An empirical machine learning method for predicting potential fire control locations for pre-fire planning and operational fire management
During active fire incidents, decisions regarding where and how to safely and effectively deploy resources to meet management objectives are often made under rapidly evolving conditions, with limited time to assess management strategies or for development of backup plans if initial efforts prove uns...
Saved in:
| Published in: | International journal of wildland fire Vol. 26; no. 7; pp. 587 - 597 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
01.01.2017
|
| Subjects: | |
| ISSN: | 1049-8001, 1448-5516 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | During active fire incidents, decisions regarding where and how to safely and effectively deploy resources to meet management objectives are often made under rapidly evolving conditions, with limited time to assess management strategies or for development of backup plans if initial efforts prove unsuccessful. Under all but the most extreme fire weather conditions, topography and fuels are significant factors affecting potential fire spread and burn severity. We leverage these relationships to quantify the effects of topography, fuel characteristics, road networks and fire suppression effort on the perimeter locations of 238 large fires, and develop a predictive model of potential fire control locations spanning a range of fuel types, topographic features and natural and anthropogenic barriers to fire spread, on a 34 000 km2 landscape in southern Idaho and northern Nevada. The boosted logistic regression model correctly classified final fire perimeter locations on an independent dataset with 69% accuracy without consideration of weather conditions on individual fires. The resulting fire control probability surface has potential for reducing unnecessary exposure for fire responders, coordinating pre-fire planning for operational fire response, and as a network of locations to incorporate into spatial fire planning to better align fire operations with land management objectives. |
|---|---|
| AbstractList | During active fire incidents, decisions regarding where and how to safely and effectively deploy resources to meet management objectives are often made under rapidly evolving conditions, with limited time to assess management strategies or for development of backup plans if initial efforts prove unsuccessful. Under all but the most extreme fire weather conditions, topography and fuels are significant factors affecting potential fire spread and burn severity. We leverage these relationships to quantify the effects of topography, fuel characteristics, road networks and fire suppression effort on the perimeter locations of 238 large fires, and develop a predictive model of potential fire control locations spanning a range of fuel types, topographic features and natural and anthropogenic barriers to fire spread, on a 34000km2 landscape in southern Idaho and northern Nevada. The boosted logistic regression model correctly classified final fire perimeter locations on an independent dataset with 69% accuracy without consideration of weather conditions on individual fires. The resulting fire control probability surface has potential for reducing unnecessary exposure for fire responders, coordinating pre-fire planning for operational fire response, and as a network of locations to incorporate into spatial fire planning to better align fire operations with land management objectives. During active fire incidents, decisions regarding where and how to safely and effectively deploy resources to meet management objectives are often made under rapidly evolving conditions, with limited time to assess management strategies or for development of backup plans if initial efforts prove unsuccessful. Under all but the most extreme fire weather conditions, topography and