Enhanced few-shot state-of-health estimation for lithium-ion batteries via Masked Autoencoder

Accurately estimating the state-of-health (SOH) of lithium-ion batteries (LIBs) is crucial for optimizing performance, ensuring operational safety, and enabling predictive maintenance in battery management systems. With the widespread adoption of LIBs, a large amount of field data has been generated...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Energy (Oxford) Ročník 335; s. 138263
Hlavní autori: Shen, Yifan, Guo, Dongxu, Wang, Yu, Chen, Jianguo, Liu, Xuyang, Han, Xuebing, Zheng, Yuejiu, Ouyang, Minggao
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier Ltd 30.10.2025
Predmet:
ISSN:0360-5442
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Accurately estimating the state-of-health (SOH) of lithium-ion batteries (LIBs) is crucial for optimizing performance, ensuring operational safety, and enabling predictive maintenance in battery management systems. With the widespread adoption of LIBs, a large amount of field data has been generated, yet current data-driven SOH estimation methods often fail to fully utilize it due to the lack of labeled data. To address this, we propose a method based on semi-supervised learning to exploit large-scale unlabeled data for accurate SOH estimation. A generative unsupervised model, the Masked Autoencoder (MAE), is pre-trained on unlabeled field charging data to automatically extract latent representations related to SOH. The model is then fine-tuned with a small amount of labeled data. Experimental results show that using only 20 % of the labeled data usually required for supervised learning, the method achieves an RMSE of 2.14 %. The latent representation extraction capability of the MAE is validated via incremental capacity (IC) analysis, which explains the 14 % improvement in estimation accuracy (RMSE of 1.84 %) when using data from a specific voltage range (3.8–3.9 V). Furthermore, experiments demonstrate that even with only 21.33 min of charging data—consisting of only charge quantity and voltage signals—the model can still achieve a competitive RMSE of 1.94 %. This work introduces a novel approach for SOH estimation using large-scale, unlabeled field data and provides valuable insights for battery management in the era of artificial intelligence. •SOH labeling reduced by 80 % via MAE-based semi-supervised learning.•MAE-extracted SOH features match IC curves in mid-voltage zone.•1.94 % SOH error using charge quantity and voltage from a 21-min charge segment.•Semi-supervised MAE yields 1.7 % error on 2-year electric vehicle data.
AbstractList Accurately estimating the state-of-health (SOH) of lithium-ion batteries (LIBs) is crucial for optimizing performance, ensuring operational safety, and enabling predictive maintenance in battery management systems. With the widespread adoption of LIBs, a large amount of field data has been generated, yet current data-driven SOH estimation methods often fail to fully utilize it due to the lack of labeled data. To address this, we propose a method based on semi-supervised learning to exploit large-scale unlabeled data for accurate SOH estimation. A generative unsupervised model, the Masked Autoencoder (MAE), is pre-trained on unlabeled field charging data to automatically extract latent representations related to SOH. The model is then fine-tuned with a small amount of labeled data. Experimental results show that using only 20 % of the labeled data usually required for supervised learning, the method achieves an RMSE of 2.14 %. The latent representation extraction capability of the MAE is validated via incremental capacity (IC) analysis, which explains the 14 % improvement in estimation accuracy (RMSE of 1.84 %) when using data from a specific voltage range (3.8–3.9 V). Furthermore, experiments demonstrate that even with only 21.33 min of charging data—consisting of only charge quantity and voltage signals—the model can still achieve a competitive RMSE of 1.94 %. This work introduces a novel approach for SOH estimation using large-scale, unlabeled field data and provides valuable insights for battery management in the era of artificial intelligence. •SOH labeling reduced by 80 % via MAE-based semi-supervised learning.•MAE-extracted SOH features match IC curves in mid-voltage zone.•1.94 % SOH error using charge quantity and voltage from a 21-min charge segment.•Semi-supervised MAE yields 1.7 % error on 2-year electric vehicle data.
ArticleNumber 138263
Author Shen, Yifan
Liu, Xuyang
Ouyang, Minggao
Han, Xuebing
Wang, Yu
Zheng, Yuejiu
Guo, Dongxu
Chen, Jianguo
Author_xml – sequence: 1
  givenname: Yifan
  orcidid: 0009-0004-2676-7098
  surname: Shen
  fullname: Shen, Yifan
  organization: School of Mechanical Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
– sequence: 2
  givenname: Dongxu
  orcidid: 0000-0003-3697-6913
  surname: Guo
  fullname: Guo, Dongxu
  email: guodx12@gmail.com
  organization: School of Mechanical Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
– sequence: 3
  givenname: Yu
  surname: Wang
  fullname: Wang, Yu
  organization: State Key Laboratory of Intelligent Green Vehicle and Mobility, School of Vehicle and Mobility, Tsinghua University, Beijing, 100084, China
– sequence: 4
  givenname: Jianguo
  surname: Chen
  fullname: Chen, Jianguo
  organization: School of Mechanical Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
– sequence: 5
