FCA-Net: Accelerating stereo image compression through cascade alignment of side information

Multi-view signal compression, particularly Stereo Image Compression (SIC), plays a pivotal role in applications such as car-mounted cameras and 3D-related scenarios. Despite the Distributed Source Coding (DSC) theory suggesting efficient compression through independent encoding and joint decoding,...

Full description

Saved in:
Bibliographic Details
Published in:Pattern recognition Vol. 168; p. 111799
Main Authors: Xia, Yichong, Huang, Yujun, Chen, Bin, Wang, Genping, Wang, Haoqian, Wang, Yaowei
Format: Journal Article
Language:English
Published: Elsevier Ltd 01.12.2025
Subjects:
ISSN:0031-3203
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Multi-view signal compression, particularly Stereo Image Compression (SIC), plays a pivotal role in applications such as car-mounted cameras and 3D-related scenarios. Despite the Distributed Source Coding (DSC) theory suggesting efficient compression through independent encoding and joint decoding, recent approaches have overlooked the unique characteristics of stereo-imaging tasks, leading to high decoding latency. To address this limitation, we introduce the Feature-based Cascade Alignment network (FCA-Net) to fully exploit side information to accelerate decoding. Initially, we design a feature domain patch-matching module, leveraging stereo priors, reduces redundancy in the search space and minimizes noise introduction. In the subsequent stage, we adopt an hourglass-based sparse stereo refinement network to align inter-image features with reduced computational cost. Experimental results on InStereo2K, KITTI, and Cityscapes datasets demonstrate the superiority of our approach over existing SIC methods. Notably, our approach achieves a decoding speed of 5.67 times faster than the latest DSC-based method, showcasing its efficiency in real-world applications.
AbstractList Multi-view signal compression, particularly Stereo Image Compression (SIC), plays a pivotal role in applications such as car-mounted cameras and 3D-related scenarios. Despite the Distributed Source Coding (DSC) theory suggesting efficient compression through independent encoding and joint decoding, recent approaches have overlooked the unique characteristics of stereo-imaging tasks, leading to high decoding latency. To address this limitation, we introduce the Feature-based Cascade Alignment network (FCA-Net) to fully exploit side information to accelerate decoding. Initially, we design a feature domain patch-matching module, leveraging stereo priors, reduces redundancy in the search space and minimizes noise introduction. In the subsequent stage, we adopt an hourglass-based sparse stereo refinement network to align inter-image features with reduced computational cost. Experimental results on InStereo2K, KITTI, and Cityscapes datasets demonstrate the superiority of our approach over existing SIC methods. Notably, our approach achieves a decoding speed of 5.67 times faster than the latest DSC-based method, showcasing its efficiency in real-world applications.
ArticleNumber 111799
Author Wang, Yaowei
Xia, Yichong
Chen, Bin
Wang, Genping
Wang, Haoqian
Huang, Yujun
Author_xml – sequence: 1
  givenname: Yichong
  orcidid: 0009-0002-4702-5558
  surname: Xia
  fullname: Xia, Yichong
  email: xiayc23@mails.tsinghua.edu.cn
  organization: Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
– sequence: 2
  givenname: Yujun
  surname: Huang
  fullname: Huang, Yujun
  email: huangyj20@mails.tsinghua.edu.cn
  organization: Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
– sequence: 3
  givenname: Bin
  orcidid: 0000-0002-4798-230X
  surname: Chen
  fullname: Chen, Bin
  email: chenbin2021@hit.edu.cn
  organization: Harbin Institute of Technology, Shenzhen, China
– sequence: 4
  givenname: Genping
  surname: Wang