fuels are significant factors affecting potential fire spread and burn severity. We leverage these relationships to quantify the effects of topography, fuel characteristics, road networks and fire suppression effort on the perimeter locations of 238 large fires, and develop a predictive model of potential fire control locations spanning a range of fuel types, topographic features and natural and anthropogenic barriers to fire spread, on a 34 000 km2 landscape in southern Idaho and northern Nevada. The boosted logistic regression model correctly classified final fire perimeter locations on an independent dataset with 69% accuracy without consideration of weather conditions on individual fires. The resulting fire control probability surface has potential for reducing unnecessary exposure for fire responders, coordinating pre-fire planning for operational fire response, and as a network of locations to incorporate into spatial fire planning to better align fire operations with land management objectives. |
| Author | Thompson, Matthew P. Calkin, David E. Connor, Christopher D. O |
| Author_xml | – sequence: 1 givenname: Christopher D. O’ surname: Connor fullname: Connor, Christopher D. O’ – sequence: 2 givenname: David E. surname: Calkin fullname: Calkin, David E. – sequence: 3 givenname: Matthew P. surname: Thompson fullname: Thompson, Matthew P. |
| BookMark | eNplkE1OwzAQhS1UJNqCuIJ3sAnYsZ2fZVVRQKrEBsQyMva4NUrsYLsLrsCpSdN2A6t5mvnmaebN0MR5BwhdU3JHSUnv31e0oEycoSnlvMqEoMVk0ITXWUUIvUCzGD8HwQtaT9HPwmHoehuski3upNpaB7gFGZx1G9xB2nqNjQ-4D6CtSvtu7xO4ZIcFYwNg5V0KvsWtVzJZ7-KJz8Zx30o3mkmnse8hjNBpuZNObqAb_C7RuZFthKtjnaO31cPr8ilbvzw-LxfrTOWiShmHgmhttBGF0pXgBVd1LmVZFVBTyqkkJZCiNELUIi9LxQRjTEswH4QxCZTN0e3Btw_-awcxNZ2NCtrhTPC72OSEEDZkyOsBvTmgKvgYA5imD7aT4buhpNmn3RzTHsjsD6lsGh9NQdr2H_8LRduFIQ |
| CitedBy_id | crossref_primary_10_3390_atmos15040470 crossref_primary_10_1080_19475705_2023_2281246 crossref_primary_10_1016_j_gloenvcha_2024_102894 crossref_primary_10_1186_s42408_023_00191_6 crossref_primary_10_1007_s40725_019_00084_5 crossref_primary_10_1016_j_tre_2021_102520 crossref_primary_10_1007_s10980_019_00947_z crossref_primary_10_1016_j_foreco_2022_120707 crossref_primary_10_1016_j_jenvman_2018_10_027 crossref_primary_10_1002_ecs2_70073 crossref_primary_10_1002_ecs2_4070 crossref_primary_10_1016_j_foreco_2021_119958 crossref_primary_10_1186_s42408_022_00139_2 crossref_primary_10_3390_f12020110 crossref_primary_10_3390_fire6010001 crossref_primary_10_1007_s10694_022_01309_z crossref_primary_10_3390_f12101407 crossref_primary_10_1371_journal_pone_0313591 crossref_primary_10_3390_f12081078 crossref_primary_10_1007_s10758_025_09839_5 crossref_primary_10_1111_risa_13524 crossref_primary_10_1080_10447318_2021_1990518 crossref_primary_10_1016_j_ijdrr_2025_105714 crossref_primary_10_3390_fire5050151 crossref_primary_10_3390_fire6020037 crossref_primary_10_1016_j_envsoft_2020_104895 crossref_primary_10_1186_s42408_019_0048_6 crossref_primary_10_3389_ffgc_2020_587178 crossref_primary_10_1016_j_foreco_2019_117655 crossref_primary_10_3390_fire8020051 crossref_primary_10_1071_WF17089 crossref_primary_10_1071_WF19189 crossref_primary_10_1186_s42408_019_0028_x crossref_primary_10_3390_fire6030104 crossref_primary_10_1016_j_envsoft_2022_105590 crossref_primary_10_1016_j_scitotenv_2022_154729 crossref_primary_10_3390_f15091581 crossref_primary_10_1016_j_foreco_2019_03_035 crossref_primary_10_1071_WF20124 crossref_primary_10_1080_19475705_2024_2447514 crossref_primary_10_3390_systems7040049 crossref_primary_10_1016_j_rala_2022_01_001 crossref_primary_10_3390_f13050793 crossref_primary_10_1111_nrm_12295 crossref_primary_10_3390_f10040311 crossref_primary_10_1139_cjfr_2017_0271 crossref_primary_10_1007_s40725_019_00085_4 crossref_primary_10_3390_fire5010005 crossref_primary_10_1007_s41060_022_00328_x crossref_primary_10_1007_s10980_020_01173_8 crossref_primary_10_1111_gcb_70130 