Explicable recommendation based on knowledge graph

•Explainable recommendation model is proposed to improve recommended performance.•Precision, diversity, novelty and explainability are optimized simultaneously.•The list of candidate recommendation is gained through knowledge graph.•Embedding vectors of entities and relationships are obtained by Tra...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Expert systems with applications Ročník 200; s. 117035
Hlavní autori: Cai, Xingjuan, Xie, Lijie, Tian, Rui, Cui, Zhihua
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York Elsevier Ltd 15.08.2022
Elsevier BV
Predmet:
ISSN:0957-4174, 1873-6793
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract •Explainable recommendation model is proposed to improve recommended performance.•Precision, diversity, novelty and explainability are optimized simultaneously.•The list of candidate recommendation is gained through knowledge graph.•Embedding vectors of entities and relationships are obtained by TransH.•Unified method is used to quantify explainability. Most of the existing researches on recommendation system assemble in how to enhance precision of recommendation, ignoring acceptance and recognition of users. To work out the problem, a model of explainable recommendation on account of knowledge graph as well as many-objective evolutionary algorithm is proposed, which combines recommendation and explanation. In this work, embedding vectors obtained by embedding-based method are used to quantify the explainability, so as to obtain the explainability of paths between users and items. Candidate recommendation list of users is gained from constructed knowledge graph. Many-objective evolutionary algorithm is used to optimize the list of candidate recommendation so as to seek a set of tradeoff solutions to the four objective functions of accuracy, diversity, novelty and explainability. Then, the best path among object user and recommended items is chosen in knowledge graph as the explanation. Finally, the conclusion that can be drawn from various experiments is that the presented model can boost explainability without reducing the precision, diversity as well as novelty.
AbstractList •Explainable recommendation model is proposed to improve recommended performance.•Precision, diversity, novelty and explainability are optimized simultaneously.•The list of candidate recommendation is gained through knowledge graph.•Embedding vectors of entities and relationships are obtained by TransH.•Unified method is used to quantify explainability. Most of the existing researches on recommendation system assemble in how to enhance precision of recommendation, ignoring acceptance and recognition of users. To work out the problem, a model of explainable recommendation on account of knowledge graph as well as many-objective evolutionary algorithm is proposed, which combines recommendation and explanation. In this work, embedding vectors obtained by embedding-based method are used to quantify the explainability, so as to obtain the explainability of paths between users and items. Candidate recommendation list of users is gained from constructed knowledge graph. Many-objective evolutionary algorithm is used to optimize the list of candidate recommendation so as to seek a set of tradeoff solutions to the four objective functions of accuracy, diversity, novelty and explainability. Then, the best path among object user and recommended items is chosen in knowledge graph as the explanation. Finally, the conclusion that can be drawn from various experiments is that the presented model can boost explainability without reducing the precision, diversity as well as novelty.
Most of the existing researches on recommendation system assemble in how to enhance precision of recommendation, ignoring acceptance and recognition of users. To work out the problem, a model of explainable recommendation on account of knowledge graph as well as many-objective evolutionary algorithm is proposed, which combines recommendation and explanation. In this work, embedding vectors obtained by embedding-based method are used to quantify the explainability, so as to obtain the explainability of paths between users and items. Candidate recommendation list of users is gained from constructed knowledge graph. Many-objective evolutionary algorithm is used to optimize the list of candidate recommendation so as to seek a set of tradeoff solutions to the four objective functions of accuracy, diversity, novelty and explainability. Then, the best path among object user and recommended items is chosen in knowledge graph as the explanation. Finally, the conclusion that can be drawn from various experiments is that the presented model can boost explainability without reducing the precision, diversity as well as novelty.
