article-title: Collinearity: a review of methods to deal with it and a simulation study evaluating their performance.
  publication-title: Ecography
  doi: 10.1111/J.1600-0587.2012.07348.X
– ident: 2025111813175241400_R18
– volume: 358
  start-page: 62
  year: 2015
  ident: 2025111813175241400_R33
  article-title: Mixed severity fire effects within the Rim Fire: relative importance of local climate, fire weather, topography, and forest structure.
  publication-title: Forest Ecology and Management
  doi: 10.1016/J.FORECO.2015.09.001
– ident: 2025111813175241400_R35
– volume: 71
  start-page: 25
  year: 2011
  ident: 2025111813175241400_R9
  article-title: Mapping the potential for high severity wildfire in the western United States.
  publication-title: Fire Management Today
– volume: 39
  start-page: 135
  year: 2014
  ident: 2025111813175241400_R57
  article-title: Role of weather and fuel in stopping fire spread in tropical savannas.
  publication-title: Austral Ecology
  doi: 10.1111/AEC.12021
– volume: 25
  start-page: 973
  year: 2011
  ident: 2025111813175241400_R23
  article-title: A simulation of probabilistic wildfire risk components for the continental United States.
  publication-title: Stochastic Environmental Research and Risk Assessment
  doi: 10.1007/S00477-011-0462-Z
– volume: 24
  start-page: 735
  year: 2015
  ident: 2025111813175241400_R14
  article-title: Operational wildfire suppression modelling: a review evaluating development, state of the art and future directions.
  publication-title: International Journal of Wildland Fire
  doi: 10.1071/WF15018
– volume: 256
  start-page: 295
  year: 2008
  ident: 2025111813175241400_R31
  article-title: Topography affected landscape fire history patterns in southern Arizona, USA.
  publication-title: Forest Ecology and Management
  doi: 10.1016/J.FORECO.2008.04.023
– year: 2016
  ident: 2025111813175241400_R42
  article-title: An integrated approach for mapping fire suppression difficulty in three different ecosystems of Eastern Europe.
  publication-title: Journal of Spatial Science
  doi: 10.1080/14498596.2016.1169952
– volume: 113
  start-page: 11770
  year: 2016
  ident: 2025111813175241400_R1
  article-title: Impact of anthropogenic climate change on wildfire across western US forests.
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
  doi: 10.1073/PNAS.1607171113
– ident: 2025111813175241400_R6
– volume: 20
  start-page: 792
  year: 2011
  ident: 2025111813175241400_R44
  article-title: Influences of forest roads on the spatial pattern of wildfire boundaries.
  publication-title: International Journal of Wildland Fire
  doi: 10.1071/WF10032
– volume: 17
  start-page: 43
  year: 2011
  ident: 2025111813175241400_R17
  article-title: A statistical explanation of MaxEnt for ecologists.
  publication-title: Diversity & Distributions
  doi: 10.1111/J.1472-4642.2010.00725.X
– ident: 2025111813175241400_R73
SSID ssj0014619
Score 2.490924
Snippet During active fire incidents, decisions regarding where and how to safely and effectively deploy resources to meet management objectives are often made under...
SourceID proquest
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
StartPage 587
SubjectTerms artificial intelligence
data collection
fire spread
fire suppression
fire weather
fires
fuels (fire ecology)
Idaho
land management
landscapes
Nevada
planning
prediction
probability
regression analysis
topography
Title An empirical machine learning method for predicting potential fire control locations for pre-fire planning and operational fire management
URI https://www.proquest.com/docview/2000316149
Volume 26
WOSCitedRecordID wos000405327500005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Environmental Science Database
  customDbUrl:
  eissn: 1448-5516
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014619
  issn: 1049-8001
  databaseCode: PATMY
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/environmentalscience
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1448-5516
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014619
  issn: 1049-8001
  databaseCode: BENPR
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database
  customDbUrl:
  eissn: 1448-5516
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014619
  issn: 1049-8001
  databaseCode: M2P
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Pb9MwFLa6DaFxQDBAbMBkJMQlSkkTJ7aPZXTiAKVCA3ar3NhBRW0aZd20v4F_jn-J5x9x0vYAHLhElWNXat8nv_f8Pr8PoVc8KlTBJA8jxikkKIkKhYyiMCf5DFyKYJFpVv31Ax2P2eUln_R6v5q7MDcLWpbs9pZX_9XUMAbG1ldn_8Hc_kthAD6D0eEJZofnXxl-WAZqWc1t64-l4UqqRhziu1OMNuTCqtZFGkN7rlZrzRrSlxnndctf147OMuXc_NC8rpzQkSk8rCpVNweK5u1yk1Dzo6XKtyePnX4VEKtLza40i31FRItg11vND4J3_eBTQ87w5xdnYuEUxQw9Pxj1d7ku-kqSkTUPJv3uMceAdo457M4MqQy4Uzek7BjklqGu9HW3c3sB38GWdvbm1Hl26-ZTSwve8SAQcoGFv51DJGz7qGz26N7ynZ7RaGr5dDB1C_fQQUxTDtvswdvRePLZF7ZIZrRm_K-x97j10jdu6WaAtBkfmKDn4gG677IVPLQoe4h6qjxC9zo9LI_QXS3uqhUDH6GfwxJ76GEHPdxAD1voYYASbqGHPfSwBgB20MMees18Az3cQA8DYnAHenZxC73H6Mv56OLsfei0PsI8Ttk6JCqLpCxkkWa5ZCnJSM5jISjLFLhjMhARVRBYFZAApzGleQJpSiKFKmZRkgg1SJ6g_XJVqqcIFyKVZMYJTVhOqBSsEAmRTCSQbfOYqmP0uvmDp7lrhK_1WBbTLSMeI-wnVrb3y-6Ul42FprAv62KbKNXq-krLu4K_hOCXn_z5a56hwxbzz9H-ur5WL9Cd_GY9v6pPHYZO0d7HePIb5CS1TQ
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+empirical+machine+learning+method+for+predicting+potential+fire+control+locations+for+pre-fire+planning+and+operational+fire+management&rft.jtitle=International+journal+of+wildland+fire&rft.au=Connor%2C+Christopher+D.+O%E2%80%99&rft.au=Calkin%2C+David+E.&rft.au=Thompson%2C+Matthew+P.&rft.date=2017-01-01&rft.issn=1049-8001&rft.eissn=1448-5516&rft.volume=26&rft.issue=7&rft.spage=587&rft.epage=597&rft_id=info:doi/10.1071%2FWF16135&rft.externalDBID=n%2Fa&rft.externalDocID=10_1071_WF16135
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1049-8001&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1049-8001&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1049-8001&client=summon