Static output feedback strategy for mean-field social control with nonlinear stochastic dynamics
A mean-field social control problem for uncertain nonlinear stochastic systems is investigated by using a robust static output feedback (SOF) strategy. First, the problem in the single decision maker case is investigated in terms of guaranteed cost control approaches to derive suboptimal conditions...
Saved in:
| Published in: | International journal of systems science Vol. 56; no. 11; pp. 2795 - 2816 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Taylor & Francis
18.08.2025
|
| Subjects: | |
| ISSN: | 0020-7721, 1464-5319 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | A mean-field social control problem for uncertain nonlinear stochastic systems is investigated by using a robust static output feedback (SOF) strategy. First, the problem in the single decision maker case is investigated in terms of guaranteed cost control approaches to derive suboptimal conditions at the supremum of the cost function. The Karush-Kuhn-Tucker (KKT) condition is used to derive the necessary conditions which are expressed as a large stochastic combined matrix equation (SCME). Second, the preliminary results in the single decision maker case are used to study the Pareto optimal strategy in a cooperative game. As our main contribution, we derive the high-order centralised strategies and the low-order decentralised strategies, respectively, for the cooperative game. In order to avoid the difficulty of higher-order dimensional problem related to SCMEs, a new reduced-order decomposition numerical scheme by means of Newton's method is developed. The computation for designing the proposed strategy set can be performed in low dimension, even when the number of decision makers approachs to infinity. Moreover, the degradation of the cost function is rigorously evaluated by comparing the centralised strategy set with the proposed strategy set. Finally, several numerical experiments are conducted to demonstrate the usefulness and effectiveness of the proposed strategy set. |
|---|---|
| AbstractList | A mean-field social control problem for uncertain nonlinear stochastic systems is investigated by using a robust static output feedback (SOF) strategy. First, the problem in the single decision maker case is investigated in terms of guaranteed cost control approaches to derive suboptimal conditions at the supremum of the cost function. The Karush-Kuhn-Tucker (KKT) condition is used to derive the necessary conditions which are expressed as a large stochastic combined matrix equation (SCME). Second, the preliminary results in the single decision maker case are used to study the Pareto optimal strategy in a cooperative game. As our main contribution, we derive the high-order centralised