ArticleNumber 117035
Author Cui, Zhihua
Cai, Xingjuan
Xie, Lijie
Tian, Rui
Author_xml – sequence: 1
  givenname: Xingjuan
  surname: Cai
  fullname: Cai, Xingjuan
  email: xingjuancai@163.com
– sequence: 2
  givenname: Lijie
  surname: Xie
  fullname: Xie, Lijie
  email: lijiexie11@163.com
– sequence: 3
  givenname: Rui
  surname: Tian
  fullname: Tian, Rui
  email: ruitianwz@163.com
– sequence: 4
  givenname: Zhihua
  surname: Cui
  fullname: Cui, Zhihua
  email: cuizhihua@tyust.edu.cn
BookMark eNp9kD1PwzAQhi1UJNrCH2CKxJzgj9iOJRZUlQ8JiQVmy7EvxSFNgp1S-PekhImh093wPnd6nwWatV0LCF0SnBFMxHWdQdybjGJKM0IkZvwEzUkhWSqkYjM0x4rLNCcyP0OLGGuMxxCWc0TXX33jrSkbSALYbruF1pnBd21SmgguGZf3tts34DaQbILp387RaWWaCBd_c4le79Yvq4f06fn-cXX7lFrKiyElwjLCSsgdLhTPeelAlBwzKh2XpGJCFlRBYbGqqBTUKFIppyorpGF5YS1boqvpbh-6jx3EQdfdLrTjS02FZEwKwfiYKqaUDV2MASpt_fBbYAjGN5pgfTCka30wpA-G9GRoROk_tA9-a8L3cehmgmCs_ukh6Gg9tBacH_0N2nX-GP4DNt2AAA
CitedBy_id crossref_primary_10_1016_j_eswa_2023_122086
crossref_primary_10_1109_TCSS_2023_3283574
crossref_primary_10_1016_j_eswa_2025_128923
crossref_primary_10_1080_09544828_2023_2301230
crossref_primary_10_1016_j_aei_2025_103299
crossref_primary_10_1016_j_knosys_2025_113847
crossref_primary_10_1002_cpe_8210
crossref_primary_10_1016_j_cosrev_2025_100764
crossref_primary_10_1108_IJWIS_05_2024_0137
crossref_primary_10_1016_j_eswa_2023_119755
crossref_primary_10_1016_j_jksuci_2022_10_015
crossref_primary_10_1016_j_eswa_2022_118969
crossref_primary_10_1016_j_eswa_2023_122425
crossref_primary_10_1016_j_eswa_2025_127094
crossref_primary_10_1016_j_eswa_2024_125421
crossref_primary_10_3390_app12146882
crossref_primary_10_4018_IJeC_356498
crossref_primary_10_3390_ijms26020477
crossref_primary_10_1007_s10489_023_04588_3
crossref_primary_10_1016_j_eswa_2024_125889
crossref_primary_10_1016_j_ipm_2023_103283
crossref_primary_10_1109_TETCI_2024_3514976
crossref_primary_10_1007_s10115_024_02290_5
crossref_primary_10_1016_j_eswa_2024_123949
crossref_primary_10_1109_ACCESS_2023_3246060
crossref_primary_10_1016_j_eswa_2023_121446
crossref_primary_10_1007_s10489_023_04678_2
crossref_primary_10_1016_j_engappai_2025_112231
crossref_primary_10_1016_j_ins_2024_120533
crossref_primary_10_1016_j_engappai_2025_111622
crossref_primary_10_3390_s24227353
Cites_doi 10.1109/TSMC.2018.2872842
10.1145/3240323.3240361
10.1145/2507157.2507230
10.1109/TITS.2020.2973736
10.1145/3269206.3271739
10.1109/TKDE.2018.2833443
10.1145/2939672.2939673
10.1109/ACCESS.2020.3028587
10.1016/j.ins.2021.07.077
10.1109/TKDE.2019.2906190
10.1016/j.knosys.2016.04.018
10.1007/s11280-018-0553-6
10.1016/j.jpdc.2016.10.014
10.1145/3109859.3109882
10.1145/3292500.3330836
10.1109/TEVC.2012.2227145
10.1109/JIOT.2021.3056578
10.1007/978-0-387-85820-3_15
10.1109/TEVC.2016.2519378
10.1561/1500000066
10.1609/aaai.v33i01.33015329
10.1109/SNAMS52053.2020.9336529
10.1109/TEVC.2013.2281534
10.1360/SSI-2019-0274
10.1109/IEMTRONICS52119.2021.9422550
10.1145/3331184.3331203
10.1145/3308558.3313417
10.1109/TKDE.2021.3104873
10.3390/a11090137
10.1145/3308558.3313705
10.1016/j.comcom.2013.06.009
10.24963/ijcai.2018/469
10.1016/j.eswa.2019.112857
10.1145/3159652.3159666
ContentType Journal Article
Copyright 2022 Elsevier Ltd
Copyright Elsevier BV Aug 15, 2022
Copyright_xml – notice: 2022 Elsevier Ltd
– notice: Copyright Elsevier BV Aug 15, 2022
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/j.eswa.2022.117035
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Computer and Information Systems Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1873-6793
ExternalDocumentID 10_1016_j_eswa_2022_117035
S095741742200450X
GroupedDBID --K
--M
.DC
.~1
0R~
13V
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARIN
AAXUO
AAYFN
ABBOA
ABFNM
ABMAC
ABMVD
ABUCO
ABYKQ
ACDAQ
ACGFS
ACHRH
ACNTT
ACRLP
ACZNC
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGJBL
AGUBO
AGUMN
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
ALEQD
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
AXJTR
BJAXD
BKOJK
BLXMC
BNSAS
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
IHE
J1W
JJJVA
KOM
LG9
LY1
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
ROL
RPZ
SDF
SDG
SDP
SDS
SES
SPC
SPCBC
SSB
SSD
SSL
SST
SSV
SSZ
T5K
TN5
~G-
29G
9DU
AAAKG
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABKBG
ABUFD
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
R2-
SBC
SET
SEW
WUQ
XPP
ZMT
~HD
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c258t-16c313be4d089545bde6b50327d571f367829e8c09f2762a91f9d9fc67a348cc3
ISICitedReferencesCount 38
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000798633100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0957-4174
IngestDate Sun Nov 09 08:36:13 EST 2025
Sat Nov 29 07:06:09 EST 2025
Tue Nov 18 20:55:30 EST 2025
Fri Feb 23 02:39:05 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Explainable recommendation
Unified method
Many-objective evolutionary algorithm
Knowledge graph
Recommendation system
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c258t-16c313be4d089545bde6b50327d571f367829e8c09f2762a91f9d9fc67a348cc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2673376635
PQPubID 2045477
ParticipantIDs proquest_journals_2673376635
crossref_citationtrail_10_1016_j_eswa_2022_117035
crossref_primary_10_1016_j_eswa_2022_117035
elsevier_sciencedirect_doi_10_1016_j_eswa_2022_117035
PublicationCentury 2000
PublicationDate 2022-08-15
PublicationDateYYYYMMDD 2022-08-15
PublicationDate_xml – month: 08
  year: 2022
  text: 2022-08-15
  day: 15
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Expert systems with applications
PublicationYear 2022
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References (pp. 592-600). Marina Del Rey, CA, USA.
