Topological properties of the Fréchet space of holomorphic functions of several complex variables

Let p( n) ( > 1) be the Privalov class of holomorphic functions on the unit ball n in the space of -complex variables. The class p( n) ( > 1), equipped with the topology given by a natural metric, becomes an -algebra. In this paper, we shall introduce a Fréchet space Fp( n) ( > 1) of holomo...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Mathematica Montisnigri Ročník 58; s. 5 - 16
Hlavní autor: Iida, Yasuo
Médium: Journal Article
Jazyk:angličtina
japonština
Vydáno: Keldysh Institute of Applied Mathematics 01.01.2023
ISSN:0354-2238, 2704-4963
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Let p( n) ( > 1) be the Privalov class of holomorphic functions on the unit ball n in the space of -complex variables. The class p( n) ( > 1), equipped with the topology given by a natural metric, becomes an -algebra. In this paper, we shall introduce a Fréchet space Fp( n) ( > 1) of holomorphic functions on n which contains p( n). Moreover, we shall characterize some topological properties of Fp( n) induced by the family of semi norms on Fp( n) .
ISSN:0354-2238
2704-4963
DOI:10.20948/mathmontis-2023-58-1