crossref_primary_10_1016_j_tfp_2025_100935 crossref_primary_10_1071_WF19131 crossref_primary_10_1088_1748_9326_ac13ee crossref_primary_10_3390_f11090909 crossref_primary_10_1071_WF22037 crossref_primary_10_1109_ACCESS_2021_3074477 crossref_primary_10_1186_s42408_024_00324_5 crossref_primary_10_1002_hyp_14086 crossref_primary_10_1007_s40725_019_00101_7 crossref_primary_10_3390_f8120469 crossref_primary_10_1016_j_asr_2024_11_005 crossref_primary_10_1016_j_ecolecon_2022_107525 crossref_primary_10_1071_WF24065 crossref_primary_10_3390_fire5050131 crossref_primary_10_1186_s42408_023_00241_z crossref_primary_10_3390_f14071458 crossref_primary_10_3390_f12030344 crossref_primary_10_1186_s42408_022_00149_0 crossref_primary_10_1016_j_jenvman_2018_02_020 crossref_primary_10_1007_s10661_018_7052_1 crossref_primary_10_1016_j_foreco_2017_08_039 crossref_primary_10_1088_1748_9326_ab6498 crossref_primary_10_1038_s41598_022_06002_3 crossref_primary_10_1139_er_2020_0019 crossref_primary_10_3390_f12040453 crossref_primary_10_3390_s20092454 crossref_primary_10_1002_ecs2_70385 crossref_primary_10_1016_j_forpol_2024_103351 crossref_primary_10_1016_j_scitotenv_2019_135842 crossref_primary_10_1071_WF19042 crossref_primary_10_3390_rs11151832 crossref_primary_10_1126_science_aay3727 crossref_primary_10_1371_journal_pone_0295392 crossref_primary_10_1016_j_isprsjprs_2019_07_003 crossref_primary_10_3390_fire7080292 |
| Cites_doi | 10.1139/X89-153 10.1214/AOS/1016218223 10.1016/J.APGEOG.2011.09.004 10.1890/0012-9658(2007)88[243:BTFEMA]2.0.CO;2 10.1071/WF14216 10.1111/J.1523-1739.2009.01422.X 10.1111/ECOG.00845 10.1071/WF02061 10.1093/forestscience/55.3.249 10.1890/14-1430.1 10.1016/J.ECOLMODEL.2005.03.026 10.1071/WF14190 10.1007/S10021-015-9890-9 10.1111/J.1600-0587.2013.07872.X 10.1071/WF12149 10.1111/J.1365-2656.2008.01390.X 10.1093/forestscience/42.3.267 10.3390/F7030064 10.1016/J.LANDURBPLAN.2013.06.011 10.1155/2011/168473 10.1071/WF11140 10.1016/J.FORECO.2009.08.019 10.1007/S10980-009-9443-8 10.1093/jof/109.5.274 10.1016/J.ENVSOFT.2014.09.018 10.1111/J.1466-8238.2007.00358.X 10.1016/J.FORECO.2016.08.035 10.1371/JOURNAL.PONE.0099699 10.1007/S10666-010-9241-3 10.1890/ES11-00298.1 10.1007/S00267-013-0128-3 10.1890/ES11-00271.1 10.1071/WF13063 10.1016/J.FORECO.2014.06.032 10.1071/WF06107 10.1111/J.1541-0420.2008.01116.X 10.1111/J.1600-0587.2012.07348.X 10.1016/J.FORECO.2015.09.001 10.1111/AEC.12021 10.1007/S00477-011-0462-Z 10.1071/WF15018 10.1016/J.FORECO.2008.04.023 10.1080/14498596.2016.1169952 10.1073/PNAS.1607171113 10.1071/WF10032 10.1111/J.1472-4642.2010.00725.X |
| ContentType | Journal Article |
| DBID | AAYXX CITATION 7S9 L.6 |
| DOI | 10.1071/WF16135 |
| DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA CrossRef |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Forestry |
| EISSN | 1448-5516 |
| EndPage | 597 |
| ExternalDocumentID | 10_1071_WF16135 |
| GeographicLocations | Idaho Nevada |
| GeographicLocations_xml | – name: Idaho – name: Nevada |
| GroupedDBID | 0R~ 29J 4.4 5GY 88I AAHBH AAYXX ABUWG AEIBA AENEX AEUYN AFFHD AFKRA ALMA_UNASSIGNED_HOLDINGS ATCPS AZQEC BENPR BHPHI CCPQU CITATION CS3 DU5 DWQXO EBS EJD GNUQQ HCIFZ M2P MV1 NGGKN P2P PATMY PHGZM PHGZT PYCSY RCO RNS YV5 ZO4 ~KM 7S9 L.6 PUEGO |
| ID | FETCH-LOGICAL-c258t-4e60ddfdf56cd85464c92aa786e91141a07e067f5595277c35333daefb033ae13 |
| ISICitedReferencesCount | 104 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000405327500005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1049-8001 |
| IngestDate | Thu Sep 04 17:19:11 EDT 2025 Thu Nov 20 00:36:03 EST 2025 Tue Nov 18 22:36:59 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 7 |
| Language | English |
| License | https://doi.org/10.1071/journalslicense |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c258t-4e60ddfdf56cd85464c92aa786e91141a07e067f5595277c35333daefb033ae13 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PQID | 2000316149 |