Cui, Jing, Zhao, Zhang, Chen (b0025) 2021; 8
doi:10.1109/IEMTRONICS52119.2021.9422550.
Shi, Hu, Zhao, Yu (b0090) 2017; 31
Wang, Gong, Li, Yang (b0130) 2016; 104
Cui, Zhao, Hu, Cai, Zhang, Chen (b0030) 2021
Xian, Y., Fu, Z., Muthukrishnan, S., Melo, G. D., & Zhang, Y. (2019). Reinforcement Knowledge Graph Reasoning for Explainable Recommendation
ce (pp. 151-161). San Francisco, CA, USA.
Wang, H., Zhao, M., Xie, X., Li, W., & Guo, M. (2019). Knowledge Graph Convolutional Networks for Recommender Systems. In
Cao, Y., Xiang, W., He, X., Hu, Z., & Chua, T. S. (2019). Unifying Knowledge Graph Learning and Recommendation: Towards a Better Understanding of User Preferences
(pp. 297-305). Vancouver, BC, Canada.
Jain, Deb (b0055) 2014; 18
Como, Italy.
Li, G., Hong, Y., Jia, W., Zhou, C., & Yue, H. (2018). Recommendation with Multi-Source Heterogeneous Information
Guo, Zhuang, Qin, Zhu, Xie, Xiong, He (b0035) 2020; 50
(pp. 417-426). Torino, Italy.
(pp. 353-362). San Francisco, CA, USA.
Sun, Z., Yang, J., Zhang, J., Bozzon, A., Huang, L. K., & Xu, C. (2018). Recurrent knowledge graph embedding for effective recommendation
Tintarev, Masthoff (b0105) 2011
Wang, H., Zhang, F., Zhang, M., Leskovec, J., Zhao, M., Li, W., & Wang, Z. (2019). Knowledge-aware Graph Neural Networks with Label Smoothness Regularization for Recommender Systems. In
Zhen, Zhang, Feng, Zheng (b0180) 2014
Ozsoy, O'Reilly-Morgan, Symeonidis, Tragos, Hurley, Smyth, Lawlor (b0085) 2020; 8
(pp. 5329-5336). Honolulu, Hawaii, USA.
Jain, A., Singh, P. K., & Dhar, J. (2020). Multi-objective item evaluation for diverse as well as novel item recommendations.
Jin, Guo, Xu, Wang, Wang (b0060) 2021; 22
(pp. 347-350). Hong Kong, China.
(pp. 968-977). Anchorage, AK, USA.
Lin, Ren, Chen, Ren, Ma, de Rijke (b0075) 2019; 32
(pp. 285-294). Paris, France.
pp. 161-169
Yang, Guo, Liu, Steck (b0165) 2014; 41
(pp. 3307-3313). San Francisco, CA, USA.
Wu, Sun, Hong, Ge, Wang (b0145) 2021; 51
Wang, H., Zhang, F., Hou, M., Xie, X., Guo, M., & Liu, Q. (2018). SHINE: Signed Heterogeneous Information Network Embedding for Sentiment Link Prediction
In
Zarzour, H., Al shboul, B., Al-Ayyoub, M., & Jararweh. Y. (2020). A convolutional neural network-based reviews classification method for explainable recommendations
Jin, Rong, Pang, Zhu, Guo, Ma, e. (b0065) 2021
Wang, X., Wang, D., Xu, C., He, X., & Chua, T. S. (2019). Explainable Reasoning over Knowledge Graphs for Recommendation
Wang, X., Wang, D., Xu, C., He, X., Cao, Y., & Chua, T. S. (2019). Explainable Reasoning over Knowledge Graphs for Recommendation. In
Mohamed Ariff, M. I., Salleh, K. A., Mat Yaqin Fadzil, N. A., Wahab, J. A., Arshad, N. I., & Azmi, A. Z. (2021). Mobile Application Recommendation System for Mobile Data Plan Research in progress.