  fullname: Wang, Genping
  email: genpingwang@163.com
  organization: Shenzhen Qiji Technology Co., Ltd., China
– sequence: 5
  givenname: Haoqian
  surname: Wang
  fullname: Wang, Haoqian
  email: wanghaoqian@mails.tsinghua.edu.cn
  organization: Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
– sequence: 6
  givenname: Yaowei
  surname: Wang
  fullname: Wang, Yaowei
  email: wangyw@pcl.ac.cn
  organization: Research Center of Artificial Intelligence, Peng Cheng Laboratory, Shenzhen, China
BookMark eNp9kMFKAzEURbOoYKv-gYv8wIxJZqaZcSGUYlUoutGdENLkvWlKJylJFPx7p4xrVw8u7x4uZ0FmPngg5JazkjO-vDuUJ51N6EvBRFNyzmXXzcicsYoXlWDVJVmkdGCMS16LOfncrFfFK-R7ujIGjhB1dr6nKUOEQN2ge6AmDKcIKbngad7H8NXvqdHJaAtUH13vB_CZBqTJjYnzGOIwYoK_Jheojwlu_u4V-dg8vq-fi-3b08t6tS2MaGQusOJ1y5sGOlFbxE5YrFuwKK3tsGtaaWSlm_MH1rJFRJA7VuPOCLNsUejqitQT18SQUgRUpzhOjz-KM3W2og5qsqLOVtRkZaw9TDUYt307iCoZB96AdRFMVja4_wG_9B9ytA
Cites_doi 10.1016/j.patcog.2023.109696
10.1109/TCSVT.2023.3253702
10.1109/TII.2011.2174062
10.1109/TCSVT.2015.2477935
10.1109/CVPR.2018.00068
10.1109/CVPR46437.2021.01369
10.1109/CVPR.2018.00716
10.1109/CVPR46437.2021.01453
10.1109/CVPR.2015.7298925
10.1109/TIT.1976.1055508
10.1109/TIT.1973.1055037
10.1109/ICCV.2019.00323
10.1109/CVPR42600.2020.00796
10.1109/CVPR46437.2021.00154
10.1109/CVPR42600.2020.00257
10.1109/CVPR52688.2022.00074
10.1155/2020/8562323
10.1109/30.125072
10.1007/s11432-019-2803-x
10.1109/CVPR.2016.350
10.1117/1.1469618
10.1109/CVPR.2018.00567
10.1109/CVPR52688.2022.01905
10.1023/A:1008987612352
10.1016/j.patcog.2024.110632
ContentType Journal Article
Copyright 2025 Elsevier Ltd
Copyright_xml – notice: 2025 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.patcog.2025.111799
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
ExternalDocumentID 10_1016_j_patcog_2025_111799
S0031320325004595
GroupedDBID --K
--M
-D8
-DT
-~X
.DC
.~1
0R~
123
1B1
1RT
1~.
1~5
29O
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JN
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYFN
AAYWO
ABBOA
ABDPE
ABEFU
ABFNM
ABFRF
ABHFT
ABJNI
ABMAC
ABWVN
ABXDB
ACBEA
ACDAQ
ACGFO
ACGFS
ACLOT
ACNNM
ACRLP
ACRPL
ACVFH
ACZNC
ADBBV
ADCNI
ADEZE
ADJOM
ADMUD
ADMXK
ADNMO
ADTZH
AEBSH
AECPX
AEFWE
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFPUW
AFTJW
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
AOUOD
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFKBS
EFLBG
EJD
EO8
EO9
EP2
EP3
F0J
F5P
FD6
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
KOM
KZ1
LG9
LMP
LY1
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RNS
ROL
RPZ
SBC
SDF
SDG
SDP
SDS
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
TN5
UNMZH
VOH
WUQ
XJE
XPP
ZMT
ZY4
~G-
~HD
9DU
AAYXX
CITATION
ID FETCH-LOGICAL-c257t-f3148155e924dff92df48edf7dd9f9587c73a58155f478fffe7b04fbc2c68f2a3
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001498809500003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0031-3203
IngestDate Sat Nov 29 07:29:07 EST 2025
Sat Oct 11 16:51:40 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Lossless compression
Stereo image compression
Distributed Source Coding
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c257t-f3148155e924dff92df48edf7dd9f9587c73a58155f478fffe7b04fbc2c68f2a3
ORCID 0000-0002-4798-230X
0009-0002-4702-5558
ParticipantIDs crossref_primary_10_1016_j_patcog_2025_111799
elsevier_sciencedirect_doi_10_1016_j_patcog_2025_111799
PublicationCentury 2000
PublicationDate December 2025
2025-12-00
PublicationDateYYYYMMDD 2025-12-01
PublicationDate_xml – month: 12
  year: 2025
  text: December 2025
PublicationDecade 2020
PublicationTitle Pattern recognition
PublicationYear 2025
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Misra (b29) 2019
R. Zhang, P. Isola, A.A. Efros, E. Shechtman, O. Wang, The unreasonable effectiveness of deep features as a perceptual metric, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 586–595.