| PQPubID | 24069 |
| PageCount | 11 |
| ParticipantIDs | proquest_miscellaneous_2000316149 crossref_primary_10_1071_WF16135 crossref_citationtrail_10_1071_WF16135 |
| PublicationCentury | 2000 |
| PublicationDate | 2017-01-01 |
| PublicationDateYYYYMMDD | 2017-01-01 |
| PublicationDate_xml | – month: 01 year: 2017 text: 2017-01-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationTitle | International journal of wildland fire |
| PublicationYear | 2017 |
| References | Narayanaraj (2025111813175241400_R44) 2011; 20 Preisler (2025111813175241400_R56) 2004; 13 Finney (2025111813175241400_R22) 2011; 16 Friedman (2025111813175241400_R26) 2000; 28 Anderson (2025111813175241400_R2) 1989; 19 Thompson (2025111813175241400_R66) 2015; 63 2025111813175241400_R11 Short (2025111813175241400_R64) 2015; 24 Parks (2025111813175241400_R51) 2015; 25 2025111813175241400_R13 Podur (2025111813175241400_R55) 2007; 16 Bradstock (2025111813175241400_R5) 2010; 25 2025111813175241400_R53 De’ath (2025111813175241400_R8) 2007; 88 Lobo (2025111813175241400_R37) 2008; 17 2025111813175241400_R47 Phillips (2025111813175241400_R54) 2006; 190 Beier (2025111813175241400_R3) 2010; 24 Thompson (2025111813175241400_R65) 2013; 73 Elith (2025111813175241400_R17) 2011; 17 Mitsopoulos (2025111813175241400_R42) 2016 Margolis (2025111813175241400_R39) 2009; 258 Harris (2025111813175241400_R29) 2015; 18 2025111813175241400_R43 Dunn (2025111813175241400_R15) Haas (2025111813175241400_R28) 2013; 119 Riley (2025111813175241400_R60) 2013; 22 2025111813175241400_R36 Price (2025111813175241400_R57) 2014; 39 Calkin (2025111813175241400_R7) 2011; 109 2025111813175241400_R38 Merow (2025111813175241400_R40) 2013; 36 Parks (2025111813175241400_R49) 2012; 3 Finney (2025111813175241400_R23) 2011; 25 Abatzoglou (2025111813175241400_R1) 2016; 113 Kane (2025111813175241400_R33) 2015; 358 2025111813175241400_R71 2025111813175241400_R70 Dormann (2025111813175241400_R12) 2013; 36 Noonan-Wright (2025111813175241400_R46) 2011; 2011 Petrovic (2025111813175241400_R52) 2012; 21 Elith (2025111813175241400_R16) 2008; 77 2025111813175241400_R32 2025111813175241400_R35 Dillon (2025111813175241400_R10) 2011; 2 2025111813175241400_R34 2025111813175241400_R73 Iniguez (2025111813175241400_R31) 2008; 256 2025111813175241400_R69 2025111813175241400_R27 Thompson (2025111813175241400_R68) 2016; 25 Ward (2025111813175241400_R72) 2009; 65 Dillon (2025111813175241400_R9) 2011; 71 2025111813175241400_R4 Thompson (2025111813175241400_R67) 2016; 7 O’Connor (2025111813175241400_R48) 2014; 329 2025111813175241400_R24 2025111813175241400_R6 Duff (2025111813175241400_R14) 2015; 24 2025111813175241400_R62 2025111813175241400_R20 2025111813175241400_R63 2025111813175241400_R19 2025111813175241400_R18 Holsinger (2025111813175241400_R30) 2016; 380 Narayanaraj (2025111813175241400_R45) 2012; 32 2025111813175241400_R59 2025111813175241400_R58 Rodríguez y Silva (2025111813175241400_R61) 2014; 23 Finney (2025111813175241400_R21) 2009; 55 Merow (2025111813175241400_R41) 2014; 37 Wu (2025111813175241400_R74) 2013; 52 Parks (2025111813175241400_R50) 2014; 9 Fried (2025111813175241400_R25) 1996; 42 |
| References_xml | – ident: 2025111813175241400_R13 – volume: 19 start-page: 997 year: 1989 ident: 2025111813175241400_R2 article-title: A mathematical model for fire containment. publication-title: Canadian Journal of Forest Research doi: 10.1139/X89-153 – ident: 2025111813175241400_R36 – volume: 28 start-page: 337 year: 2000 ident: 2025111813175241400_R26 article-title: Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). publication-title: Annals of Statistics doi: 10.1214/AOS/1016218223 – volume: 32 start-page: 878 year: 2012 ident: 2025111813175241400_R45 article-title: Influences of forest roads on the spatial patterns of human- and lightning-caused wildfire ignitions. publication-title: Applied Geography (Sevenoaks, England) doi: 10.1016/J.APGEOG.2011.09.004 – ident: 2025111813175241400_R69 – volume: 88 start-page: 243 year: 2007 ident: 2025111813175241400_R8 article-title: Boosted trees for ecological modeling and prediction. publication-title: Ecology doi: 10.1890/0012-9658(2007)88[243:BTFEMA]2.0.CO;2 – volume: 25 start-page: 167 year: 2016 ident: 2025111813175241400_R68 article-title: Quantifying the influence of previously burned areas on suppression effectiveness and avoided exposure: a case study of the Las Conchas Fire. publication-title: International Journal of Wildland Fire doi: 10.1071/WF14216 – volume: 24 start-page: 701 year: 2010 ident: 2025111813175241400_R3 article-title: Use of land facets to plan for climate change: conserving the arenas, not the actors. publication-title: Conservation Biology doi: 10.1111/J.1523-1739.2009.01422.X – volume: 37 start-page: 1267 year: 2014 ident: 2025111813175241400_R41 article-title: What do we gain from simplicity versus complexity in species distribution models? publication-title: Ecography doi: 10.1111/ECOG.00845 – ident: 2025111813175241400_R32 – volume: 13 start-page: 133 year: 2004 ident: 2025111813175241400_R56 article-title: Probability based models for estimation of wildfire risk. publication-title: International Journal of Wildland Fire doi: 10.1071/WF02061 – volume: 55 start-page: 249 year: 2009 ident: 2025111813175241400_R21 article-title: Modeling containment of large wildfires using generalized linear mixed-model analysis. publication-title: Forest Science doi: 10.1093/forestscience/55.3.249 – volume: 25 start-page: 1478 year: 2015 ident: 2025111813175241400_R51 article-title: Wildland fire as a self-regulating mechanism: the role of previous burns and weather in limiting fire progression. publication-title: Ecological Applications doi: 10.1890/14-1430.1 – volume: 190 start-page: 231 year: 2006 ident: 2025111813175241400_R54 article-title: Maximum entropy modeling of species geographic distributions. publication-title: Ecological Modelling doi: 10.1016/J.ECOLMODEL.2005.03.026 – ident: 2025111813175241400_R70 – ident: 2025111813175241400_R15 article-title: A framework for developing safe and efficient large-fire incident response strategies and tactics for a new fire management paradigm. publication-title: International Journal of Wildland Fire – volume: 24 start-page: 883 year: 2015 ident: 2025111813175241400_R64 article-title: Sources and implications of bias and uncertainty in a century of US wildfire activity data. publication-title: International Journal of Wildland Fire doi: 10.1071/WF14190 – ident: 2025111813175241400_R59 – volume: 18 start-page: 1192 year: 2015 ident: 2025111813175241400_R29 article-title: Topography, fuels, and fire exclusion drive fire severity of the Rim Fire in an old-growth mixed-conifer forest, Yosemite National Park, USA. publication-title: Ecosystems doi: 10.1007/S10021-015-9890-9 – volume: 36 start-page: 1058 year: 2013 ident: 2025111813175241400_R40 article-title: A practical guide to MaxEnt for modeling species’ distributions: what it does, and why inputs and settings matter. publication-title: Ecography doi: 10.1111/J.1600-0587.2013.07872.X – volume: 22 start-page: 894 year: 2013 ident: 2025111813175241400_R60 article-title: The relationship of large fire occurrence with drought and fire danger indices in the western USA, 1984–2008: the role of temporal scale. publication-title: International Journal of Wildland Fire doi: 10.1071/WF12149 – volume: 77 start-page: 802 year: 2008 ident: 2025111813175241400_R16 article-title: A working guide to boosted regression trees. publication-title: Journal of Animal Ecology doi: 10.1111/J.1365-2656.2008.01390.X – volume: 42 start-page: 267 year: 1996 ident: 2025111813175241400_R25 article-title: Simulating wildfire containment with realistic tactics. publication-title: Forest Science doi: 10.1093/forestscience/42.3.267 – volume: 7 start-page: 64 year: 2016 ident: 2025111813175241400_R67 article-title: Application of wildfire risk assessment results to wildfire response planning in the Southern Sierra Nevada, California, USA. publication-title: Forests doi: 10.3390/F7030064 – volume: 119 start-page: 44 year: 2013 ident: 2025111813175241400_R28 article-title: A national approach for integrating wildfire simulation modeling into wildland–urban interface risk assessments within the United States. publication-title: Landscape and Urban Planning doi: 10.1016/J.LANDURBPLAN.2013.06.011 – ident: 2025111813175241400_R43 – volume: 2011 start-page: 168473 year: 2011 ident: 2025111813175241400_R46 article-title: Developing the US wildland fire decision support system. publication-title: Journal of Combustion doi: 10.1155/2011/168473 – volume: 21 start-page: 927 year: 2012 ident: 2025111813175241400_R52 article-title: A decision-making framework for wildfire suppression. publication-title: International Journal of Wildland Fire doi: 10.1071/WF11140 – ident: 2025111813175241400_R4 – ident: 2025111813175241400_R27 – volume: 258 start-page: 2416 year: 2009 ident: 2025111813175241400_R39 article-title: Fire history and fire–climate relationships along a fire regime gradient in the Santa Fe Municipal Watershed, NM, USA. publication-title: Forest Ecology and Management doi: 10.1016/J.FORECO.2009.08.019 – volume: 25 start-page: 607 year: 2010 ident: 2025111813175241400_R5 article-title: Effects of weather, fuel and terrain on fire severity in topographically diverse landscapes of south-eastern Australia. publication-title: Landscape Ecology doi: 10.1007/S10980-009-9443-8 – volume: 73 start-page: 18 year: 2013 ident: 2025111813175241400_R65 article-title: Developing standardized strategic response categories for fire management units. publication-title: Fire Management Today – ident: 2025111813175241400_R71 – volume: 109 start-page: 274 year: 2011 ident: 2025111813175241400_R7 article-title: A real-time risk assessment tool supporting wildland fire decision making. publication-title: Journal of Forestry doi: 10.1093/jof/109.5.274 – ident: 2025111813175241400_R58 – volume: 63 start-page: 61 year: 2015 ident: 2025111813175241400_R66 article-title: Development and application of a geospatial wildfire exposure and risk calculation tool. publication-title: Environmental Modelling & Software doi: 10.1016/J.ENVSOFT.2014.09.018 – volume: 17 start-page: 145 year: 2008 ident: 2025111813175241400_R37 article-title: AUC: a misleading measure of the performance of predictive distribution models. publication-title: Global Ecology and Biogeography doi: 10.1111/J.1466-8238.2007.00358.X – ident: 2025111813175241400_R38 – ident: 2025111813175241400_R63 – volume: 380 start-page: 59 year: 2016 ident: 2025111813175241400_R30 article-title: Weather, fuels, and topography impede wildland fire spread in western US landscapes. publication-title: Forest Ecology and Management doi: 10.1016/J.FORECO.2016.08.035 – volume: 9 start-page: e99699 year: 2014 ident: 2025111813175241400_R50 article-title: Fire activity and severity in the western US vary along proxy gradients representing fuel amount and fuel moisture. publication-title: PLoS One doi: 10.1371/JOURNAL.PONE.0099699 – ident: 2025111813175241400_R19 – volume: 16 start-page: 153 year: 2011 ident: 2025111813175241400_R22 article-title: A method for ensemble wildland fire simulation. publication-title: Environmental Modeling and Assessment doi: 10.1007/S10666-010-9241-3 – ident: 2025111813175241400_R34 – ident: 2025111813175241400_R11 – volume: 3 start-page: 12 year: 2012 ident: 2025111813175241400_R49 article-title: Spatial bottom-up controls on fire likelihood vary across western North America. publication-title: Ecosphere doi: 10.1890/ES11-00298.1 – volume: 52 start-page: 821 year: 2013 ident: 2025111813175241400_R74 article-title: Determining relative contributions of vegetation and topography to burn severity from LANDSAT imagery. publication-title: Environmental Management doi: 10.1007/S00267-013-0128-3 – volume: 2 start-page: 130 year: 2011 ident: 2025111813175241400_R10 article-title: Both topography and climate affected forest and woodland burn severity in two regions of the western US, 1984 to 2006. publication-title: Ecosphere doi: 10.1890/ES11-00271.1 – ident: 2025111813175241400_R24 – volume: 23 start-page: 544 year: 2014 ident: 2025111813175241400_R61 article-title: A methodology for determining operational priorities for prevention and suppression of wildland fires. publication-title: International Journal of Wildland Fire doi: 10.1071/WF13063 – ident: 2025111813175241400_R47 – ident: 2025111813175241400_R53 – ident: 2025111813175241400_R20 – volume: 329 start-page: 264 year: 2014 ident: 2025111813175241400_R48 article-title: Fire severity, size, and climate associations diverge from historical precedent along an ecological gradient in the Pinaleño Mountains, Arizona, USA. publication-title: Forest Ecology and Management doi: 10.1016/J.FORECO.2014.06.032 – volume: 16 start-page: 285 year: 2007 ident: 2025111813175241400_R55 article-title: A simulation model of the growth and suppression of large forest fires in Ontario. publication-title: International Journal of Wildland Fire doi: 10.1071/WF06107 – volume: 65 start-page: 554 year: 2009 ident: 2025111813175241400_R72 article-title: Presence-only data and the EM algorithm. publication-title: Biometrics doi: 10.1111/J.1541-0420.2008.01116.X – ident: 2025111813175241400_R62 – volume: 36 start-page: 27 year: 2013 ident: 2025111813175241400_R12 article-title: Collinearity: a review of methods to deal with it and a simulation study evaluating their performance. publication-title: Ecography doi: 10.1111/J.1600-0587.2012.07348.X – ident: 2025111813175241400_R18 – volume: 358 start-page: 62 year: 2015 ident: 2025111813175241400_R33 article-title: Mixed severity fire effects within the Rim Fire: relative importance of local climate, fire weather, topography, and forest structure. publication-title: Forest Ecology and Management doi: 10.1016/J.FORECO.2015.09.001 – ident: 2025111813175241400_R35 – volume: 71 start-page: 25 year: 2011 ident: 2025111813175241400_R9 article-title: Mapping the potential for high severity wildfire in the western United States. publication-title: Fire Management Today – volume: 39 start-page: 135 year: 2014 ident: 2025111813175241400_R57 article-title: Role of weather and fuel in stopping fire spread in tropical savannas. publication-title: Austral Ecology doi: 10.1111/AEC.12021 – volume: 25 start-page: 973 year: 2011 ident: 2025111813175241400_R23 article-title: A simulation of probabilistic wildfire risk components for the continental United States. publication-title: Stochastic Environmental Research and Risk Assessment doi: 10.1007/S00477-011-0462-Z – volume: 24 start-page: 735 year: 2015 ident: 2025111813175241400_R14 article-title: Operational wildfire suppression modelling: a review evaluating development, state of the art and future directions. publication-title: International Journal of Wildland Fire doi: 10.1071/WF15018 – volume: 256 start-page: 295 year: 2008 ident: 2025111813175241400_R31 article-title: Topography affected landscape fire history patterns in southern Arizona, USA. publication-title: Forest Ecology and Management doi: 10.1016/J.FORECO.2008.04.023 – year: 2016 ident: 2025111813175241400_R42 article-title: An integrated approach for mapping fire suppression difficulty in three different ecosystems of Eastern Europe. publication-title: Journal of Spatial Science doi: 10.1080/14498596.2016.1169952 – volume: 113 start-page: 11770 year: 2016 ident: 2025111813175241400_R1 article-title: Impact of anthropogenic climate change on wildfire across western US forests. publication-title: Proceedings of