Zhou, Niu, Zhu, Zhu, Liu, Tan, Guo (b0185) 2021
ce (pp. 3378-3384). Stockholm, Sweden.
Zhang, F., Yuan, N. J., Xie, X., & Ma, W.-Y. (2016). Collaborative Knowledge Base Embedding for Recommender Systems
Yang, Li, Liu, Zheng (b0160) 2013; 17
(pp. 1-5). France.
He, R., Kang, W. C., & Mcauley, J. (2017). Translation-based Recommendation
Shi, Zhang, Ji, Wang, Yu, Shi (b0095) 2019; 22
Zhang, Chen (b0175) 2018; 14
Xiao, Y., Xiang, R., Sun, Y., Sturt, B., & Han, J. (2013). Recommendation in heterogeneous information networks with implicit user feedback
Ai, Azizi, Chen, Zhang (b0005) 2018; 11
(Jan.), 112857.112851-112857.112818.
Cui, Peng, Fu, Wen, Nan (b0020) 2017; 103
Wang, H., Zhang, F., Wang, J., Miao, Z., & Guo, M. (2018). RippleNet: Propagating User Preferences on the Knowledge Graph for Recommender Systems
Zhu, Wang, Zhou, Chen, Li, Liu (b0190) 2021
Cheng, Jin, Olhofer, Sendhoff (b0015) 2016; 20
Wang (10.1016/j.eswa.2022.117035_b0130) 2016; 104
Wu (10.1016/j.eswa.2022.117035_b0145) 2021; 51
Jin (10.1016/j.eswa.2022.117035_b0065) 2021
Yang (10.1016/j.eswa.2022.117035_b0160) 2013; 17
Cui (10.1016/j.eswa.2022.117035_b0025) 2021; 8
10.1016/j.eswa.2022.117035_b0150
10.1016/j.eswa.2022.117035_b0010
10.1016/j.eswa.2022.117035_b0070
10.1016/j.eswa.2022.117035_b0050
Shi (10.1016/j.eswa.2022.117035_b0095) 2019; 22
Zhu (10.1016/j.eswa.2022.117035_b0190) 2021
10.1016/j.eswa.2022.117035_b0170
Shi (10.1016/j.eswa.2022.117035_b0090) 2017; 31
10.1016/j.eswa.2022.117035_b0115
10.1016/j.eswa.2022.117035_b0155
10.1016/j.eswa.2022.117035_b0110
10.1016/j.eswa.2022.117035_b0135
Zhou (10.1016/j.eswa.2022.117035_b0185) 2021
Yang (10.1016/j.eswa.2022.117035_b0165) 2014; 41
Ai (10.1016/j.eswa.2022.117035_b0005) 2018; 11
Zhen (10.1016/j.eswa.2022.117035_b0180) 2014
Ozsoy (10.1016/j.eswa.2022.117035_b0085) 2020; 8
Zhang (10.1016/j.eswa.2022.117035_b0175) 2018; 14
Jin (10.1016/j.eswa.2022.117035_b0060) 2021; 22
10.1016/j.eswa.2022.117035_b0140
10.1016/j.eswa.2022.117035_b0040
Cui (10.1016/j.eswa.2022.117035_b0020) 2017; 103
Cui (10.1016/j.eswa.2022.117035_b0030) 2021
10.1016/j.eswa.2022.117035_b0120
Jain (10.1016/j.eswa.2022.117035_b0055) 2014; 18
10.1016/j.eswa.2022.117035_b0080
Lin (10.1016/j.eswa.2022.117035_b0075) 2019; 32
Tintarev (10.1016/j.eswa.2022.117035_b0105) 2011
Guo (10.1016/j.eswa.2022.117035_b0035) 2020; 50
10.1016/j.eswa.2022.117035_b0125
10.1016/j.eswa.2022.117035_b0045
10.1016/j.eswa.2022.117035_b0100
Cheng (10.1016/j.eswa.2022.117035_b0015) 2016; 20
References_xml – reference: . doi:10.1109/IEMTRONICS52119.2021.9422550.
– reference: (pp. 161-169)
– reference: Xian, Y., Fu, Z., Muthukrishnan, S., Melo, G. D., & Zhang, Y. (2019). Reinforcement Knowledge Graph Reasoning for Explainable Recommendation
– year: 2021
  ident: b0185
  article-title: Knowledge Graph Embedding by Double Limit Scoring Loss
  publication-title: IEEE Transactions on Knowledge and Data Engineering
– volume: 8
  start-page: 12540
  year: 2021
  end-page: 12549
  ident: b0025
  article-title: A New Subspace Clustering Strategy for AI-Based Data Analysis in IoT System
  publication-title: IEEE Internet of Things Journal
– reference: (pp. 5329-5336). Honolulu, Hawaii, USA.