strategies and the low-order decentralised strategies, respectively, for the cooperative game. In order to avoid the difficulty of higher-order dimensional problem related to SCMEs, a new reduced-order decomposition numerical scheme by means of Newton's method is developed. The computation for designing the proposed strategy set can be performed in low dimension, even when the number of decision makers approachs to infinity. Moreover, the degradation of the cost function is rigorously evaluated by comparing the centralised strategy set with the proposed strategy set. Finally, several numerical experiments are conducted to demonstrate the usefulness and effectiveness of the proposed strategy set. |
| Author | Xu, Hua Zhuang, Weihua Mukaidani, Hiroaki |
| Author_xml | – sequence: 1 givenname: Hiroaki surname: Mukaidani fullname: Mukaidani, Hiroaki email: mukaida@hiroshima-u.ac.jp organization: Hiroshima University – sequence: 2 givenname: Hua surname: Xu fullname: Xu, Hua organization: The University of Tsukuba – sequence: 3 givenname: Weihua surname: Zhuang fullname: Zhuang, Weihua organization: University of Waterloo |
| BookMark | eNp9kMtOwzAQRS1UJFrgE5D8AyljJ07SHajiJVViAazDxA9qSOzKdlXl70nUsmU1m3uP7pwFmTnvNCE3DJYMargF4FBVnC05cLHkhSiB12dkzoqyyETOVjMynzLZFLogixi_AUAIDnPy-ZYwWUn9Pu32iRqtVYvyh8YUMOmvgRofaK_RZcbqTtHopcWOSu9S8B092LSl45zOOo1hbHm5xTgB1eCwtzJekXODXdTXp3tJPh4f3tfP2eb16WV9v8kkF3XKirxtS80QaqaFKpgqwYAs2tZU3JSyAjAoJLZtoVSFqq5XYAqWt8wwVefA80sijlwZfIxBm2YXbI9haBg0k6bmT1MzaWpOmsbe3bFn3fhqjwcfOtUkHDofTEAnbWzy_xG_6L1zAA |
| Cites_doi | 10.1109/TCST.87 10.1109/TAC.2020.2996189 10.1109/TPWRS.2004.825829 10.1109/LCSYS.2021.3135754 10.1007/s11424-021-1266-y 10.1109/TAC.2016.2579264 10.1002/rnc.v27.16 10.1016/j.automatica.2020.109272 10.1007/s00285-016-1086-1 10.1016/j.automatica.2020.109067 10.1109/TAC.9 10.1016/j.jmaa.2009.06.018 10.1016/0005-1098(95)00048-2 10.1016/0005-1098(95)00178-6 10.1016/j.arcontrol.2016.09.014 10.1007/s00245-021-09817-0 10.1002/asjc.v26.2 10.1016/j.ifacol.2022.09.335 10.1016/j.automatica.2018.03.017 10.1016/j.automatica.2018.08.008 10.1016/j.automatica.2014.12.015 10.1002/oca.v30:4 10.1016/j.automatica.2020.109088 10.1016/j.automatica.2020.108835 10.1109/TAC.2020.3036246 10.1016/S0167-6911(97)00014-5 10.1007/978-1-4471-6606-1 10.2514/1.16794 10.1109/TAC.2007.904450 10.1137/21M1414140 10.1016/j.automatica.2007.04.025 10.1016/j.automatica.2019.108774 10.1007/BF01389624 10.1016/j.automatica.2020.108951 10.1109/TFUZZ.2023.3330297 |
| ContentType | Journal Article |
| Copyright | 2025 Informa UK Limited, trading as Taylor & Francis Group 2025 |
| Copyright_xml | – notice: 2025 Informa UK Limited, trading as Taylor & Francis Group 2025 |
| DBID | AAYXX CITATION |
| DOI | 10.1080/00207721.2025.2456028 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1464-5319 |