  givenname: Xuyang
  surname: Liu
  fullname: Liu, Xuyang
  organization: School of Mechanical Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
– sequence: 6
  givenname: Xuebing
  surname: Han
  fullname: Han, Xuebing
  email: hanxuebing@tsinghua.edu.cn
  organization: State Key Laboratory of Intelligent Green Vehicle and Mobility, School of Vehicle and Mobility, Tsinghua University, Beijing, 100084, China
– sequence: 7
  givenname: Yuejiu
  orcidid: 0000-0002-6359-8375
  surname: Zheng
  fullname: Zheng, Yuejiu
  email: yuejiu_zheng@163.com
  organization: School of Mechanical Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
– sequence: 8
  givenname: Minggao
  surname: Ouyang
  fullname: Ouyang, Minggao
  organization: State Key Laboratory of Intelligent Green Vehicle and Mobility, School of Vehicle and Mobility, Tsinghua University, Beijing, 100084, China
BookMark eNp9kL1OwzAYRT0UiRZ4Awa_gIMdx06yIFVV-ZGKWGBElmt_Ji5tjGy3qG9PojAzXd3hHl2dBZr1oQeEbhktGGXybldAD_HzXJS0FAXjTSn5DM0pl5SIqiov0SKlHaVUNG07Rx_rvtO9AYsd_JDUhYxT1hlIcKQDvc8dhpT9QWcfeuxCxHufO388kLFvdc4QPSR88hq_6PQ1gJbHHKA3wUK8RhdO7xPc_OUVen9Yv62eyOb18Xm13BBTijoTV_FKSKulBdo4IWpZO9ZIRmW7rbaussJIx4SxvOXcct1w0bLSQM04q8u64VeomrgmhpQiOPUdh8_xrBhVoxa1U5MWNWpRk5Zhdj_NYPh28hBVMh5GGz6CycoG_z_gFzmEce4
Cites_doi 10.1016/j.etran.2024.100338
10.1109/TIA.2019.2955396
10.1016/j.etran.2023.100226
10.1016/j.est.2022.105708
10.1016/j.ensm.2022.05.026
10.1016/j.apenergy.2023.121761
10.1016/j.ress.2023.109455
10.1109/TPEL.2011.2181868
10.1109/TTE.2020.3029295
10.1016/j.etran.2024.100361
10.1016/j.joule.2024.02.020
10.1002/er.5750
10.1016/j.rineng.2024.102770
10.1016/j.energy.2024.132213
10.1109/TII.2019.2951843
10.1016/j.jlp.2023.105156
10.1016/j.apenergy.2020.114817
10.1016/j.joule.2021.06.005
10.1016/j.est.2024.113502
10.1016/j.ensm.2021.07.016
10.1016/j.ymssp.2024.111585
10.1016/j.energy.2022.123973
10.1016/j.energy.2022.125234
10.1016/j.jclepro.2020.120813
10.3390/electronics12143049
10.1016/j.ensm.2022.10.030
10.1109/ACCESS.2018.2858856
10.1109/TTE.2022.3204843
10.1007/s00521-022-07291-5
10.1016/j.est.2020.101836
10.1016/j.neucom.2023.02.031
10.1016/j.joule.2024.07.002
10.1016/j.ress.2023.109790
10.1016/j.joule.2019.11.018
10.1016/j.energy.2022.125501
10.1016/j.joule.2023.07.018
10.1016/j.etran.2019.100034
10.1016/j.energy.2024.132993
10.3390/electronics11203378
10.1016/j.engfailanal.2024.108559
ContentType Journal Article
Copyright 2025 Elsevier Ltd
Copyright_xml – notice: 2025 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.energy.2025.138263
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Economics
Environmental Sciences
ExternalDocumentID 10_1016_j_energy_2025_138263
S0360544225039052
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AAEDT
AAEDW
AAHBH
AAHCO
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AARJD
AATTM
AAXKI
AAXUO
AAYWO
ABJNI
ABMAC
ACDAQ
ACGFS
ACIWK
ACLOT
ACRLP
ACVFH
ADBBV
ADCNI
ADEZE
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFPUW
AFRAH
AFTJW
AGHFR
AGUBO
AGYEJ
AHIDL
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
AXJTR
BELTK
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFKBS
EFLBG
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
KOM
LY6
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SSR
SSZ
T5K
TN5
XPP
ZMT
~02
~G-
~HD
29G
6TJ
9DU
AAQXK
AAYXX
ABDPE
ABFNM
ABWVN
ABXDB
ACRPL
ADMUD
ADNMO
ADXHL
AGQPQ
AHHHB
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
SAC
WUQ
ID FETCH-LOGICAL-c257t-f43456da6de08f55767f1861069b4bf4d5c6f15cd3933d3a835912ce713172783
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001583733500005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0360-5442
IngestDate Sat Nov 29 06:52:00 EST 2025
Wed Dec 10 14:24:00 EST 2025
IsPeerReviewed true
IsScholarly true
Keywords SOH estimation
Lithium-ion battery
Electric vehicle data
Semi-supervised learning
Masked Autoencoder
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c257t-f43456da6de08f55767f1861069b4bf4d5c6f15cd3933d3a835912ce713172783
ORCID 0000-0003-3697-6913
0000-0002-6359-8375
0009-0004-2676-7098
ParticipantIDs crossref_primary_10_1016_j_energy_2025_138263
elsevier_sciencedirect_doi_10_1016_j_energy_2025_138263
PublicationCentury 2000
PublicationDate 2025-10-30
PublicationDateYYYYMMDD 2025-10-30
PublicationDate_xml – month: 10
  year: 2025
  text: 2025-10-30
  day: 30
PublicationDecade 2020
PublicationTitle Energy (Oxford)
PublicationYear 2025
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Ma, Shan, Gao, Chen (bib16) 2022; 251
Xiao, Singh, Mintun, Darrell, Dollar, Girshick (bib47) 2021; 34
Xiang, Fan, Zhu, Wei, Dai (bib22) 2024; 5
Pozzato, Allam, Pulvirenti, Negoita, Paxton, Onori (bib39) 2023; 7
Sulzer, Mohtat, Aitio, Lee, Yeh, Steinbacher, Khan, Lee, Siegel, Stefanopoulou, Howey (bib9) 2021; 5
Dosovitskiy, Beyer, Kolesnikov, Weissenborn, Zhai, Unterthiner, Dehghani, Minderer, Heigold, Gelly, Uszkoreit, Houlsby (bib45) 2021
Zhang, Liu, Wang, Zhang (bib49) 2022; 239
Lin, Xu, Mei (bib13) 2023; 54
Wang, Shen, Zhang, Li, Zhang, Yang (bib26) 2023; 239
She, Wang, Sun, Liu, Zhang (bib51) 2020; 16
Peng, Zhu, Wu, Tang, Kan, Pecht (bib14) 2024; 308
Ren, Zhao, Hong, Zhao, Wang, Zhang (bib29) 2018; 6
Wu, Chen, Feng, Xiang, Zhu (bib31) 2022; 55
Ahfock, McLachlan (bib41) 2021
Chen, Koh, Halstead (bib42) 2022
Zhang, Ma, Zhou, Guan (bib55) 2024; 2846
Wen, Chen, Li, Li (bib53) 2022; 261
Xu, Guo, Saleh (bib32) 2022; 34
Zhou, Gao, Dong, Zhou, Zheng, Ma, Ming, Lian, Chen, Yang (bib11) 2024; 70