– year: 2021
  ident: b0190
  article-title: A Unified Framework for Cross-Domain and Cross-System Recommendations
  publication-title: IEEE Transactions on Knowledge and Data Engineering
– reference: He, R., Kang, W. C., & Mcauley, J. (2017). Translation-based Recommendation
– volume: 41
  start-page: 1
  year: 2014
  end-page: 10
  ident: b0165
  article-title: A survey of collaborative filtering based social recommender systems
  publication-title: Computer Communications
– reference: (pp. 592-600). Marina Del Rey, CA, USA.
– volume: 32
  start-page: 1502
  year: 2019
  end-page: 1516
  ident: b0075
  article-title: Explainable Outfit Recommendation with Joint Outfit Matching and Comment Generation
  publication-title: IEEE Transactions on Knowledge and Data Engineering
– start-page: 1112
  year: 2014
  end-page: 1119
  ident: b0180
  publication-title: Knowledge Graph Embedding by Translating on Hyperplanes
– reference: (pp. 417-426). Torino, Italy.
– reference: (pp. 285-294). Paris, France.
– volume: 104
  start-page: 145
  year: 2016
  end-page: 155
  ident: b0130
  article-title: Multi-objective optimization for long tail recommendation
  publication-title: Knowledge-Based Systems
– reference: Wang, H., Zhang, F., Zhang, M., Leskovec, J., Zhao, M., Li, W., & Wang, Z. (2019). Knowledge-aware Graph Neural Networks with Label Smoothness Regularization for Recommender Systems. In
– reference: In
– reference: (pp. 3307-3313). San Francisco, CA, USA.
– reference: (pp. 1-5). France.
– year: 2021
  ident: b0030
  article-title: An Improved Matrix Factorization based Model for Many-objective Optimization Recommendation
  publication-title: Information sciences
– reference: ce (pp. 3378-3384). Stockholm, Sweden.
– volume: 11
  start-page: 137
  year: 2018
  ident: b0005
  article-title: Learning Heterogeneous Knowledge Base Embeddings for Explainable Recommendation
  publication-title: Algorithms
– reference: Wang, H., Zhang, F., Hou, M., Xie, X., Guo, M., & Liu, Q. (2018). SHINE: Signed Heterogeneous Information Network Embedding for Sentiment Link Prediction
– volume: 103
  start-page: 53
  year: 2017
  end-page: 63
  ident: b0020
  article-title: A novel multi-objective evolutionary algorithm for recommendation systems
  publication-title: Journal of Parallel and Distributed Computing
– reference: Wang, H., Zhao, M., Xie, X., Li, W., & Guo, M. (2019). Knowledge Graph Convolutional Networks for Recommender Systems. In
– volume: 17
  start-page: 721
  year: 2013
  end-page: 736
  ident: b0160
  article-title: A Grid-Based Evolutionary Algorithm for Many-Objective Optimization
  publication-title: IEEE Transactions on Evolutionary Computation
– reference: (pp. 968-977). Anchorage, AK, USA.
– volume: 31
  start-page: 357
  year: 2017
  end-page: 370
  ident: b0090
  article-title: Heterogeneous Information Network Embedding for Recommendation
  publication-title: IEEE Transactions on Knowledge & Data Engineering
– reference: Wang, X., Wang, D., Xu, C., He, X., & Chua, T. S. (2019). Explainable Reasoning over Knowledge Graphs for Recommendation
– start-page: 479
  year: 2011
  end-page: 510
  ident: b0105
  article-title: Designing and Evaluating Explanations for Recommender Systems
  publication-title: Recommender Systems Handbook
– reference: (pp. 297-305). Vancouver, BC, Canada.
– volume: 22
  start-page: 1616
  year: 2021
  end-page: 1626
  ident: b0060
  article-title: An End-to-End Recommendation System for Urban Traffic Controls and Management Under a Parallel Learning Framework
  publication-title: IEEE Transactions on Intelligent Transportation Systems
– reference: Wang, H., Zhang, F., Wang, J., Miao, Z., & Guo, M. (2018). RippleNet: Propagating User Preferences on the Knowledge Graph for Recommender Systems
– volume: 18
  start-page: 602
  year: 2014
  end-page: 622
  ident: b0055
  article-title: An Evolutionary Many-Objective Optimization Algorithm Using Reference-Point Based Nondominated Sorting Approach, Part II: Handling Constraints and Extending to an Adaptive Approach
  publication-title: IEEE Transactions on Evolutionary Computation
– reference: Como, Italy.