Kingma, Ba (b40) 2014
Murray, Little (b2) 2000; 8
Wyner, Ziv (b11) 1976; 22
Deng, Deng, Yang, Yang, Timofte, Xu (b28) 2023; 33
Huang, Chen, Qin, Li, Wang, Dai, Xia (b14) 2023
J.-R. Chang, Y.-S. Chen, Pyramid stereo matching network, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 5410–5418.
J. Liu, S. Wang, R. Urtasun, Dsic: Deep stereo image compression, in: Proceedings of the IEEE/CVF International Conference on Computer Vision, 2019, pp. 3136–3145.
Z. Shen, Y. Dai, Z. Rao, Cfnet: Cascade and fused cost volume for robust stereo matching, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021, pp. 13906–13915.
Z. Cheng, H. Sun, M. Takeuchi, J. Katto, Learned image compression with discretized gaussian mixture likelihoods and attention modules, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020, pp. 7939–7948.
Bellard (b37) 2014
Zhou, Meng, Cheng (b18) 2020; 2020
M. Menze, A. Geiger, Object scene flow for autonomous vehicles, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2015, pp. 3061–3070.
Wallace (b20) 1992; 38
Bao, Wang, Xu, Guo, Hong, Zhang (b33) 2020; 63
Bjontegaard (b36) 2001
Fu, Du, Zhang (b26) 2024; 155
Minnen, Ballé, Toderici (b22) 2018; 31
X. Zhang, X. Zhou, M. Lin, J. Sun, Shufflenet: An extremely efficient convolutional neural network for mobile devices, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 6848–6856.
X. Gu, Z. Fan, S. Zhu, Z. Dai, F. Tan, P. Tan, Cascade cost volume for high-resolution multi-view stereo and stereo matching, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020, pp. 2495–2504.
Ayzik, Avidan (b13) 2020
J. Ballé, D. Minnen, S. Singh, S.J. Hwang, N. Johnston, Variational image compression with a scale hyperprior, in: International Conference on Learning Representations, 2018.
Slepian, Wolf (b10) 1973; 19
Mital, Özyılkan, Garjani, Gündüz (b12) 2022
Uchigasaki, Miyazaki, Omachi (b25) 2023; 142
J. Ballé, V. Laparra, E.P. Simoncelli, End-to-end optimized image compression, in: 5th International Conference on Learning Representations, ICLR 2017, 2017.
M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler, R. Benenson, U. Franke, S. Roth, B. Schiele, The cityscapes dataset for semantic urban scene understanding, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016, pp. 3213–3223.
Paszke, Gross, Massa, Lerer, Bradbury, Chanan, Killeen, Lin, Gimelshein, Antiga (b39) 2019; 32
Tech, Chen, Müller, Ohm, Vetro, Wang (b3) 2015; 26
Taubman, Marcellin, Rabbani (b21) 2002; 11
Li, Li, Dai, Li, Zou, Xiong (b24) 2024
M. Wödlinger, J. Kotera, J. Xu, R. Sablatnig, Sasic: Stereo image compression with latent shifts and stereo attention, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022, pp. 661–670.
D. He, Y. Zheng, B. Sun, Y. Wang, H. Qin, Checkerboard context model for efficient learned image compression, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021, pp. 14771–14780.
X. Zhang, J. Shao, J. Zhang, LDMIC: Learning-based Distributed Multi-view Image Coding, in: The Eleventh International Conference on Learning Representations, 2023.
Wang, Simoncelli, Bovik (b34) 2003; Vol. 2
X. Deng, W. Yang, R. Yang, M. Xu, E. Liu, Q. Feng, R. Timofte, Deep homography for efficient stereo image compression, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021, pp. 1492–1501.
Livatino, Banno, Muscato (b1) 2012; 8
J. Lei, X. Liu, B. Peng, D. Jin, W. Li, J. Gu, Deep stereo image compression via bi-directional coding, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022, pp. 19669–19678.
Bégaint, Racapé, Feltman, Pushparaja (b38) 2020
Taubman (10.1016/j.patcog.2025.111799_b21) 2002; 11
10.1016/j.patcog.2025.111799_b32
10.1016/j.patcog.2025.111799_b31
Li (10.1016/j.patcog.2025.111799_b24) 2024
10.1016/j.patcog.2025.111799_b30
Bellard (10.1016/j.patcog.2025.111799_b37) 2014
Misra (10.1016/j.patcog.2025.111799_b29) 2019
Kingma (10.1016/j.patcog.2025.111799_b40) 2014
Uchigasaki (10.1016/j.patcog.2025.111799_b25) 2023; 142
Wyner (10.1016/j.patcog.2025.111799_b11) 1976; 22
Slepian (10.1016/j.patcog.2025.111799_b10) 1973; 19
Paszke (10.1016/j.patcog.2025.111799_b39) 2019; 32
Mital (10.1016/j.patcog.2025.111799_b12) 2022
Wallace (10.1016/j.patcog.2025.111799_b20) 1992; 38
Huang (10.1016/j.patcog.2025.111799_b14) 2023
10.1016/j.patcog.2025.111799_b27
10.1016/j.patcog.2025.111799_b23
Bégaint (10.1016/j.patcog.2025.111799_b38) 2020
Minnen (10.1016/j.patcog.2025.111799_b22) 2018; 31
Deng (10.1016/j.patcog.2025.111799_b28) 2023; 33
Bao (10.1016/j.patcog.2025.111799_b33) 2020; 63
Ayzik (10.1016/j.patcog.2025.111799_b13) 2020
Livatino (10.1016/j.patcog.2025.111799_b1) 2012; 8
10.1016/j.patcog.2025.111799_b5
10.1016/j.patcog.2025.111799_b4
10.1016/j.patcog.2025.111799_b7
10.1016/j.patcog.2025.111799_b6
10.1016/j.patcog.2025.111799_b19
Fu (10.1016/j.patcog.2025.111799_b26) 2024; 155
10.1016/j.patcog.2025.111799_b9
10.1016/j.patcog.2025.111799_b8
10.1016/j.patcog.2025.111799_b17
Zhou (10.1016/j.patcog.2025.111799_b18) 2020; 2020
10.1016/j.patcog.2025.111799_b16
Bjontegaard (10.1016/j.patcog.2025.111799_b36) 2001
10.1016/j.patcog.2025.111799_b15
Murray (10.1016/j.patcog.2025.111799_b2) 2000; 8
10.1016/j.patcog.2025.111799_b35
Tech (10.1016/j.patcog.2025.111799_b3) 2015; 26
Wang (10.1016/j.patcog.2025.111799_b34) 2003; Vol. 2
References_xml – volume: 8
  start-page: 69
  year: 2012
  end-page: 77
  ident: b1
  article-title: 3-D integration of robot vision and laser data with semiautomatic calibration in augmented reality stereoscopic visual interface
  publication-title: IEEE Trans. Ind. Informatics
– start-page: 699
  year: 2020
  end-page: 714
  ident: b13
  article-title: Deep image compression using decoder side information
  publication-title: Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part XVII 16
– volume: 32
  year: 2019
  ident: b39
  article-title: Pytorch: An imperative style, high-performance deep learning library
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 155
  year: 2024
  ident: b26
  article-title: Hybrid-context-based multi-prior entropy modeling for learned lossless image compression
  publication-title: Pattern Recognit.