Kim, Yi, Chen, Tanim, Dufek (bib20) 2022; 45
Lucu, Azkue, Camblong, Martinez-Laserna (bib40) 2020
He, Sun, Wang, Lin, Zhang, Xiong, Deng, Zhu, Xie, Zhang, Wei, Cao, Zhai (bib1) 2022; 1
Zhao, Wang (bib15) 2024; 71
Pepe, Ciucci (bib17) 2023; 350
Wang, Wang, Liu, Zhang, Sauer, Li (bib34) 2023; 4
Zeng, Zhang, Xue, Li, Li, Zhang, Zheng (bib54) 2022; 11
Tian, Qin, Li, Zhao (bib21) 2020; 261
Cheng, Son, Wang, Lu, Zerhouni (bib18) 2020; 266
Jiang, Ren, Tang, Wu, Xia, Sun, Yang (bib25) 2024; 305
Ouyang, Weng, Chen, Wang, Wang (bib5) 2023; 85
Lu, Lin, Guo, Zhang, Wang, He, Ouyang (bib48) 2024; 21
Zhao, Yan, Chen, Mao, Wang, Gao (bib30) 2016
Feichtenhofer, Fan, Li, He (bib44) 2022
He, Chen, Xie, Li, Dollar, Girshick (bib46) 2022
Chen, Ma, Liu, Zeng, Luo (bib7) 2023; 532
Schimpe (bib43) 2023; 12
Li, Wei, Zhu, Du, Zhao, Ouyang (bib2) 2023; 16
Gu, See, Li, Shan, Wang, Zhao, Lim, Zhang (bib28) 2023; 262
Huang, Peng, Tang, Chen, Zio, Zheng (bib33) 2024; 242
Wang, Feng, Guo, Hsu, Hou, Zhang, Xu, Chen, Wang, Zhang, Ouyang (bib4) 2024; 8
Guo, Chen, Tao, Liu, Wan, Li (bib24) 2024; 8
Su, Li, Mou, Garg, Gao, Liu (bib27) 2023; 9
Hu, Xu, Lin, Pecht (bib10) 2020; 4
Liu, Zhang, Deng, Zhao, Zhang, Wang (bib56) 2024; 163
Lu, Guo, Xiong, Wei, Zhang, Wang, Ouyang (bib36) 2024; 22
Tong, Miao, Mao, Wang, Lu (bib50) 2022; 50
Hassini, Redondo-Iglesias, Venet (bib35) 2023; 9
Gou, Xu, Feng (bib19) 2021; 7
Ren, Hsu, Li, Feng, Guo, Han, Lu, He, Gao, Hou, Li, Wang, Ouyang (bib3) 2019; 2
Ye, Cheng, Yeung (bib8) 2012; 27
Liu, Deng, Che, Xu, Wang, Wang, Xie, Hu (bib37) 2024; 218
Krishna, Singh, Gehlot, Shaik, Twala, Priyadarshi (bib6) 2024; 23
Yu, Yang, Wu, Tang, Dai (bib23) 2020; 44
Song, Zhang, Liang, Han, Zhang (bib38) 2020; 32
Zhou, Qin, Yuen (bib12) 2024; 100
Stroe, Schaltz (bib52) 2020; 56
Cheng (10.1016/j.energy.2025.138263_bib18) 2020; 266
Xu (10.1016/j.energy.2025.138263_bib32) 2022; 34
Lucu (10.1016/j.energy.2025.138263_bib40) 2020
Yu (10.1016/j.energy.2025.138263_bib23) 2020; 44
Su (10.1016/j.energy.2025.138263_bib27) 2023; 9
Li (10.1016/j.energy.2025.138263_bib2) 2023; 16
Xiang (10.1016/j.energy.2025.138263_bib22) 2024; 5
Tong (10.1016/j.energy.2025.138263_bib50) 2022; 50
Guo (10.1016/j.energy.2025.138263_bib24) 2024; 8
Lin (10.1016/j.energy.2025.138263_bib13) 2023; 54
Gou (10.1016/j.energy.2025.138263_bib19) 2021; 7
Stroe (10.1016/j.energy.2025.138263_bib52) 2020; 56
Chen (10.1016/j.energy.2025.138263_bib7) 2023; 532
Ouyang (10.1016/j.energy.2025.138263_bib5) 2023; 85
Ren (10.1016/j.energy.2025.138263_bib29) 2018; 6
Xiao (10.1016/j.energy.2025.138263_bib47) 2021; 34
Sulzer (10.1016/j.energy.2025.138263_bib9) 2021; 5
Liu (10.1016/j.energy.2025.138263_bib37) 2024; 218
Ren (10.1016/j.energy.2025.138263_bib3) 2019; 2
Hu (10.1016/j.energy.2025.138263_bib10) 2020; 4
Pozzato (10.1016/j.energy.2025.138263_bib39) 2023; 7
Lu (10.1016/j.energy.2025.138263_bib48) 2024; 21
She (10.1016/j.energy.2025.138263_bib51) 2020; 16
He (10.1016/j.energy.2025.138263_bib46) 2022
Wang (10.1016/j.energy.2025.138263_bib34) 2023; 4
Feichtenhofer (10.1016/j.energy.2025.138263_bib44) 2022
Ahfock (10.1016/j.energy.2025.138263_bib41) 2021
Pepe (10.1016/j.energy.2025.138263_bib17) 2023; 350
Dosovitskiy (10.1016/j.energy.2025.138263_bib45) 2021
Krishna (10.1016/j.energy.2025.138263_bib6) 2024; 23
Huang (10.1016/j.energy.2025.138263_bib33) 2024; 242
Peng (10.1016/j.energy.2025.138263_bib14) 2024; 308
Zhou (10.1016/j.energy.2025.138263_bib11) 2024; 70
He (10.1016/j.energy.2025.138263_bib1) 2022; 1
Lu (10.1016/j.energy.2025.138263_bib36) 2024; 22
Liu (10.1016/j.energy.2025.138263_bib56) 2024; 163
Gu (10.1016/j.energy.2025.138263_bib28) 2023; 262
Zhang (10.1016/j.energy.2025.138263_bib55) 2024; 2846
Wu (10.1016/j.energy.2025.138263_bib31) 2022; 55
Zhao (10.1016/j.energy.2025.138263_bib30) 2016
Wen (10.1016/j.energy.2025.138263_bib53) 2022; 261
Hassini (10.1016/j.energy.2025.138263_bib35) 2023; 9
Ye (10.1016/j.energy.2025.138263_bib8) 2012; 27
Zhang (10.1016/j.energy.2025.138263_bib49) 2022; 239
Schimpe (10.1016/j.energy.2025.138263_bib43) 2023; 12
Wang (10.1016/j.energy.2025.138263_bib4) 2024; 8
Chen (10.1016/j.energy.2025.138263_bib42) 2022
Ma (10.1016/j.energy.2025.138263_bib16) 2022; 251
Zeng (10.1016/j.energy.2025.138263_bib54) 2022; 11
Zhou (10.1016/j.energy.2025.138263_bib12) 2024; 100
Tian (10.1016/j.energy.2025.138263_bib21) 2020; 261
Jiang (10.1016/j.energy.2025.138263_bib25) 2024; 305
Wang (10.1016/j.energy.2025.138263_bib26) 2023; 239
Song (10.1016/j.energy.2025.138263_bib38) 2020; 32
Zhao (10.1016/j.energy.2025.138263_bib15) 2024; 71
Kim (10.1016/j.energy.2025.138263_bib20) 2022; 45
References_xml – volume: 27
  start-page: 3234
  year: 2012
  end-page: 3242
  ident: bib8
  article-title: Zero-current switching switched-capacitor zero-voltage-gap automatic equalization system for series battery string
  publication-title: IEEE Trans Power Electron
– volume: 218
  start-page: 17
  year: 2024
  ident: bib37
  article-title: Big field data-driven battery pack health estimation for electric vehicles: a deep-fusion transfer learning approach
  publication-title: Mech Syst Signal Process
– volume: 266
  start-page: 15
  year: 2020
  ident: bib18
  article-title: An ensemble prognostic method for lithium-ion battery capacity estimation based on time-varying weight allocation
  publication-title: Appl Energy
– volume: 239
  start-page: 12
  year: 2023
  ident: bib26
  article-title: Self-supervised health representation decomposition based on contrast learning