– reference: Zarzour, H., Al shboul, B., Al-Ayyoub, M., & Jararweh. Y. (2020). A convolutional neural network-based reviews classification method for explainable recommendations
– reference: Jain, A., Singh, P. K., & Dhar, J. (2020). Multi-objective item evaluation for diverse as well as novel item recommendations.
– reference: Zhang, F., Yuan, N. J., Xie, X., & Ma, W.-Y. (2016). Collaborative Knowledge Base Embedding for Recommender Systems
– reference: (pp. 347-350). Hong Kong, China.
– reference: (Jan.), 112857.112851-112857.112818.
– reference: ce (pp. 151-161). San Francisco, CA, USA.
– volume: 8
  start-page: 181835
  year: 2020
  end-page: 181847
  ident: b0085
  article-title: MP4Rec: Explainable and Accurate Top-N Recommendations in Heterogeneous Information Networks
  publication-title: IEEE Access
– reference: Wang, X., Wang, D., Xu, C., He, X., Cao, Y., & Chua, T. S. (2019). Explainable Reasoning over Knowledge Graphs for Recommendation. In
– reference: (pp. 353-362). San Francisco, CA, USA.
– reference: Li, G., Hong, Y., Jia, W., Zhou, C., & Yue, H. (2018). Recommendation with Multi-Source Heterogeneous Information
– volume: 50
  start-page: 937
  year: 2020
  ident: b0035
  article-title: A Survey on Knowledge Graph-Based Recommender Systems
  publication-title: Scientia Sinica Informationis
– reference: Xiao, Y., Xiang, R., Sun, Y., Sturt, B., & Han, J. (2013). Recommendation in heterogeneous information networks with implicit user feedback
– reference: Mohamed Ariff, M. I., Salleh, K. A., Mat Yaqin Fadzil, N. A., Wahab, J. A., Arshad, N. I., & Azmi, A. Z. (2021). Mobile Application Recommendation System for Mobile Data Plan Research in progress.
– volume: 22
  start-page: 153
  year: 2019
  end-page: 184
  ident: b0095
  article-title: SemRec: A personalized semantic recommendation method based on weighted heterogeneous information networks
  publication-title: World Wide Web
– volume: 51
  start-page: 464
  year: 2021
  end-page: 476
  ident: b0145
  article-title: Collaborative Neural Social Recommendation
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics: Systems
– reference: Sun, Z., Yang, J., Zhang, J., Bozzon, A., Huang, L. K., & Xu, C. (2018). Recurrent knowledge graph embedding for effective recommendation
– volume: 14
  start-page: 1
  year: 2018
  end-page: 101
  ident: b0175
  article-title: Explainable Recommendation: A Survey and New Perspectives
  publication-title: Foundations and Trends in Information Retrieval
– volume: 20
  start-page: 773
  year: 2016
  end-page: 791
  ident: b0015
  article-title: A Reference Vector Guided Evolutionary Algorithm for Many-Objective Optimization
  publication-title: IEEE Transactions on Evolutionary Computation
– reference: Cao, Y., Xiang, W., He, X., Hu, Z., & Chua, T. S. (2019). Unifying Knowledge Graph Learning and Recommendation: Towards a Better Understanding of User Preferences
– year: 2021
  ident: b0065
  article-title: PRECOM: A Parallel Recommendation Engine for Control, Operations, and Management on Congested Urban Traffic Networks
  publication-title: IEEE Transactions on Intelligent Transportation Systems
– volume: 51
  start-page: 464
  issue: 1
  year: 2021
  ident: 10.1016/j.eswa.2022.117035_b0145
  article-title: Collaborative Neural Social Recommendation
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics: Systems
  doi: 10.1109/TSMC.2018.2872842
– ident: 10.1016/j.eswa.2022.117035_b0100
  doi: 10.1145/3240323.3240361
– ident: 10.1016/j.eswa.2022.117035_b0155
  doi: 10.1145/2507157.2507230
– year: 2021
  ident: 10.1016/j.eswa.2022.117035_b0065
  article-title: PRECOM: A Parallel Recommendation Engine for Control, Operations, and Management on Congested Urban Traffic Networks
  publication-title: IEEE Transactions on Intelligent Transportation Systems
  doi: 10.1109/TITS.2020.2973736
– ident: 10.1016/j.eswa.2022.117035_b0115
  doi: 10.1145/3269206.3271739
– volume: 31
  start-page: 357
  issue: 2
  year: 2017
  ident: 10.1016/j.eswa.2022.117035_b0090
  article-title: Heterogeneous Information Network Embedding for Recommendation
  publication-title: IEEE Transactions on Knowledge & Data Engineering
  doi: 10.1109/TKDE.2018.2833443
– ident: 10.1016/j.eswa.2022.117035_b0170
  doi: 10.1145/2939672.2939673
– start-page: 1112
  year: 2014
  ident: 10.1016/j.eswa.2022.117035_b0180
– volume: 8
  start-page: 181835
  year: 2020
  ident: 10.1016/j.eswa.2022.117035_b0085
  article-title: MP4Rec: Explainable and Accurate Top-N Recommendations in Heterogeneous Information Networks
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3028587
– year: 2021
  ident: 10.1016/j.eswa.2022.117035_b0030
  article-title: An Improved Matrix Factorization based Model for Many-objective Optimization Recommendation
  publication-title: Information sciences
  doi: 10.1016/j.ins.2021.07.077
– volume: 32
  start-page: 1502
  issue: 8
  year: 2019
  ident: 10.1016/j.eswa.2022.117035_b0075
  article-title: Explainable Outfit Recommendation with Joint Outfit Matching and Comment Generation
  publication-title: IEEE Transactions on Knowledge and Data Engineering
  doi: 10.1109/TKDE.2019.2906190
– volume: 104
  start-page: 145
  issue: jul.
