Diesel selective catalytic reduction emission prediction based on physical model data-driven and variational autoencoder-fully connected neural network-improved Bayesian algorithm (VAE-FCNN-IBO)
In order to accurately predict NOx and NH3 concentrations downstream of the diesel engine selective catalytic reduction (SCR) system and to improve computational efficiency, this paper constructs a diesel engine SCR model and combines a data-driven approach with the design of a fully connected neura...
Uloženo v:
| Vydáno v: | Energy (Oxford) Ročník 337; s. 138611 |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier Ltd
15.11.2025
|
| Témata: | |
| ISSN: | 0360-5442 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
Buďte první, kdo okomentuje tento záznam!