  publication-title: Reliab Eng Syst Saf
– volume: 32
  start-page: 10
  year: 2020
  ident: bib38
  article-title: Intelligent state of health estimation for lithium-ion battery pack based on big data analysis
  publication-title: J Energy Storage
– year: 2021
  ident: bib45
  article-title: An image is worth 16x16 words: transformers for image recognition at scale
  publication-title: arXiv (USA)
– volume: 44
  start-page: 11345
  year: 2020
  end-page: 11353
  ident: bib23
  article-title: Online state-of-health prediction of lithium-ion batteries with limited labeled data
  publication-title: Int J Energy Res
– volume: 16
  start-page: 3345
  year: 2020
  end-page: 3354
  ident: bib51
  article-title: Battery aging assessment for real-world electric buses based on incremental capacity analysis and radial basis function neural network
  publication-title: IEEE Trans Ind Inf
– volume: 56
  start-page: 678
  year: 2020
  end-page: 685
  ident: bib52
  article-title: Lithium-ion battery state-of-health estimation using the incremental capacity analysis technique
  publication-title: IEEE Trans Ind Appl
– volume: 163
  start-page: 12
  year: 2024
  ident: bib56
  article-title: A failure risk assessment method for lithium-ion batteries based on big data of after-sales vehicles
  publication-title: Eng Fail Anal
– volume: 532
  start-page: 152
  year: 2023
  end-page: 169
  ident: bib7
  article-title: An overview of data-driven battery health estimation technology for battery management system
  publication-title: Neurocomputing
– volume: 12
  start-page: 14
  year: 2023
  ident: bib43
  article-title: Logging In-Operation battery data from android devices: a possible path to sourcing battery operation data
  publication-title: Electronics
– start-page: 17
  year: 2021
  ident: bib41
  article-title: Harmless label noise and informative soft-labels in supervised classification arXiv, arXiv (USA)
– volume: 71
  start-page: 17
  year: 2024
  ident: bib15
  article-title: Specialized convolutional transformer networks for estimating battery health via transfer learning
  publication-title: Energy Storage Mater
– volume: 261
  start-page: 30
  year: 2020
  ident: bib21
  article-title: A review of the state of health for lithium -ion batteries: research status and suggestions
  publication-title: J Clean Prod
– volume: 2846
  year: 2024
  ident: bib55
  article-title: Research on monitoring and energy management systems for energy storage stations on the power generation side
  publication-title: J Phys, Conf Ser (UK)
– volume: 100
  year: 2024
  ident: bib12
  article-title: Graph neural network-based lithium-ion battery state of health estimation using partial discharging curve
  publication-title: J Energy Storage
– volume: 5
  start-page: 1934
  year: 2021
  end-page: 1955
  ident: bib9
  article-title: The challenge and opportunity of battery lifetime prediction from field data
  publication-title: Joule
– start-page: 15979
  year: 2022
  end-page: 15988
  ident: bib46
  article-title: Masked autoencoders are scalable vision learners
  publication-title: 2022 IEEE/CVF conference on computer vision and pattern recognition (CVPR)
– volume: 2
  start-page: 13
  year: 2019
  ident: bib3
  article-title: A comparative investigation of aging effects on thermal runaway behavior of lithium-ion batteries
  publication-title: eTransportation
– volume: 239
  start-page: 17
  year: 2022
  ident: bib49
  article-title: State-of-health estimation for lithium-ion batteries by combining model-based incremental capacity analysis with support vector regression
  publication-title: Energy
– volume: 350
  start-page: 11
  year: 2023
  ident: bib17
  article-title: Long-range battery state-of-health and end-of-life prediction with neural networks and feature engineering
  publication-title: Appl Energy
– volume: 7
  start-page: 2035
  year: 2023
  end-page: 2053
  ident: bib39
  article-title: Analysis and key findings from real-world electric vehicle field data
  publication-title: Joule
– start-page: 28
  year: 2022
  end-page: 42
  ident: bib42
  article-title: Measuring difficulty of learning using ensemble methods
  publication-title: 20th australasian conference on data mining (AusDM)
– volume: 85
  start-page: 7
  year: 2023
  ident: bib5
  article-title: Electrochemical and thermal features of aging lithium-ion batteries cycled at various current rates
  publication-title: J Loss Prev Process Ind
– volume: 22
  year: 2024
  ident: bib36
  article-title: Towards real-world state of health estimation: part 2, system level method using electric vehicle field data
  publication-title: eTransportation
– volume: 251
  start-page: 21
  year: 2022
  ident: bib16
  article-title: A novel method for state of health estimation of lithium-ion batteries based on improved LSTM and health indicators extraction
  publication-title: Energy
– volume: 5
  start-page: 24
  year: 2024
  ident: bib22
  article-title: Semi-supervised deep learning for lithium-ion battery state-of-health estimation using dynamic discharge profiles
  publication-title: Cell Rep Phys Sci
– volume: 16
  start-page: 11
  year: 2023
  ident: bib2
  article-title: The path enabling storage of renewable energy toward carbon neutralization in China
  publication-title: eTransportation
– volume: 242
  start-page: 13
  year: 2024
  ident: bib33
  article-title: A physics-informed autoencoder for system health state assessment based on energy-oriented system performance
  publication-title: Reliab Eng Syst Saf
– volume: 54
  start-page: 85
  year: 2023
  end-page: 97
  ident: bib13
  article-title: Improving state-of-health estimation for lithium-ion batteries via unlabeled charging data
  publication-title: Energy Storage Mater
– start-page: 5600
  year: 2020
  end-page: 5607
  ident: bib40
  article-title: Ieee, data-driven nonparametric Li-Ion battery ageing model aiming at learning from real operation data: holistic validation with Ev driving profiles
  publication-title: 12th annual IEEE energy conversion congress and exposition (IEEE ECCE)
– volume: 4
  start-page: 21
  year: 2023
  ident: bib34
  article-title: Large-scale field data-based battery aging prediction driven by statistical features and machine learning
  publication-title: Cell Rep Phys Sci
– volume: 11
  start-page: 31
  year: 2022
  ident: bib54
  article-title: The design of a safe charging system based on PKS architecture
  publication-title: Electronics
– volume: 8
  start-page: 2639
  year: 2024
  end-page: 2651
  ident: bib4
  article-title: Temperature excavation to boost machine learning battery thermochemical predictions
  publication-title: Joule
– volume: 45
  start-page: 1002
  year: 2022
  end-page: 1011
  ident: bib20
  article-title: Rapid failure mode classification and quantification in batteries: a deep learning modeling framework
  publication-title: Energy Storage Mater
– volume: 6
  start-page: 50587
  year: 2018
  end-page: 50598
  ident: bib29
  article-title: Remaining useful life prediction for lithium-ion battery: a deep learning approach
  publication-title: IEEE Access
– volume: 21
  start-page: 11
  year: 2024
  ident: bib48
  article-title: Towards real-world state of health estimation, part 1: cell-level method using lithium-ion battery laboratory data
  publication-title: eTransportation
– volume: 50
  start-page: 533
  year: 2022
  end-page: 542
  ident: bib50
  article-title: Prediction of Li-ion battery capacity degradation considering polarization recovery with a hybrid ensemble learning model
  publication-title: Energy Storage Mater
– volume: 34
  start-page: 15997
  year: 2022
  end-page: 16017
  ident: bib32
  article-title: A physics-informed dynamic deep autoencoder for accurate state-of-health prediction of lithium-ion battery
  publication-title: Neural Comput Appl
– volume: 261
  start-page: 8
  year: 2022
  ident: bib53
  article-title: SOH prediction of lithium battery based on IC curve feature and BP neural network
  publication-title: Energy
– volume: 4
  start-page: 310
  year: 2020
  end-page: 346
  ident: bib10
  article-title: Battery lifetime prognostics
  publication-title: Joule
– volume: 55
  start-page: 11
  year: 2022
  ident: bib31
  article-title: State of health estimation of lithium-ion batteries using autoencoders and ensemble learning
  publication-title: J Energy Storage
– volume: 70
  start-page: 28
  year: 2024
  ident: bib11
  article-title: Vehicle-cloud-collaborated prognosis and health management for lithium-ion batteries: framework, technics and perspective
  publication-title: Energy Storage Mater
– volume: 9
  start-page: 1113
  year: 2023
  end-page: 1127
  ident: bib27
  article-title: A hybrid battery equivalent circuit model, deep learning, and transfer learning for battery state monitoring
  publication-title: IEEE Trans Transp Electrif
– volume: 9
  start-page: 37
  year: 2023
  ident: bib35
  article-title: Lithium-ion battery data: from production to prediction
  publication-title: Batteries-Basel
– volume: 34
  year: 2021
  ident: bib47
  article-title: Early convolutions help transformers see better
  publication-title: Adv Neural Inf Process Syst
– volume: 1
  start-page: 24
  year: 2022
  ident: bib1
  article-title: China's battery electric vehicles lead the world: achievements in technology system architecture and technological breakthroughs, green energy intell
  publication-title: Transp
– volume: 262
  start-page: 14
  year: 2023
  ident: bib28
  article-title: A novel state-of-health estimation for the lithium-ion battery using a convolutional neural network and transformer model
  publication-title: Energy
– year: 2022
  ident: bib44
  article-title: Masked autoencoders as spatiotemporal learners
  publication-title: arXiv (USA)
– volume: 308
  start-page: 15
  year: 2024
  ident: bib14
  article-title: SOH early prediction of lithium-ion batteries based on voltage interval selection and features fusion
  publication-title: Energy
– year: 2016
  ident: bib30
  article-title: Deep learning and its applications to machine health monitoring: a survey
  publication-title: arXiv (USA)
– volume: 8
  start-page: 18
  year: 2024
  ident: bib24
  article-title: Semi-supervised learning for explainable few-shot battery lifetime prediction
  publication-title: Joule
– volume: 7
  start-page: 422
  year: 2021
  end-page: 436
  ident: bib19
  article-title: An ensemble learning-based data-driven method for online state-of-health estimation of lithium-ion batteries
  publication-title: IEEE Trans Transp Electrif
– volume: 305
  start-page: 13
  year: 2024
  ident: bib25
  article-title: An adaptive semi-supervised self-learning method for online state of health estimation of lithium-ion batteries
  publication-title: Energy
– volume: 23
  start-page: 19
  year: 2024
  ident: bib6