the National Academy of Sciences of the United States of America doi: 10.1073/PNAS.1607171113 – ident: 2025111813175241400_R6 – volume: 20 start-page: 792 year: 2011 ident: 2025111813175241400_R44 article-title: Influences of forest roads on the spatial pattern of wildfire boundaries. publication-title: International Journal of Wildland Fire doi: 10.1071/WF10032 – volume: 17 start-page: 43 year: 2011 ident: 2025111813175241400_R17 article-title: A statistical explanation of MaxEnt for ecologists. publication-title: Diversity & Distributions doi: 10.1111/J.1472-4642.2010.00725.X – ident: 2025111813175241400_R73 |
| SSID | ssj0014619 |
| Score | 2.490924 |
| Snippet | During active fire incidents, decisions regarding where and how to safely and effectively deploy resources to meet management objectives are often made under... |
| SourceID | proquest crossref |
| SourceType | Aggregation Database Enrichment Source Index Database |
| StartPage | 587 |
| SubjectTerms | artificial intelligence data collection fire spread fire suppression fire weather fires fuels (fire ecology) Idaho land management landscapes Nevada planning prediction probability regression analysis topography |
| Title | An empirical machine learning method for predicting potential fire control locations for pre-fire planning and operational fire management |
| URI | https://www.proquest.com/docview/2000316149 |
| Volume | 26 |
| WOSCitedRecordID | wos000405327500005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: Environmental Science Database customDbUrl: eissn: 1448-5516 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014619 issn: 1049-8001 databaseCode: PATMY dateStart: 20140101 isFulltext: true titleUrlDefault: http://search.proquest.com/environmentalscience providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1448-5516 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014619 issn: 1049-8001 databaseCode: BENPR dateStart: 20140101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Science Database customDbUrl: eissn: 1448-5516 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014619 issn: 1049-8001 databaseCode: M2P dateStart: 20140101 isFulltext: true titleUrlDefault: https://search.proquest.com/sciencejournals providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Pb9MwFLa6DaFxQDBAbMBkJMQlSkkTJ7aPZXTiAKVCA3ar3NhBRW0aZd20v4F_jn-J5x9x0vYAHLhElWNXat8nv_f8Pr8PoVc8KlTBJA8jxikkKIkKhYyiMCf5DFyKYJFpVv31Ax2P2eUln_R6v5q7MDcLWpbs9pZX_9XUMAbG1ldn_8Hc_kthAD6D0eEJZofnXxl-WAZqWc1t64-l4UqqRhziu1OMNuTCqtZFGkN7rlZrzRrSlxnndctf147OMuXc_NC8rpzQkSk8rCpVNweK5u1yk1Dzo6XKtyePnX4VEKtLza40i31FRItg11vND4J3_eBTQ87w5xdnYuEUxQw9Pxj1d7ku-kqSkTUPJv3uMceAdo457M4MqQy4Uzek7BjklqGu9HW3c3sB38GWdvbm1Hl26-ZTSwve8SAQcoGFv51DJGz7qGz26N7ynZ7RaGr5dDB1C_fQQUxTDtvswdvRePLZF7ZIZrRm_K-x97j10jdu6WaAtBkfmKDn4gG677IVPLQoe4h6qjxC9zo9LI_QXS3uqhUDH6GfwxJ76GEHPdxAD1voYYASbqGHPfSwBgB20MMees18Az3cQA8DYnAHenZxC73H6Mv56OLsfei0PsI8Ttk6JCqLpCxkkWa5ZCnJSM5jISjLFLhjMhARVRBYFZAApzGleQJpSiKFKmZRkgg1SJ6g_XJVqqcIFyKVZMYJTVhOqBSsEAmRTCSQbfOYqmP0uvmDp7lrhK_1WBbTLSMeI-wnVrb3y-6Ul42FprAv62KbKNXq-krLu4K_hOCXn_z5a56hwxbzz9H-ur5WL9Cd_GY9v6pPHYZO0d7HePIb5CS1TQ |
| linkProvider | ProQuest |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+empirical+machine+learning+method+for+predicting+potential+fire+control+locations+for+pre-fire+planning+and+operational+fire+management&rft.jtitle=International+journal+of+wildland+fire&rft.au=Connor%2C+Christopher+D.+O%E2%80%99&rft.au=Calkin%2C+David+E.&rft.au=Thompson%2C+Matthew+P.&rft.date=2017-01-01&rft.issn=1049-8001&rft.eissn=1448-5516&rft.volume=26&rft.issue=7&rft.spage=587&rft.epage=597&rft_id=info:doi/10.1071%2FWF16135&rft.externalDBID=n%2Fa&rft.externalDocID=10_1071_WF16135 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1049-8001&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1049-8001&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1049-8001&client=summon |