– reference: X. Gu, Z. Fan, S. Zhu, Z. Dai, F. Tan, P. Tan, Cascade cost volume for high-resolution multi-view stereo and stereo matching, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020, pp. 2495–2504.
– reference: J. Ballé, V. Laparra, E.P. Simoncelli, End-to-end optimized image compression, in: 5th International Conference on Learning Representations, ICLR 2017, 2017.
– year: 2001
  ident: b36
  article-title: Calculation of average PSNR differences between RD-curves
– start-page: 182
  year: 2022
  end-page: 191
  ident: b12
  article-title: Neural distributed image compression using common information
  publication-title: 2022 Data Compression Conference
– year: 2024
  ident: b24
  article-title: Frequency-aware transformer for learned image compression
  publication-title: The Twelfth International Conference on Learning Representations
– reference: X. Deng, W. Yang, R. Yang, M. Xu, E. Liu, Q. Feng, R. Timofte, Deep homography for efficient stereo image compression, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021, pp. 1492–1501.
– volume: Vol. 2
  start-page: 1398
  year: 2003
  end-page: 1402
  ident: b34
  article-title: Multiscale structural similarity for image quality assessment
  publication-title: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003
– reference: J.-R. Chang, Y.-S. Chen, Pyramid stereo matching network, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 5410–5418.
– reference: D. He, Y. Zheng, B. Sun, Y. Wang, H. Qin, Checkerboard context model for efficient learned image compression, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021, pp. 14771–14780.
– reference: M. Wödlinger, J. Kotera, J. Xu, R. Sablatnig, Sasic: Stereo image compression with latent shifts and stereo attention, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022, pp. 661–670.
– year: 2019
  ident: b29
  article-title: Mish: A self regularized non-monotonic activation function
– reference: X. Zhang, J. Shao, J. Zhang, LDMIC: Learning-based Distributed Multi-view Image Coding, in: The Eleventh International Conference on Learning Representations, 2023.
– reference: J. Lei, X. Liu, B. Peng, D. Jin, W. Li, J. Gu, Deep stereo image compression via bi-directional coding, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022, pp. 19669–19678.
– volume: 26
  start-page: 35
  year: 2015
  end-page: 49
  ident: b3
  article-title: Overview of the multiview and 3D extensions of high efficiency video coding
  publication-title: IEEE Trans. Circuits Syst. Video Technol.
– reference: M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler, R. Benenson, U. Franke, S. Roth, B. Schiele, The cityscapes dataset for semantic urban scene understanding, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016, pp. 3213–3223.
– volume: 33
  start-page: 6026
  year: 2023
  end-page: 6040
  ident: b28
  article-title: MASIC: Deep mask stereo image compression
  publication-title: IEEE Trans. Circuits Syst. Video Technol.
– reference: Z. Shen, Y. Dai, Z. Rao, Cfnet: Cascade and fused cost volume for robust stereo matching, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021, pp. 13906–13915.
– volume: 22
  start-page: 1
  year: 1976
  end-page: 10
  ident: b11
  article-title: The rate-distortion function for source coding with side information at the decoder
  publication-title: IEEE Trans. Inform. Theory
– reference: R. Zhang, P. Isola, A.A. Efros, E. Shechtman, O. Wang, The unreasonable effectiveness of deep features as a perceptual metric, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 586–595.
– year: 2020
  ident: b38
  article-title: Compressai: a pytorch library and evaluation platform for end-to-end compression research
– reference: J. Ballé, D. Minnen, S. Singh, S.J. Hwang, N. Johnston, Variational image compression with a scale hyperprior, in: International Conference on Learning Representations, 2018.
– year: 2014
  ident: b40
  article-title: Adam: A method for stochastic optimization
– volume: 63
  start-page: 1
  year: 2020
  end-page: 11
  ident: b33
  article-title: Instereo2k: a large real dataset for stereo matching in indoor scenes
  publication-title: Sci. China Inf. Sci.
– reference: X. Zhang, X. Zhou, M. Lin, J. Sun, Shufflenet: An extremely efficient convolutional neural network for mobile devices, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 6848–6856.
– reference: Z. Cheng, H. Sun, M. Takeuchi, J. Katto, Learned image compression with discretized gaussian mixture likelihoods and attention modules, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020, pp. 7939–7948.
– volume: 8
  start-page: 161
  year: 2000
  end-page: 171
  ident: b2
  article-title: Using real-time stereo vision for mobile robot navigation
  publication-title: Auton. Robots
– volume: 38
  start-page: xviii
  year: 1992
  end-page: xxxiv
  ident: b20
  article-title: The JPEG still picture compression standard
  publication-title: IEEE Trans. Consum. Electron.
– volume: 11
  start-page: 286
  year: 2002
  end-page: 287
  ident: b21
  article-title: JPEG2000: Image compression fundamentals, standards and practice
  publication-title: J. Electron. Imaging
– reference: J. Liu, S. Wang, R. Urtasun, Dsic: Deep stereo image compression, in: Proceedings of the IEEE/CVF International Conference on Computer Vision, 2019, pp. 3136–3145.
– volume: 2020
  year: 2020
  ident: b18
  article-title: Review of stereo matching algorithms based on deep learning
  publication-title: Comput. Intell. Neurosci.
– volume: 142
  year: 2023
  ident: b25
  article-title: Deep image compression using scene text quality assessment
  publication-title: Pattern Recognit.
– reference: M. Menze, A. Geiger, Object scene flow for autonomous vehicles, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2015, pp. 3061–3070.
– start-page: 4322
  year: 2023
  end-page: 4329
  ident: b14
  article-title: Learned distributed image compression with multi-scale patch matching in feature domain
  publication-title: Proceedings of the AAAI Conference on Artificial Intelligence
– year: 2014
  ident: b37
  article-title: Bpg image format
– volume: 19
  start-page: 471
  year: 1973
  end-page: 480
  ident: b10
  article-title: Noiseless coding of correlated information sources
  publication-title: IEEE Trans. Inform. Theory
– volume: 31
  year: 2018
  ident: b22
  article-title: Joint autoregressive and hierarchical priors for learned image compression
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 142
  year: 2023
  ident: 10.1016/j.patcog.2025.111799_b25
  article-title: Deep image compression using scene text quality assessment
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2023.109696
– volume: 33
  start-page: 6026
  issue: 10
  year: 2023
  ident: 10.1016/j.patcog.2025.111799_b28
  article-title: MASIC: Deep mask stereo image compression
  publication-title: IEEE Trans. Circuits Syst. Video Technol.
  doi: 10.1109/TCSVT.2023.3253702
– volume: 8
  start-page: 69
  issue: 1
  year: 2012
  ident: 10.1016/j.patcog.2025.111799_b1
  article-title: 3-D integration of robot vision and laser data with semiautomatic calibration in augmented reality stereoscopic visual interface
  publication-title: IEEE Trans. Ind. Informatics
  doi: 10.1109/TII.2011.2174062
– volume: 26
  start-page: 35
  issue: 1
  year: 2015
  ident: 10.1016/j.patcog.2025.111799_b3
  article-title: Overview of the multiview and 3D extensions of high efficiency video coding
  publication-title: IEEE Trans. Circuits Syst. Video Technol.
  doi: 10.1109/TCSVT.2015.2477935
– ident: 10.1016/j.patcog.2025.111799_b35
  doi: 10.1109/CVPR.2018.00068
– ident: 10.1016/j.patcog.2025.111799_b15
– ident: 10.1016/j.patcog.2025.111799_b16
  doi: 10.1109/CVPR46437.2021.01369
– volume: 31
  year: 2018
  ident: 10.1016/j.patcog.2025.111799_b22
  article-title: Joint autoregressive and hierarchical priors for learned image compression
  publication-title: Adv. Neural Inf. Process. Syst.