  article-title: IoT-based real-time analysis of battery management system with long range communication and FLoRa
  publication-title: Results Eng
– volume: 21
  start-page: 11
  year: 2024
  ident: 10.1016/j.energy.2025.138263_bib48
  article-title: Towards real-world state of health estimation, part 1: cell-level method using lithium-ion battery laboratory data
  publication-title: eTransportation
  doi: 10.1016/j.etran.2024.100338
– volume: 56
  start-page: 678
  year: 2020
  ident: 10.1016/j.energy.2025.138263_bib52
  article-title: Lithium-ion battery state-of-health estimation using the incremental capacity analysis technique
  publication-title: IEEE Trans Ind Appl
  doi: 10.1109/TIA.2019.2955396
– volume: 16
  start-page: 11
  year: 2023
  ident: 10.1016/j.energy.2025.138263_bib2
  article-title: The path enabling storage of renewable energy toward carbon neutralization in China
  publication-title: eTransportation
  doi: 10.1016/j.etran.2023.100226
– volume: 55
  start-page: 11
  year: 2022
  ident: 10.1016/j.energy.2025.138263_bib31
  article-title: State of health estimation of lithium-ion batteries using autoencoders and ensemble learning
  publication-title: J Energy Storage
  doi: 10.1016/j.est.2022.105708
– start-page: 28
  year: 2022
  ident: 10.1016/j.energy.2025.138263_bib42
  article-title: Measuring difficulty of learning using ensemble methods
– year: 2022
  ident: 10.1016/j.energy.2025.138263_bib44
  article-title: Masked autoencoders as spatiotemporal learners
  publication-title: arXiv (USA)
– volume: 50
  start-page: 533
  year: 2022
  ident: 10.1016/j.energy.2025.138263_bib50
  article-title: Prediction of Li-ion battery capacity degradation considering polarization recovery with a hybrid ensemble learning model
  publication-title: Energy Storage Mater
  doi: 10.1016/j.ensm.2022.05.026
– volume: 350
  start-page: 11
  year: 2023
  ident: 10.1016/j.energy.2025.138263_bib17
  article-title: Long-range battery state-of-health and end-of-life prediction with neural networks and feature engineering
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2023.121761
– volume: 239
  start-page: 12
  year: 2023
  ident: 10.1016/j.energy.2025.138263_bib26
  article-title: Self-supervised health representation decomposition based on contrast learning
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2023.109455
– volume: 2846
  year: 2024
  ident: 10.1016/j.energy.2025.138263_bib55
  article-title: Research on monitoring and energy management systems for energy storage stations on the power generation side
  publication-title: J Phys, Conf Ser (UK)
– volume: 27
  start-page: 3234
  year: 2012
  ident: 10.1016/j.energy.2025.138263_bib8
  article-title: Zero-current switching switched-capacitor zero-voltage-gap automatic equalization system for series battery string
  publication-title: IEEE Trans Power Electron
  doi: 10.1109/TPEL.2011.2181868
– volume: 7
  start-page: 422
  year: 2021
  ident: 10.1016/j.energy.2025.138263_bib19
  article-title: An ensemble learning-based data-driven method for online state-of-health estimation of lithium-ion batteries
  publication-title: IEEE Trans Transp Electrif
  doi: 10.1109/TTE.2020.3029295
– volume: 22
  year: 2024
  ident: 10.1016/j.energy.2025.138263_bib36
  article-title: Towards real-world state of health estimation: part 2, system level method using electric vehicle field data
  publication-title: eTransportation
  doi: 10.1016/j.etran.2024.100361
– year: 2016
  ident: 10.1016/j.energy.2025.138263_bib30
  article-title: Deep learning and its applications to machine health monitoring: a survey
  publication-title: arXiv (USA)
– volume: 34
  year: 2021
  ident: 10.1016/j.energy.2025.138263_bib47
  article-title: Early convolutions help transformers see better
  publication-title: Adv Neural Inf Process Syst
– volume: 8
  start-page: 18
  year: 2024
  ident: 10.1016/j.energy.2025.138263_bib24
  article-title: Semi-supervised learning for explainable few-shot battery lifetime prediction
  publication-title: Joule
  doi: 10.1016/j.joule.2024.02.020
– volume: 44
  start-page: 11345
  year: 2020
  ident: 10.1016/j.energy.2025.138263_bib23
  article-title: Online state-of-health prediction of lithium-ion batteries with limited labeled data
  publication-title: Int J Energy Res
  doi: 10.1002/er.5750
– start-page: 17
  year: 2021
  ident: 10.1016/j.energy.2025.138263_bib41
– start-page: 15979
  year: 2022
  ident: 10.1016/j.energy.2025.138263_bib46
  article-title: Masked autoencoders are scalable vision learners
– volume: 23
  start-page: 19
  year: 2024
  ident: 10.1016/j.energy.2025.138263_bib6
  article-title: IoT-based real-time analysis of battery management system with long range communication and FLoRa
  publication-title: Results Eng
  doi: 10.1016/j.rineng.2024.102770
– volume: 71
  start-page: 17
  year: 2024
  ident: 10.1016/j.energy.2025.138263_bib15
  article-title: Specialized convolutional transformer networks for estimating battery health via transfer learning
  publication-title: Energy Storage Mater
– volume: 305
  start-page: 13
  year: 2024
  ident: 10.1016/j.energy.2025.138263_bib25
  article-title: An adaptive semi-supervised self-learning method for online state of health estimation of lithium-ion batteries
  publication-title: Energy
  doi: 10.1016/j.energy.2024.132213
– volume: 16
  start-page: 3345
  year: 2020
  ident: 10.1016/j.energy.2025.138263_bib51
  article-title: Battery aging assessment for real-world electric buses based on incremental capacity analysis and radial basis function neural network
  publication-title: IEEE Trans Ind Inf
  doi: 10.1109/TII.2019.2951843
– volume: 85
  start-page: 7
  year: 2023
  ident: 10.1016/j.energy.2025.138263_bib5
  article-title: Electrochemical and thermal features of aging lithium-ion batteries cycled at various current rates
  publication-title: J Loss Prev Process Ind
  doi: 10.1016/j.jlp.2023.105156
– volume: 70
  start-page: 28
  year: 2024
  ident: 10.1016/j.energy.2025.138263_bib11
  article-title: Vehicle-cloud-collaborated prognosis and health management for lithium-ion batteries: framework, technics and perspective
  publication-title: Energy Storage Mater
– volume: 266
  start-page: 15
  year: 2020
  ident: 10.1016/j.energy.2025.138263_bib18
  article-title: An ensemble prognostic method for lithium-ion battery capacity estimation based on time-varying weight allocation
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2020.114817
– volume: 5
  start-page: 1934
  year: 2021
  ident: 10.1016/j.energy.2025.138263_bib9
  article-title: The challenge and opportunity of battery lifetime prediction from field data
  publication-title: Joule
  doi: 10.1016/j.joule.2021.06.005
– volume: 100
  year: 2024
  ident: 10.1016/j.energy.2025.138263_bib12
  article-title: Graph neural network-based lithium-ion battery state of health estimation using partial discharging curve
  publication-title: J Energy Storage
  doi: 10.1016/j.est.2024.113502
– volume: 45
  start-page: 1002
  year: 2022
  ident: 10.1016/j.energy.2025.138263_bib20
  article-title: Rapid failure mode classification and quantification in batteries: a deep learning modeling framework
  publication-title: Energy Storage Mater
  doi: 10.1016/j.ensm.2021.07.016
– volume: 218
  start-page: 17
  year: 2024
  ident: 10.1016/j.energy.2025.138263_bib37
  article-title: Big field data-driven battery pack health estimation for electric vehicles: a deep-fusion transfer learning approach
  publication-title: Mech Syst Signal Process
  doi: 10.1016/j.ymssp.2024.111585
– volume: 251
  start-page: 21
  year: 2022
  ident: 10.1016/j.energy.2025.138263_bib16
  article-title: A novel method for state of health estimation of lithium-ion batteries based on improved LSTM and health indicators extraction
  publication-title: Energy
  doi: 10.1016/j.energy.2022.123973
– volume: 261
  start-page: 8
  year: 2022
  ident: 10.1016/j.energy.2025.138263_bib53
  article-title: SOH prediction of lithium battery based on IC curve feature and BP neural network
  publication-title: Energy
  doi: 10.1016/j.energy.2022.125234
– volume: 261
  start-page: 30
  year: 2020
  ident: 10.1016/j.energy.2025.138263_bib21
  article-title: A review of the state of health for lithium -ion batteries: research status and suggestions
  publication-title: J Clean Prod
  doi: 10.1016/j.jclepro.2020.120813
– volume: 5
  start-page: 24
  year: 2024
  ident: 10.1016/j.energy.2025.138263_bib22
  article-title: Semi-supervised deep learning for lithium-ion battery state-of-health estimation using dynamic discharge profiles
  publication-title: Cell Rep Phys Sci
– volume: 12
  start-page: 14
  year: 2023
  ident: 10.1016/j.energy.2025.138263_bib43
  article-title: Logging In-Operation battery data from android devices: a possible path to sourcing battery operation data
  publication-title: Electronics
  doi: 10.3390/electronics12143049
– volume: 54
  start-page: 85
  year: 2023
  ident: 10.1016/j.energy.2025.138263_bib13
  article-title: Improving state-of-health estimation for lithium-ion batteries via unlabeled charging data
  publication-title: Energy Storage Mater
  doi: 10.1016/j.ensm.2022.10.030
– start-page: 5600
  year: 2020
  ident: 10.1016/j.energy.2025.138263_bib40
  article-title: Ieee, data-driven nonparametric Li-Ion battery ageing model aiming at learning from real operation data: holistic validation with Ev driving profiles
– volume: 6
  start-page: 50587
  year: 2018
  ident: 10.1016/j.energy.2025.138263_bib29
  article-title: Remaining useful life prediction for lithium-ion battery: a deep learning approach
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2858856
– volume: 9
  start-page: 1113
  year: 2023
  ident: 10.1016/j.energy.2025.138263_bib27
  article-title: A hybrid battery equivalent circuit model, deep learning, and transfer learning for battery state monitoring
  publication-title: IEEE Trans Transp Electrif
  doi: 10.1109/TTE.2022.3204843
– volume: 34
  start-page: 15997
  year: 2022
  ident: 10.1016/j.energy.2025.138263_bib32
  article-title: A physics-informed dynamic deep autoencoder for accurate state-of-health prediction of lithium-ion battery
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-022-07291-5
– volume: 32
  start-page: 10
  year: 2020
  ident: 10.1016/j.energy.2025.138263_bib38
  article-title: Intelligent state of health estimation for lithium-ion battery pack based on big data analysis
  publication-title: J Energy Storage
  doi: 10.1016/j.est.2020.101836
– volume: 1
  start-page: 24
  year: 2022
  ident: 10.1016/j.energy.2025.138263_bib1
  article-title: China's battery electric vehicles lead the world: achievements in technology system architecture and technological breakthroughs, green energy intell
  publication-title: Transp
– volume: 532
  start-page: 152
  year: 2023
  ident: 10.1016/j.energy.2025.138263_bib7