  year: 2016
  ident: 10.1016/j.eswa.2022.117035_b0130
  article-title: Multi-objective optimization for long tail recommendation
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2016.04.018
– volume: 22
  start-page: 153
  issue: 1
  year: 2019
  ident: 10.1016/j.eswa.2022.117035_b0095
  article-title: SemRec: A personalized semantic recommendation method based on weighted heterogeneous information networks
  publication-title: World Wide Web
  doi: 10.1007/s11280-018-0553-6
– volume: 103
  start-page: 53
  year: 2017
  ident: 10.1016/j.eswa.2022.117035_b0020
  article-title: A novel multi-objective evolutionary algorithm for recommendation systems
  publication-title: Journal of Parallel and Distributed Computing
  doi: 10.1016/j.jpdc.2016.10.014
– ident: 10.1016/j.eswa.2022.117035_b0045
  doi: 10.1145/3109859.3109882
– ident: 10.1016/j.eswa.2022.117035_b0120
  doi: 10.1145/3292500.3330836
– volume: 17
  start-page: 721
  issue: 5
  year: 2013
  ident: 10.1016/j.eswa.2022.117035_b0160
  article-title: A Grid-Based Evolutionary Algorithm for Many-Objective Optimization
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2012.2227145
– volume: 8
  start-page: 12540
  issue: 16
  year: 2021
  ident: 10.1016/j.eswa.2022.117035_b0025
  article-title: A New Subspace Clustering Strategy for AI-Based Data Analysis in IoT System
  publication-title: IEEE Internet of Things Journal
  doi: 10.1109/JIOT.2021.3056578
– start-page: 479
  year: 2011
  ident: 10.1016/j.eswa.2022.117035_b0105
  article-title: Designing and Evaluating Explanations for Recommender Systems
  publication-title: Recommender Systems Handbook
  doi: 10.1007/978-0-387-85820-3_15
– volume: 20
  start-page: 773
  issue: 5
  year: 2016
  ident: 10.1016/j.eswa.2022.117035_b0015
  article-title: A Reference Vector Guided Evolutionary Algorithm for Many-Objective Optimization
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2016.2519378
– volume: 14
  start-page: 1
  issue: 1
  year: 2018
  ident: 10.1016/j.eswa.2022.117035_b0175
  article-title: Explainable Recommendation: A Survey and New Perspectives
  publication-title: Foundations and Trends in Information Retrieval
  doi: 10.1561/1500000066
– ident: 10.1016/j.eswa.2022.117035_b0135
  doi: 10.1609/aaai.v33i01.33015329
– ident: 10.1016/j.eswa.2022.117035_b0040
  doi: 10.1109/SNAMS52053.2020.9336529
– volume: 18
  start-page: 602
  issue: 4
  year: 2014
  ident: 10.1016/j.eswa.2022.117035_b0055
  article-title: An Evolutionary Many-Objective Optimization Algorithm Using Reference-Point Based Nondominated Sorting Approach, Part II: Handling Constraints and Extending to an Adaptive Approach
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2013.2281534
– ident: 10.1016/j.eswa.2022.117035_b0140
  doi: 10.1609/aaai.v33i01.33015329
– volume: 50
  start-page: 937
  issue: 7
  year: 2020
  ident: 10.1016/j.eswa.2022.117035_b0035
  article-title: A Survey on Knowledge Graph-Based Recommender Systems
  publication-title: Scientia Sinica Informationis
  doi: 10.1360/SSI-2019-0274
– ident: 10.1016/j.eswa.2022.117035_b0080
  doi: 10.1109/IEMTRONICS52119.2021.9422550
– ident: 10.1016/j.eswa.2022.117035_b0150
  doi: 10.1145/3331184.3331203
– volume: 22
  start-page: 1616
  issue: 3
  year: 2021
  ident: 10.1016/j.eswa.2022.117035_b0060
  article-title: An End-to-End Recommendation System for Urban Traffic Controls and Management Under a Parallel Learning Framework
  publication-title: IEEE Transactions on Intelligent Transportation Systems
  doi: 10.1109/TITS.2020.2973736