– ident: 10.1016/j.patcog.2025.111799_b30
  doi: 10.1109/CVPR.2018.00716
– volume: 32
  year: 2019
  ident: 10.1016/j.patcog.2025.111799_b39
  article-title: Pytorch: An imperative style, high-performance deep learning library
  publication-title: Adv. Neural Inf. Process. Syst.
– ident: 10.1016/j.patcog.2025.111799_b23
  doi: 10.1109/CVPR46437.2021.01453
– ident: 10.1016/j.patcog.2025.111799_b32
  doi: 10.1109/CVPR.2015.7298925
– volume: 22
  start-page: 1
  issue: 1
  year: 1976
  ident: 10.1016/j.patcog.2025.111799_b11
  article-title: The rate-distortion function for source coding with side information at the decoder
  publication-title: IEEE Trans. Inform. Theory
  doi: 10.1109/TIT.1976.1055508
– year: 2014
  ident: 10.1016/j.patcog.2025.111799_b37
– volume: 19
  start-page: 471
  issue: 4
  year: 1973
  ident: 10.1016/j.patcog.2025.111799_b10
  article-title: Noiseless coding of correlated information sources
  publication-title: IEEE Trans. Inform. Theory
  doi: 10.1109/TIT.1973.1055037
– ident: 10.1016/j.patcog.2025.111799_b6
  doi: 10.1109/ICCV.2019.00323
– ident: 10.1016/j.patcog.2025.111799_b5
– ident: 10.1016/j.patcog.2025.111799_b27
  doi: 10.1109/CVPR42600.2020.00796
– ident: 10.1016/j.patcog.2025.111799_b7
  doi: 10.1109/CVPR46437.2021.00154
– ident: 10.1016/j.patcog.2025.111799_b17
  doi: 10.1109/CVPR42600.2020.00257
– year: 2020
  ident: 10.1016/j.patcog.2025.111799_b38
– ident: 10.1016/j.patcog.2025.111799_b8
  doi: 10.1109/CVPR52688.2022.00074
– year: 2024
  ident: 10.1016/j.patcog.2025.111799_b24
  article-title: Frequency-aware transformer for learned image compression
– volume: 2020
  year: 2020
  ident: 10.1016/j.patcog.2025.111799_b18
  article-title: Review of stereo matching algorithms based on deep learning
  publication-title: Comput. Intell. Neurosci.
  doi: 10.1155/2020/8562323
– volume: 38
  start-page: xviii
  issue: 1
  year: 1992
  ident: 10.1016/j.patcog.2025.111799_b20
  article-title: The JPEG still picture compression standard
  publication-title: IEEE Trans. Consum. Electron.
  doi: 10.1109/30.125072
– volume: Vol. 2
  start-page: 1398
  year: 2003
  ident: 10.1016/j.patcog.2025.111799_b34
  article-title: Multiscale structural similarity for image quality assessment
– volume: 63
  start-page: 1
  year: 2020
  ident: 10.1016/j.patcog.2025.111799_b33
  article-title: Instereo2k: a large real dataset for stereo matching in indoor scenes
  publication-title: Sci. China Inf. Sci.
  doi: 10.1007/s11432-019-2803-x
– ident: 10.1016/j.patcog.2025.111799_b31
  doi: 10.1109/CVPR.2016.350
– volume: 11
  start-page: 286
  issue: 2
  year: 2002
  ident: 10.1016/j.patcog.2025.111799_b21
  article-title: JPEG2000: Image compression fundamentals, standards and practice
  publication-title: J. Electron. Imaging
  doi: 10.1117/1.1469618
– year: 2019
  ident: 10.1016/j.patcog.2025.111799_b29
– start-page: 4322
  year: 2023
  ident: 10.1016/j.patcog.2025.111799_b14
  article-title: Learned distributed image compression with multi-scale patch matching in feature domain
– ident: 10.1016/j.patcog.2025.111799_b19
  doi: 10.1109/CVPR.2018.00567
– ident: 10.1016/j.patcog.2025.111799_b9
  doi: 10.1109/CVPR52688.2022.01905
– ident: 10.1016/j.patcog.2025.111799_b4
– volume: 8
  start-page: 161
  year: 2000
  ident: 10.1016/j.patcog.2025.111799_b2
  article-title: Using real-time stereo vision for mobile robot navigation
  publication-title: Auton. Robots
  doi: 10.1023/A:1008987612352
– start-page: 699
  year: 2020
  ident: 10.1016/j.patcog.2025.111799_b13
  article-title: Deep image compression using decoder side information
– year: 2014
  ident: 10.1016/j.patcog.2025.111799_b40
– volume: 155
  year: 2024
  ident: 10.1016/j.patcog.2025.111799_b26
  article-title: Hybrid-context-based multi-prior entropy modeling for learned lossless image compression
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2024.110632
– year: 2001
  ident: 10.1016/j.patcog.2025.111799_b36
– start-page: 182
  year: 2022
  ident: 10.1016/j.patcog.2025.111799_b12
  article-title: Neural distributed image compression using common information
SSID ssj0017142
Score 2.487058
Snippet Multi-view signal compression, particularly Stereo Image Compression (SIC), plays a pivotal role in applications such as car-mounted cameras and 3D-related...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 111799
SubjectTerms Distributed Source Coding
Lossless compression
Stereo image compression
Title FCA-Net: Accelerating stereo image compression through cascade alignment of side information
URI https://dx.doi.org/10.1016/j.patcog.2025.111799
Volume 168
WOSCitedRecordID wos001498809500003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 0031-3203
  databaseCode: AIEXJ
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0017142
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3da9swEBdbu4e9bN0X69YNPewtqDiybEl9S0PbbQ-hsI6lMDCyPkoCdUI-Rv_8nixZydoxtsFeTBBybO5-3J3Ov7tD6APPdWnAsZKslDVhSjiiqCnhlFKYrKTaqky1wyb4aCTGY3kea0-W7TgB3jTi5kbO_6uqYQ2U7Utn_0Ld6U9hAX6D0uEKaofrHyn-dDggIxsyflqDV_E6bpMGdmFnvcm1Z-l4JnlgwDZpVI9WS0-W70FkfpU4An6aZy92V006jMHsedub09fDRBLS5pP-OHBwLydgXaNvbLETs9OX6-k67R3GApHjSVr6Fved2Wbe-daYmqDFHZpHqpnZEJRaG5z3SU6z_CcbHGbr3LPnIbUwPZyDX5pdHfqHeCPPw1ClO52yv4RGlFkOYR1EqrJ4iHYpLyQYu93Bp5Px5_R5ifdZaCMfX6WrqWyJf_ef9euYZSsOudhDT-IBAg-C4p-hB7Z5jp52wzlwtNUv0PeIgyO8jQIcUIBbFOAtFOCIAhxRgBMK8MxhjwK8hYKX6OvpycXwI4mjNIgGm7wiLu_7rjyFheO2cU5S45iwxnFjpJOF4JrnqvA7HOPCOWd5nTFXa6pL4ajKX6GdZtbY1wjTWmjflDETTDFVM5EVypbSwiZpDdP7iHTCquahY0rVUQmnVRBu5YVbBeHuI95JtIpRX4jmKgDBb-988893vkWPN3g9QDurxdq-Q4_0j9VkuXgf0XILwoGAfw
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=FCA-Net%3A+Accelerating+stereo+image+compression+through+cascade+alignment+of+side+information&rft.jtitle=Pattern+recognition&rft.au=Xia%2C+Yichong&rft.au=Huang%2C+Yujun&rft.au=Chen%2C+Bin&rft.au=Wang%2C+Genping&rft.date=2025-12-01&rft.pub=Elsevier+Ltd&rft.issn=0031-3203&rft.volume=168&rft_id=info:doi/10.1016%2Fj.patcog.2025.111799&rft.externalDocID=S0031320325004595
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0031-3203&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0031-3203&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0031-3203&client=summon