  article-title: An overview of data-driven battery health estimation technology for battery management system
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2023.02.031
– volume: 8
  start-page: 2639
  year: 2024
  ident: 10.1016/j.energy.2025.138263_bib4
  article-title: Temperature excavation to boost machine learning battery thermochemical predictions
  publication-title: Joule
  doi: 10.1016/j.joule.2024.07.002
– volume: 9
  start-page: 37
  year: 2023
  ident: 10.1016/j.energy.2025.138263_bib35
  article-title: Lithium-ion battery data: from production to prediction
  publication-title: Batteries-Basel
– volume: 239
  start-page: 17
  year: 2022
  ident: 10.1016/j.energy.2025.138263_bib49
  article-title: State-of-health estimation for lithium-ion batteries by combining model-based incremental capacity analysis with support vector regression
  publication-title: Energy
– volume: 242
  start-page: 13
  year: 2024
  ident: 10.1016/j.energy.2025.138263_bib33
  article-title: A physics-informed autoencoder for system health state assessment based on energy-oriented system performance
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2023.109790
– volume: 4
  start-page: 310
  year: 2020
  ident: 10.1016/j.energy.2025.138263_bib10
  article-title: Battery lifetime prognostics
  publication-title: Joule
  doi: 10.1016/j.joule.2019.11.018
– volume: 262
  start-page: 14
  year: 2023
  ident: 10.1016/j.energy.2025.138263_bib28
  article-title: A novel state-of-health estimation for the lithium-ion battery using a convolutional neural network and transformer model
  publication-title: Energy
  doi: 10.1016/j.energy.2022.125501
– volume: 7
  start-page: 2035
  year: 2023
  ident: 10.1016/j.energy.2025.138263_bib39
  article-title: Analysis and key findings from real-world electric vehicle field data
  publication-title: Joule
  doi: 10.1016/j.joule.2023.07.018
– volume: 2
  start-page: 13
  year: 2019
  ident: 10.1016/j.energy.2025.138263_bib3
  article-title: A comparative investigation of aging effects on thermal runaway behavior of lithium-ion batteries
  publication-title: eTransportation
  doi: 10.1016/j.etran.2019.100034
– volume: 308
  start-page: 15
  year: 2024
  ident: 10.1016/j.energy.2025.138263_bib14
  article-title: SOH early prediction of lithium-ion batteries based on voltage interval selection and features fusion
  publication-title: Energy
  doi: 10.1016/j.energy.2024.132993
– volume: 4
  start-page: 21
  year: 2023
  ident: 10.1016/j.energy.2025.138263_bib34
  article-title: Large-scale field data-based battery aging prediction driven by statistical features and machine learning
  publication-title: Cell Rep Phys Sci
– year: 2021
  ident: 10.1016/j.energy.2025.138263_bib45
  article-title: An image is worth 16x16 words: transformers for image recognition at scale
  publication-title: arXiv (USA)
– volume: 11
  start-page: 31
  year: 2022
  ident: 10.1016/j.energy.2025.138263_bib54
  article-title: The design of a safe charging system based on PKS architecture
  publication-title: Electronics
  doi: 10.3390/electronics11203378
– volume: 163
  start-page: 12
  year: 2024
  ident: 10.1016/j.energy.2025.138263_bib56
  article-title: A failure risk assessment method for lithium-ion batteries based on big data of after-sales vehicles
  publication-title: Eng Fail Anal
  doi: 10.1016/j.engfailanal.2024.108559
SSID ssj0005899
Score 2.4771852
Snippet Accurately estimating the state-of-health (SOH) of lithium-ion batteries (LIBs) is crucial for optimizing performance, ensuring operational safety, and...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 138263
SubjectTerms Electric vehicle data
Lithium-ion battery
Masked Autoencoder
Semi-supervised learning
SOH estimation
Title Enhanced few-shot state-of-health estimation for lithium-ion batteries via Masked Autoencoder
URI https://dx.doi.org/10.1016/j.energy.2025.138263
Volume 335
WOSCitedRecordID wos001583733500005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 0360-5442
  databaseCode: AIEXJ
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0005899
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLbQhgQvCAYT4yY_8Fa5SuK4sR-rqdwEE9IG6h5QlDo2zdCSaUlGfz7Ht6RjCAESL1FqxU7r8_Xk88n5jhF6mURyVtJCEMESSVIVK1KUKSeFXGmVpIytbLb75_fZ0RFfLsVHX1ChtdsJZHXNNxtx8V9NDW1gbCOd_QtzD4NCA5yD0eEIZofjHxl-Ua_dW32tvpN23XQTKxoijSZO9DgxhTXOxyRDIOLrqj8n5vPKltuE1fPkqiomH4r2Gww077vG1LssfSZvCOQ72aCpV7pxKfJDUOHYaz5OKz2i73XfOMpef930YyDfOZvToeUw6EUqE0pttsMSiS1n6t-w2FhZ0MuMyUlOoxURlqbX_C919Upu-HIXVjibKvtrpuYmU1Mx0TvE61Wyj83QZmSgdFREDJ7Ku0nGBPjq3fnbxfLdmPfD7aaiw1cJekqb9HfzXr_mK1sc5OQ-uucXD3jujP4A3VL1HroTtOXtHtpfjLpFuNA77vYh-hJQgQMq8E-owCMqMFgTb6ECD6jAgArsUIG3UPEIfXq1ODl8Q_zOGkSCi-6ITikQ57KYlSrimsGaM9MxByY9E6vUpG4yOdMxkyUVlMJfGWi6iBOpspgawsvpPtqpm1o9RlinylSNBJbNge1JxrUxQUkjnZhO8gCRMH_5hSugkofMwrPczXdu5jt3832AsjDJuSeBjtzlgIvf9nzyzz2forsjhJ-hne6yV8_RbXnVVe3lCw-gH5cYgxw
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhanced+few-shot+state-of-health+estimation+for+lithium-ion+batteries+via+Masked+Autoencoder&rft.jtitle=Energy+%28Oxford%29&rft.au=Shen%2C+Yifan&rft.au=Guo%2C+Dongxu&rft.au=Wang%2C+Yu&rft.au=Chen%2C+Jianguo&rft.date=2025-10-30&rft.pub=Elsevier+Ltd&rft.issn=0360-5442&rft.volume=335&rft_id=info:doi/10.1016%2Fj.energy.2025.138263&rft.externalDocID=S0360544225039052
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-5442&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-5442&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-5442&client=summon