– ident: 10.1016/j.eswa.2022.117035_b0125
  doi: 10.1145/3308558.3313417
– year: 2021
  ident: 10.1016/j.eswa.2022.117035_b0190
  article-title: A Unified Framework for Cross-Domain and Cross-System Recommendations
  publication-title: IEEE Transactions on Knowledge and Data Engineering
  doi: 10.1109/TKDE.2021.3104873
– year: 2021
  ident: 10.1016/j.eswa.2022.117035_b0185
  article-title: Knowledge Graph Embedding by Double Limit Scoring Loss
  publication-title: IEEE Transactions on Knowledge and Data Engineering
– volume: 11
  start-page: 137
  issue: 9
  year: 2018
  ident: 10.1016/j.eswa.2022.117035_b0005
  article-title: Learning Heterogeneous Knowledge Base Embeddings for Explainable Recommendation
  publication-title: Algorithms
  doi: 10.3390/a11090137
– ident: 10.1016/j.eswa.2022.117035_b0010
  doi: 10.1145/3308558.3313705
– volume: 41
  start-page: 1
  issue: 5
  year: 2014
  ident: 10.1016/j.eswa.2022.117035_b0165
  article-title: A survey of collaborative filtering based social recommender systems
  publication-title: Computer Communications
  doi: 10.1016/j.comcom.2013.06.009
– ident: 10.1016/j.eswa.2022.117035_b0070
  doi: 10.24963/ijcai.2018/469
– ident: 10.1016/j.eswa.2022.117035_b0050
  doi: 10.1016/j.eswa.2019.112857
– ident: 10.1016/j.eswa.2022.117035_b0110
  doi: 10.1145/3159652.3159666
SSID ssj0017007
Score 2.5361454
Snippet •Explainable recommendation model is proposed to improve recommended performance.•Precision, diversity, novelty and explainability are optimized...
Most of the existing researches on recommendation system assemble in how to enhance precision of recommendation, ignoring acceptance and recognition of users....
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 117035
SubjectTerms Embedding
Evolutionary algorithms
Explainable recommendation
Genetic algorithms
Knowledge graph
Knowledge representation
Many-objective evolutionary algorithm
Recommendation system
Recommender systems
Unified method
Title Explicable recommendation based on knowledge graph
URI https://dx.doi.org/10.1016/j.eswa.2022.117035
https://www.proquest.com/docview/2673376635
Volume 200
WOSCitedRecordID wos000798633100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-6793
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017007
  issn: 0957-4174
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1La9wwEBbpJode2qYPmjQtPvS2KNiSbUnHUFLaHkIgGzC9CFuWiE3jhN11m5-fkSXZyZaGtNCLMcYjmZmxNJrXh9DHTOhScJVj-JkMtqWXuOSlxkLXCcsroeKaD2AT7OSEF4U49RibqwFOgHUdv7kR1_9V1PAMhG1LZ_9C3OOg8ADuQehwBbHD9VGCt1l1wHlbEWVPu5eX2uMmze2OVdvowOhIm0-QE-1IrZdr3-A5lL7dCXJPMYshDaCAna_tJw0rPHBz0zajxiwaH2vqm5G6H6i_XzQXfXnX8QBnVtsINpu8YaEiZko_cm5FhtPEIe8careockZxzhwSYlh1XYPS31dw50xoD_Xql20LRYgNK8eupclGZ-wzO5mdi1j5Z3HxBG0Tlgk-Q9tHX4-Lb2M4icWubj58nK-ecol-mzP9yULZ2KsHA2TxAj3zJ4foyEl8F23p7iV6HlA5Ir9Iv0JkUoDovgJEgwJEcDMqQDQowGt0_vl48ekL9sgYWJGMr3GSK5rQSqd1zAXYwFWt8yqLKWF1xhJDwQIhQnMVC0NgtytFYkQtjMpZSVOuFH2DZt1Vp9-iqDQ6rbim8Flw1jYKBiUl2PxGpCbO62QPJYEbUvm28Ra95IcM-YGttByUloPScXAPzUeaa9c05cG3s8Bk6c0-Z85J0IkH6Q6CRKT__1aS5IzCnglm9P4_DvsOPZ20_QDN1stev0c76ue6WS0_eM26BaqIhUQ
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Explicable+recommendation+based+on+knowledge+graph&rft.jtitle=Expert+systems+with+applications&rft.au=Cai%2C+Xingjuan&rft.au=Xie%2C+Lijie&rft.au=Tian%2C+Rui&rft.au=Cui%2C+Zhihua&rft.date=2022-08-15&rft.pub=Elsevier+Ltd&rft.issn=0957-4174&rft.eissn=1873-6793&rft.volume=200&rft_id=info:doi/10.1016%2Fj.eswa.2022.117035&rft.externalDocID=S095741742200450X
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon