Topological properties of the Fréchet space of holomorphic functions of several complex variables
Let p( n) ( > 1) be the Privalov class of holomorphic functions on the unit ball n in the space of -complex variables. The class p( n) ( > 1), equipped with the topology given by a natural metric, becomes an -algebra. In this paper, we shall introduce a Fréchet space Fp( n) ( > 1) of holomo...
Uloženo v:
| Vydáno v: | Mathematica Montisnigri Ročník 58; s. 5 - 16 |
|---|---|
| Hlavní autor: | |
| Médium: | Journal Article |
| Jazyk: | angličtina japonština |
| Vydáno: |
Keldysh Institute of Applied Mathematics
01.01.2023
|
| ISSN: | 0354-2238, 2704-4963 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | Let p( n) ( > 1) be the Privalov class of holomorphic functions on the unit ball n in the space of -complex variables. The class p( n) ( > 1), equipped with the topology given by a natural metric, becomes an -algebra. In this paper, we shall introduce a Fréchet space Fp( n) ( > 1) of holomorphic functions on n which contains p( n). Moreover, we shall characterize some topological properties of Fp( n) induced by the family of semi norms on Fp( n) . |
|---|---|
| ISSN: | 0354-2238 2704-4963 |
| DOI: | 10.20948/mathmontis-2023-58-1 |