| EndPage | 2816 |
| ExternalDocumentID | 10_1080_00207721_2025_2456028 2456028 |
| Genre | Research Article |
| GrantInformation_xml | – fundername: JSPS KAKENHI grantid: 21K04531 |
| GroupedDBID | -~X .7F .DC .QJ 0BK 0R~ 29J 30N 4.4 5GY 5VS 8VB AAENE AAGDL AAHIA AAJMT AALDU AAMIU AAPUL AAQRR ABCCY ABFIM ABHAV ABJNI ABLIJ ABPAQ ABPEM ABTAI ABXUL ABXYU ACGEJ ACGFS ACNCT ACTIO ADCVX ADGTB ADXPE AEISY AENEX AEOZL AEPSL AEYOC AFKVX AFRVT AGDLA AGMYJ AHDZW AIJEM AIYEW AJWEG AKBVH AKOOK ALMA_UNASSIGNED_HOLDINGS ALQZU AQRUH AQTUD AVBZW AWYRJ BLEHA CCCUG CE4 CS3 DGEBU DKSSO DU5 EBS E~A E~B F5P GTTXZ H13 HF~ HZ~ H~P IPNFZ J.P KYCEM LJTGL M4Z MS~ NA5 NX~ O9- P2P QWB RIG RNANH ROSJB RTWRZ S-T SNACF TASJS TBQAZ TDBHL TEN TFL TFT TFW TNC TTHFI TUROJ TWF UT5 UU3 ZGOLN ZL0 ~02 ~S~ AAYXX CITATION |
| ID | FETCH-LOGICAL-c258t-43bb6e1a081e5d41d60f0c4bbf72f6c700fa5cabb4dd7ad8890f413b1f1d83023 |
| IEDL.DBID | TFW |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001405084700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0020-7721 |
| IngestDate | Sat Nov 29 07:46:06 EST 2025 Mon Oct 20 23:47:40 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 11 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c258t-43bb6e1a081e5d41d60f0c4bbf72f6c700fa5cabb4dd7ad8890f413b1f1d83023 |
| PageCount | 22 |
| ParticipantIDs | informaworld_taylorfrancis_310_1080_00207721_2025_2456028 crossref_primary_10_1080_00207721_2025_2456028 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-08-18 |
| PublicationDateYYYYMMDD | 2025-08-18 |
| PublicationDate_xml | – month: 08 year: 2025 text: 2025-08-18 day: 18 |
| PublicationDecade | 2020 |
| PublicationTitle | International journal of systems science |
| PublicationYear | 2025 |
| Publisher | Taylor & Francis |
| Publisher_xml | – name: Taylor & Francis |
| References | Lin A. T. (e_1_3_3_18_1) 2021; 118 e_1_3_3_30_1 Gajic Z. (e_1_3_3_8_1) 2008 e_1_3_3_17_1 e_1_3_3_39_1 e_1_3_3_19_1 e_1_3_3_14_1 e_1_3_3_37_1 e_1_3_3_13_1 e_1_3_3_38_1 e_1_3_3_16_1 e_1_3_3_35_1 e_1_3_3_15_1 e_1_3_3_36_1 e_1_3_3_10_1 e_1_3_3_33_1 e_1_3_3_34_1 e_1_3_3_12_1 e_1_3_3_31_1 e_1_3_3_11_1 e_1_3_3_32_1 e_1_3_3_40_1 Caines P. E. (e_1_3_3_3_1) 2017 e_1_3_3_7_1 e_1_3_3_6_1 e_1_3_3_9_1 e_1_3_3_29_1 e_1_3_3_28_1 e_1_3_3_25_1 e_1_3_3_24_1 e_1_3_3_27_1 e_1_3_3_26_1 e_1_3_3_21_1 e_1_3_3_2_1 e_1_3_3_20_1 e_1_3_3_5_1 e_1_3_3_23_1 e_1_3_3_4_1 e_1_3_3_22_1 |
| References_xml | – ident: e_1_3_3_40_1 doi: 10.1109/TCST.87 – ident: e_1_3_3_34_1 doi: 10.1109/TAC.2020.2996189 – ident: e_1_3_3_39_1 doi: 10.1109/TPWRS.2004.825829 – ident: e_1_3_3_27_1 doi: 10.1109/LCSYS.2021.3135754 – ident: e_1_3_3_12_1 doi: 10.1007/s11424-021-1266-y – ident: e_1_3_3_23_1 doi: 10.1109/TAC.2016.2579264 – ident: e_1_3_3_32_1 doi: 10.1002/rnc.v27.16 – ident: e_1_3_3_29_1 doi: 10.1016/j.automatica.2020.109272 – ident: e_1_3_3_2_1 doi: 10.1007/s00285-016-1086-1 – volume: 118 start-page: e2024713118 issue: 31 year: 2021 ident: e_1_3_3_18_1 article-title: Alternating the population and control neural networks to solve high-dimensional stochastic mean-field games publication-title: Proceedings of the National Academy of Sciences of the United States of America (PNAS) – ident: e_1_3_3_22_1 doi: 10.1016/j.automatica.2020.109067 – ident: e_1_3_3_13_1 doi: 10.1109/TAC.9 – ident: e_1_3_3_26_1 doi: 10.1016/j.jmaa.2009.06.018 – ident: e_1_3_3_15_1 doi: 10.1016/0005-1098(95)00048-2 – ident: e_1_3_3_21_1 doi: 10.1016/0005-1098(95)00178-6 – ident: e_1_3_3_30_1 doi: 10.1016/j.arcontrol.2016.09.014 – start-page: 345 volume-title: Mean field games: Handbook of dynamic game theory year: 2017 ident: e_1_3_3_3_1 – ident: e_1_3_3_11_1 doi: 10.1007/s00245-021-09817-0 – ident: e_1_3_3_28_1 doi: 10.1002/asjc.v26.2 – ident: e_1_3_3_14_1 doi: 10.1016/j.ifacol.2022.09.335 – ident: e_1_3_3_19_1 doi: 10.1016/j.automatica.2018.03.017 – ident: e_1_3_3_24_1 doi: 10.1016/j.automatica.2018.08.008 – ident: e_1_3_3_25_1 doi: 10.1016/j.automatica.2014.12.015 – ident: e_1_3_3_9_1 doi: 10.1002/oca.v30:4 – ident: e_1_3_3_36_1 doi: 10.1016/j.automatica.2020.109088 – ident: e_1_3_3_33_1 doi: 10.1109/TAC.2020.2996189 – ident: e_1_3_3_37_1 doi: 10.1016/j.automatica.2020.108835 – ident: e_1_3_3_35_1 doi: 10.1109/TAC.2020.3036246 – ident: e_1_3_3_6_1 doi: 10.1016/S0167-6911(97)00014-5 – ident: e_1_3_3_4_1 doi: 10.1007/978-1-4471-6606-1 – ident: e_1_3_3_7_1 doi: 10.2514/1.16794 – ident: e_1_3_3_10_1 doi: 10.1109/TAC.2007.904450 – ident: e_1_3_3_16_1 doi: 10.1137/21M1414140 – ident: e_1_3_3_5_1 doi: 10.1016/j.automatica.2007.04.025 – ident: e_1_3_3_20_1 doi: 10.1016/j.automatica.2019.108774 – volume-title: Optimal control: Weakly coupled systems and applications year: 2008 ident: e_1_3_3_8_1 – ident: e_1_3_3_38_1 doi: 10.1007/BF01389624 – ident: e_1_3_3_17_1 doi: 10.1016/j.automatica.2020.108951 – ident: e_1_3_3_31_1 doi: 10.1109/TFUZZ.2023.3330297 |
| SSID | ssj0005520 |
| Score | 2.4088748 |
| Snippet | A mean-field social control problem for uncertain nonlinear stochastic systems is investigated by using a robust static output feedback (SOF) strategy. First,... |
| SourceID | crossref informaworld |
| SourceType | Index Database Publisher |
| StartPage | 2795 |
| SubjectTerms | computational algorithm Mean-field social control multiple decision makers reduced-order technique uncertain nonlinear stochastic system |
| Title | Static output feedback strategy for mean-field social control with nonlinear stochastic dynamics |
| URI | https://www.tandfonline.com/doi/abs/10.1080/00207721.2025.2456028 |
| Volume | 56 |
| WOSCitedRecordID | wos001405084700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAWR databaseName: Taylor & Francis Online Journals customDbUrl: eissn: 1464-5319 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0005520 issn: 0020-7721 databaseCode: TFW dateStart: 19701001 isFulltext: true titleUrlDefault: https://www.tandfonline.com providerName: Taylor & Francis |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQxQADb0R5yQNrKjuJY3tEiIoBVQwFugU_RYVoUZMi8e_xxSm0AywwZrj4dLnzPfL5M0IXMnNZ6qVLvPAqySmRiRLMBV9OC0UKzU0Dxny45YOBGI3kXYsmrFpYJfTQPhJFNHs1BLfS1QIRBye4SSgKobtLWQ_-3IUkGXbhkPohNIf9x2-QB2uJGUOTBCKLMzw_vWUlO61wly5lnf72P-i7g7bakhNfRh_ZRWtusoc2l4gI99ET1Jxjg6fz-m1eYx9SmlbmBVeRu_YDBw3xq1OTpEG84Thpxy3OHcMwF0-ibmoWpKbmWQEBNLbxwvvqAN33r4dXN0l790JiUibqJM-0LhxVoWJwzObUFsQTk2vteeoLwwnxihmldW4tV1YISXzIh5p6aoFSLDtEnbCuO0LYacMKK6QN0Z4bqoLXSKgbKedEOcW6qLewefkWKTZK-sVcGk1XgunK1nRdJJe_TFk3sw0fLyIps19lj_8ge4I24BEmylScok49m7sztG7e63E1O28c7xNmL9Zi |
| linkProvider | Taylor & Francis |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELagIAEDb0R5emANspM4cUaEqIoonQp0C36KCtFWbYrEv8cXp5AOsMAcXXK6nHOPfPcdQhdZZKLQZiaw3IogpiQLBGfG-XKYCJLIVJVgzMdO2u3yfj-rz8IArBJqaOuJIspvNRxuaEbPIXEwwk1cVgjlXcgu4dedi5LLaIW5WAv8-b3W0zfMg1XUjK5MApn5FM9Pt1mITwvspbW409r6D4230WaVdeIr7yY7aMkMd9FGjYtwDz1D2jlQeDQrxrMCWxfVpFCveOrpaz-wUxG_GTEMStAb9s12XEHdMfRz8dArJyZOaqReBHBAY-133k_30UPrpnfdDqr1C4EKGS-COJIyMVS4pMEwHVOdEEtULKVNQ5uolBArmBJSxlqnQnOeEetCoqSWamAViw5Qwz3XHCJspGKJ5pl2Bz5WVDjHySB1pGlKhBGsiS7nRs_HnmUjp1_kpd50OZgur0zXRFn91eRF2d6wfhdJHv0qe_QH2XO01u7dd_LObffuGK3DJWgwU36CGsVkZk7RqnovBtPJWemFnwfP2ow |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELagIAQDb0R5emBNZSdxYo8IiEBUVYcC3YKfokK0VZMi8e-x4xTaARaYo0tOl3Puu8vnzwBcsEhHoWE6MNTwIMaIBZwSbXM5TDhKRCorMuZjO-10aL_PujWbsKhpla6HNl4oovpWu8U9VmbGiHM7uJEFha67C0nL_bmzRXIZrFjonLgk72VP3ywPUisz2i7J2cw28fx0m4XytCBeOld2sq1_cHgbbNaYE176JNkBS3q4CzbmlAj3wLMDnQMJR9NyPC2hsTVNcPkKCy9e-wGth_BN82FQUd6gH7XDmugO3TQXDr1vfGKtRvKFOwVoqPyJ98U-eMhuele3QX34QiBDQssgjoRINOYWMmiiYqwSZJCMhTBpaBKZImQ4kVyIWKmUK0oZMrYgCmywcppi0QFo2OfqQwC1kCRRlCm73GOJuU0b5oAjTlPENSdN0JrFPB97jY0cf0mX-tDlLnR5HbomYPNvJi-r4YbxJ5Hk0a-2R3-wPQdr3essb9917o_BurvipsuYnoBGOZnqU7Aq38tBMTmrcvATkt3ZPg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Static+output+feedback+strategy+for+mean-field+social+control+with+nonlinear+stochastic+dynamics&rft.jtitle=International+journal+of+systems+science&rft.au=Mukaidani%2C+Hiroaki&rft.au=Xu%2C+Hua&rft.au=Zhuang%2C+Weihua&rft.date=2025-08-18&rft.issn=0020-7721&rft.eissn=1464-5319&rft.volume=56&rft.issue=11&rft.spage=2795&rft.epage=2816&rft_id=info:doi/10.1080%2F00207721.2025.2456028&rft.externalDBID=n%2Fa&rft.externalDocID=10_1080_00207721_2025_2456028 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0020-7721&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0020-7721&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0020-7721&client=summon |